x-transformers 1.42.15__py3-none-any.whl → 1.42.17__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1235,9 +1235,9 @@ class Attention(Module):
1235
1235
  # maybe learned value residual mixer per token
1236
1236
 
1237
1237
  self.to_value_residual_mix = nn.Sequential(
1238
- nn.Linear(dim, 1),
1238
+ nn.Linear(dim, heads),
1239
1239
  nn.Sigmoid(),
1240
- Rearrange('b n 1 -> b 1 n 1')
1240
+ Rearrange('b n h -> b h n 1')
1241
1241
  ) if learned_value_residual_mix else always(0.5)
1242
1242
 
1243
1243
  # attention on attention
@@ -1428,13 +1428,15 @@ class Attention(Module):
1428
1428
  else:
1429
1429
  attn_bias = rel_pos(i, j)
1430
1430
 
1431
- attn_bias = pad_at_dim(attn_bias, (num_mem_kv, 0), value = 0.) # handle memory key / values
1431
+ attn_bias = pad_at_dim(attn_bias, (num_mem_kv, 0)) # handle memory key / values
1432
1432
 
1433
1433
  # prepare data dependent alibi from forgetting transformers paper, if needed
1434
1434
 
1435
1435
  if exists(self.data_dependent_alibi):
1436
1436
  attn_bias = self.data_dependent_alibi(x)
1437
1437
 
1438
+ attn_bias = pad_at_dim(attn_bias, (num_mem_kv, 0))
1439
+
1438
1440
  # attention is all we need
1439
1441
 
1440
1442
  out, intermediates = self.attend(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.42.15
3
+ Version: 1.42.17
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang
@@ -6,11 +6,11 @@ x_transformers/dpo.py,sha256=xt4OuOWhU8pN3OKN2LZAaC2NC8iiEnchqqcrPWVqf0o,3521
6
6
  x_transformers/multi_input.py,sha256=tCh-fTJDj2ib4SMGtsa-AM8MxKzJAQSwqAXOu3HU2mg,9252
7
7
  x_transformers/neo_mlp.py,sha256=XCNnnop9WLarcxap1kGuYc1x8GHvwkZiDRnXOxSl3Po,3452
8
8
  x_transformers/nonautoregressive_wrapper.py,sha256=2NU58hYMgn-4Jzg3mie-mXb0XH_dCN7fjlzd3K1rLUY,10510
9
- x_transformers/x_transformers.py,sha256=-gi7UiCRdp-5y34cUJEMk7uFSi-I7khXxON1gErAKbY,95125
9
+ x_transformers/x_transformers.py,sha256=Wvkw4j_78413LdCnCt_wHgcVFiCbzrC8u4TH2iXhkNU,95181
10
10
  x_transformers/xl_autoregressive_wrapper.py,sha256=CvZMJ6A6PA-Y_bQAhnORwjJBSl6Vjq2IdW5KTdk8NI8,4195
11
11
  x_transformers/xval.py,sha256=7S00kCuab4tWQa-vf-z-XfzADjVj48MoFIr7VSIvttg,8575
12
- x_transformers-1.42.15.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
13
- x_transformers-1.42.15.dist-info/METADATA,sha256=zqzIQ3mdFjs4WV7IgTu4YYEmFM-6GKWast8twY4__Tg,717
14
- x_transformers-1.42.15.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
15
- x_transformers-1.42.15.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
16
- x_transformers-1.42.15.dist-info/RECORD,,
12
+ x_transformers-1.42.17.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
13
+ x_transformers-1.42.17.dist-info/METADATA,sha256=T1MDXNdxqdPkqFpGuJVb7vBhniGCbHefm5C-lhb3LJk,717
14
+ x_transformers-1.42.17.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
15
+ x_transformers-1.42.17.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
16
+ x_transformers-1.42.17.dist-info/RECORD,,