x-transformers 1.31.5__py3-none-any.whl → 1.31.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -580,7 +580,7 @@ class LayerNorm(Module):
580
580
 
581
581
  def forward(self, x):
582
582
  normed = self.ln(x)
583
- gamma = self.gamma + self.unit_offset
583
+ gamma = self.gamma + float(self.unit_offset)
584
584
  return normed * gamma
585
585
 
586
586
  class AdaptiveLayerNorm(Module):
@@ -615,7 +615,8 @@ class ScaleNorm(Module):
615
615
  nn.init.constant_(self.g, 1. - float(unit_offset))
616
616
 
617
617
  def forward(self, x):
618
- return F.normalize(x, dim = -1) * self.scale * (self.g + self.unit_offset)
618
+ gamma = self.g + float(self.unit_offset)
619
+ return F.normalize(x, dim = -1) * self.scale * gamma
619
620
 
620
621
  class RMSNorm(Module):
621
622
  def __init__(
@@ -631,7 +632,8 @@ class RMSNorm(Module):
631
632
  nn.init.constant_(self.g, 1. - float(unit_offset))
632
633
 
633
634
  def forward(self, x):
634
- return F.normalize(x, dim = -1) * self.scale * (self.g + self.unit_offset)
635
+ gamma = self.g + float(self.unit_offset)
636
+ return F.normalize(x, dim = -1) * self.scale * gamma
635
637
 
636
638
  class AdaptiveRMSNorm(Module):
637
639
  def __init__(
@@ -1267,7 +1269,8 @@ class AttentionLayers(Module):
1267
1269
  scale_residual_constant = 1.,
1268
1270
  shift_tokens = 0,
1269
1271
  sandwich_norm = False,
1270
- softclamp_output_value: float | None = None,
1272
+ softclamp_output = False,
1273
+ softclamp_output_value = 50.,
1271
1274
  resi_dual = False,
1272
1275
  resi_dual_scale = 1.,
1273
1276
  zero_init_branch_output = False,
@@ -1484,6 +1487,7 @@ class AttentionLayers(Module):
1484
1487
  # optional soft clamping just before the final norm
1485
1488
  # used in gemma 2
1486
1489
 
1490
+ self.softclamp_output = softclamp_output
1487
1491
  self.softclamp_output_value = softclamp_output_value
1488
1492
 
1489
1493
  # whether it has post norm
@@ -1717,7 +1721,7 @@ class AttentionLayers(Module):
1717
1721
  if return_hiddens:
1718
1722
  layer_hiddens.append(x)
1719
1723
 
1720
- if exists(self.softclamp_output_value):
1724
+ if self.softclamp_output:
1721
1725
  x = softclamp(x, self.softclamp_output_value)
1722
1726
 
1723
1727
  final_norm = self.final_norm
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.31.5
3
+ Version: 1.31.7
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang
@@ -4,11 +4,11 @@ x_transformers/autoregressive_wrapper.py,sha256=uX8Mb0zLsQrZECt_9UGt35g7tC05Rk3n
4
4
  x_transformers/continuous.py,sha256=WO52n9lFAXv5-SGadi2cApGF8dkouN8QSTEOuC7erj8,6180
5
5
  x_transformers/dpo.py,sha256=LjvWgCkqTl-UuehrzQ8nkX5guLr4whYwsmm7SKSwdls,3450
6
6
  x_transformers/nonautoregressive_wrapper.py,sha256=ys_p8obc7lTeeodCqvkRKxOXQ1C9T3j5Jwr-JbVgnXk,10432
7
- x_transformers/x_transformers.py,sha256=VL9Dm8L5jnpgyt_V6DWGtLs9MeiTn7ZMCQdcHSFLVo8,75871
7
+ x_transformers/x_transformers.py,sha256=xvomb5imna2kCG_Kp-PQYsA6JGyiTx_1Dx5cD-YDlH4,75986
8
8
  x_transformers/xl_autoregressive_wrapper.py,sha256=DCx4n0_c1tFai4nOqaWVnqx2p9eutsZsDMiMP1ckxNU,4117
9
9
  x_transformers/xval.py,sha256=QE1ltYZTR_eGgIHPP2BrMWVWVLqMW-OpDZh87BSmQEg,8563
10
- x_transformers-1.31.5.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
11
- x_transformers-1.31.5.dist-info/METADATA,sha256=o7z9SmDOf9BAU9FyMRuAbX4LIH8nIACA0acjGHPMz8s,661
12
- x_transformers-1.31.5.dist-info/WHEEL,sha256=mguMlWGMX-VHnMpKOjjQidIo1ssRlCFu4a4mBpz1s2M,91
13
- x_transformers-1.31.5.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
14
- x_transformers-1.31.5.dist-info/RECORD,,
10
+ x_transformers-1.31.7.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
11
+ x_transformers-1.31.7.dist-info/METADATA,sha256=Z3FjZ-v02tRiDNEYG5Bqw6Yg_gjzNRBKeCWxGrmib84,661
12
+ x_transformers-1.31.7.dist-info/WHEEL,sha256=y4mX-SOX4fYIkonsAGA5N0Oy-8_gI4FXw5HNI1xqvWg,91
13
+ x_transformers-1.31.7.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
14
+ x_transformers-1.31.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.1.1)
2
+ Generator: setuptools (70.2.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5