x-transformers 1.24.6__py3-none-any.whl → 1.25.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- x_transformers/__init__.py +1 -0
- x_transformers/continuous.py +6 -2
- x_transformers/x_transformers.py +27 -0
- {x_transformers-1.24.6.dist-info → x_transformers-1.25.0.dist-info}/METADATA +1 -1
- x_transformers-1.25.0.dist-info/RECORD +13 -0
- x_transformers-1.24.6.dist-info/RECORD +0 -13
- {x_transformers-1.24.6.dist-info → x_transformers-1.25.0.dist-info}/LICENSE +0 -0
- {x_transformers-1.24.6.dist-info → x_transformers-1.25.0.dist-info}/WHEEL +0 -0
- {x_transformers-1.24.6.dist-info → x_transformers-1.25.0.dist-info}/top_level.txt +0 -0
x_transformers/__init__.py
CHANGED
x_transformers/continuous.py
CHANGED
@@ -142,11 +142,13 @@ class ContinuousAutoregressiveWrapper(nn.Module):
|
|
142
142
|
self,
|
143
143
|
net: ContinuousTransformerWrapper,
|
144
144
|
ignore_index = -100,
|
145
|
-
pad_value = 0
|
145
|
+
pad_value = 0,
|
146
|
+
loss_fn = nn.MSELoss(reduction = 'none')
|
146
147
|
):
|
147
148
|
super().__init__()
|
148
149
|
self.net = net
|
149
150
|
self.max_seq_len = net.max_seq_len
|
151
|
+
self.loss_fn = loss_fn
|
150
152
|
|
151
153
|
@torch.no_grad()
|
152
154
|
def generate(self, start_tokens, seq_len, **kwargs):
|
@@ -187,9 +189,11 @@ class ContinuousAutoregressiveWrapper(nn.Module):
|
|
187
189
|
kwargs['mask'] = mask
|
188
190
|
|
189
191
|
out = self.net(inp, **kwargs)
|
190
|
-
|
192
|
+
|
193
|
+
loss = self.loss_fn(out, target)
|
191
194
|
|
192
195
|
if exists(mask):
|
196
|
+
assert loss.ndim > 1, 'loss should not be reduced if mask is passed in'
|
193
197
|
loss = loss[mask]
|
194
198
|
|
195
199
|
return loss.mean()
|
x_transformers/x_transformers.py
CHANGED
@@ -1331,6 +1331,33 @@ class Decoder(AttentionLayers):
|
|
1331
1331
|
assert 'causal' not in kwargs, 'cannot set causality on decoder'
|
1332
1332
|
super().__init__(causal = True, **kwargs)
|
1333
1333
|
|
1334
|
+
class PrefixDecoder(AttentionLayers):
|
1335
|
+
def __init__(self, **kwargs):
|
1336
|
+
assert 'causal' not in kwargs, 'cannot set causality on decoder'
|
1337
|
+
super().__init__(causal = False, **kwargs)
|
1338
|
+
|
1339
|
+
def forward(
|
1340
|
+
self,
|
1341
|
+
x,
|
1342
|
+
*args,
|
1343
|
+
attn_mask = None,
|
1344
|
+
prefix_len = None,
|
1345
|
+
**kwargs
|
1346
|
+
):
|
1347
|
+
b, n, device = *x.shape[:2], x.device
|
1348
|
+
causal_mask = torch.ones((n, n), device = device, dtype = torch.bool).triu(1)
|
1349
|
+
|
1350
|
+
forwarded_mask = ~causal_mask
|
1351
|
+
|
1352
|
+
if exists(prefix_len):
|
1353
|
+
prefix_mask = torch.arange(n, device = device) < rearrange(prefix_len, 'b -> b 1 1 1')
|
1354
|
+
forwarded_mask = forwarded_mask | prefix_mask
|
1355
|
+
|
1356
|
+
if exists(attn_mask):
|
1357
|
+
forwarded_mask = forwarded_mask & attn_mask
|
1358
|
+
|
1359
|
+
return super().forward(x, *args, attn_mask = forwarded_mask, **kwargs)
|
1360
|
+
|
1334
1361
|
class CrossAttender(AttentionLayers):
|
1335
1362
|
def __init__(self, **kwargs):
|
1336
1363
|
super().__init__(cross_attend = True, only_cross = True, **kwargs)
|
@@ -0,0 +1,13 @@
|
|
1
|
+
x_transformers/__init__.py,sha256=pXc_U4M3ONUQcpNgZySDIlCF1rp7u4FFmcOYjc4WuXw,629
|
2
|
+
x_transformers/attend.py,sha256=MFl_FbgPsm9mziZPTi_s8QbxASETwbGeciMH8sUIwT8,10188
|
3
|
+
x_transformers/autoregressive_wrapper.py,sha256=f2u0usjUfAlXwgTz87O8J8XjGTbsbrx2XEP6K2beSNI,8944
|
4
|
+
x_transformers/continuous.py,sha256=G8mVTan2-YbzkY3YDCTar1oyHPMSl0p4F6iRz3Nl0Is,5497
|
5
|
+
x_transformers/nonautoregressive_wrapper.py,sha256=AQLE4rA_Kh8VNoe9OzpwyeWson34sRkhks4dn4seNjI,10414
|
6
|
+
x_transformers/x_transformers.py,sha256=btyWp8_gOX8jkTqVUWQvuVaE8x6R8IMEkM6_Nczxsc0,59402
|
7
|
+
x_transformers/xl_autoregressive_wrapper.py,sha256=DCx4n0_c1tFai4nOqaWVnqx2p9eutsZsDMiMP1ckxNU,4117
|
8
|
+
x_transformers/xval.py,sha256=lS9W_E_RskPQAqVZkPiUzbByoW1Ajsw_phsikA3JDAg,8139
|
9
|
+
x_transformers-1.25.0.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
|
10
|
+
x_transformers-1.25.0.dist-info/METADATA,sha256=tIF8EPLHiY2CY0Y0TPFEREgo4VOGDWsv5DLOWi4bnBw,661
|
11
|
+
x_transformers-1.25.0.dist-info/WHEEL,sha256=Xo9-1PvkuimrydujYJAjF7pCkriuXBpUPEjma1nZyJ0,92
|
12
|
+
x_transformers-1.25.0.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
|
13
|
+
x_transformers-1.25.0.dist-info/RECORD,,
|
@@ -1,13 +0,0 @@
|
|
1
|
-
x_transformers/__init__.py,sha256=xeZcV-MAaT-l8NOktPa_54WkmXLn4nG5E7CyKQC2iAI,610
|
2
|
-
x_transformers/attend.py,sha256=MFl_FbgPsm9mziZPTi_s8QbxASETwbGeciMH8sUIwT8,10188
|
3
|
-
x_transformers/autoregressive_wrapper.py,sha256=f2u0usjUfAlXwgTz87O8J8XjGTbsbrx2XEP6K2beSNI,8944
|
4
|
-
x_transformers/continuous.py,sha256=mLVaSaPSdZyB6ctIP54ax5SMmUo3vTWhp5KgXJpKuns,5349
|
5
|
-
x_transformers/nonautoregressive_wrapper.py,sha256=AQLE4rA_Kh8VNoe9OzpwyeWson34sRkhks4dn4seNjI,10414
|
6
|
-
x_transformers/x_transformers.py,sha256=exkQkU_3S5RL0OA9tX4-h8ZWPOdGkoszvLkOStYVj_o,58543
|
7
|
-
x_transformers/xl_autoregressive_wrapper.py,sha256=DCx4n0_c1tFai4nOqaWVnqx2p9eutsZsDMiMP1ckxNU,4117
|
8
|
-
x_transformers/xval.py,sha256=lS9W_E_RskPQAqVZkPiUzbByoW1Ajsw_phsikA3JDAg,8139
|
9
|
-
x_transformers-1.24.6.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
|
10
|
-
x_transformers-1.24.6.dist-info/METADATA,sha256=9HcuKlXrBntL3TZIb1vyDRqj8GleTyENK5hiFJrZ7jg,661
|
11
|
-
x_transformers-1.24.6.dist-info/WHEEL,sha256=Xo9-1PvkuimrydujYJAjF7pCkriuXBpUPEjma1nZyJ0,92
|
12
|
-
x_transformers-1.24.6.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
|
13
|
-
x_transformers-1.24.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|