x-transformers 1.24.6__py3-none-any.whl → 1.25.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,6 +2,7 @@ from x_transformers.x_transformers import (
2
2
  XTransformer,
3
3
  Encoder,
4
4
  Decoder,
5
+ PrefixDecoder,
5
6
  CrossAttender,
6
7
  Attention,
7
8
  TransformerWrapper,
@@ -142,11 +142,13 @@ class ContinuousAutoregressiveWrapper(nn.Module):
142
142
  self,
143
143
  net: ContinuousTransformerWrapper,
144
144
  ignore_index = -100,
145
- pad_value = 0
145
+ pad_value = 0,
146
+ loss_fn = nn.MSELoss(reduction = 'none')
146
147
  ):
147
148
  super().__init__()
148
149
  self.net = net
149
150
  self.max_seq_len = net.max_seq_len
151
+ self.loss_fn = loss_fn
150
152
 
151
153
  @torch.no_grad()
152
154
  def generate(self, start_tokens, seq_len, **kwargs):
@@ -187,9 +189,11 @@ class ContinuousAutoregressiveWrapper(nn.Module):
187
189
  kwargs['mask'] = mask
188
190
 
189
191
  out = self.net(inp, **kwargs)
190
- loss = F.mse_loss(out, target, reduction = 'none')
192
+
193
+ loss = self.loss_fn(out, target)
191
194
 
192
195
  if exists(mask):
196
+ assert loss.ndim > 1, 'loss should not be reduced if mask is passed in'
193
197
  loss = loss[mask]
194
198
 
195
199
  return loss.mean()
@@ -1331,6 +1331,33 @@ class Decoder(AttentionLayers):
1331
1331
  assert 'causal' not in kwargs, 'cannot set causality on decoder'
1332
1332
  super().__init__(causal = True, **kwargs)
1333
1333
 
1334
+ class PrefixDecoder(AttentionLayers):
1335
+ def __init__(self, **kwargs):
1336
+ assert 'causal' not in kwargs, 'cannot set causality on decoder'
1337
+ super().__init__(causal = False, **kwargs)
1338
+
1339
+ def forward(
1340
+ self,
1341
+ x,
1342
+ *args,
1343
+ attn_mask = None,
1344
+ prefix_len = None,
1345
+ **kwargs
1346
+ ):
1347
+ b, n, device = *x.shape[:2], x.device
1348
+ causal_mask = torch.ones((n, n), device = device, dtype = torch.bool).triu(1)
1349
+
1350
+ forwarded_mask = ~causal_mask
1351
+
1352
+ if exists(prefix_len):
1353
+ prefix_mask = torch.arange(n, device = device) < rearrange(prefix_len, 'b -> b 1 1 1')
1354
+ forwarded_mask = forwarded_mask | prefix_mask
1355
+
1356
+ if exists(attn_mask):
1357
+ forwarded_mask = forwarded_mask & attn_mask
1358
+
1359
+ return super().forward(x, *args, attn_mask = forwarded_mask, **kwargs)
1360
+
1334
1361
  class CrossAttender(AttentionLayers):
1335
1362
  def __init__(self, **kwargs):
1336
1363
  super().__init__(cross_attend = True, only_cross = True, **kwargs)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.24.6
3
+ Version: 1.25.0
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang
@@ -0,0 +1,13 @@
1
+ x_transformers/__init__.py,sha256=pXc_U4M3ONUQcpNgZySDIlCF1rp7u4FFmcOYjc4WuXw,629
2
+ x_transformers/attend.py,sha256=MFl_FbgPsm9mziZPTi_s8QbxASETwbGeciMH8sUIwT8,10188
3
+ x_transformers/autoregressive_wrapper.py,sha256=f2u0usjUfAlXwgTz87O8J8XjGTbsbrx2XEP6K2beSNI,8944
4
+ x_transformers/continuous.py,sha256=G8mVTan2-YbzkY3YDCTar1oyHPMSl0p4F6iRz3Nl0Is,5497
5
+ x_transformers/nonautoregressive_wrapper.py,sha256=AQLE4rA_Kh8VNoe9OzpwyeWson34sRkhks4dn4seNjI,10414
6
+ x_transformers/x_transformers.py,sha256=btyWp8_gOX8jkTqVUWQvuVaE8x6R8IMEkM6_Nczxsc0,59402
7
+ x_transformers/xl_autoregressive_wrapper.py,sha256=DCx4n0_c1tFai4nOqaWVnqx2p9eutsZsDMiMP1ckxNU,4117
8
+ x_transformers/xval.py,sha256=lS9W_E_RskPQAqVZkPiUzbByoW1Ajsw_phsikA3JDAg,8139
9
+ x_transformers-1.25.0.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
10
+ x_transformers-1.25.0.dist-info/METADATA,sha256=tIF8EPLHiY2CY0Y0TPFEREgo4VOGDWsv5DLOWi4bnBw,661
11
+ x_transformers-1.25.0.dist-info/WHEEL,sha256=Xo9-1PvkuimrydujYJAjF7pCkriuXBpUPEjma1nZyJ0,92
12
+ x_transformers-1.25.0.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
13
+ x_transformers-1.25.0.dist-info/RECORD,,
@@ -1,13 +0,0 @@
1
- x_transformers/__init__.py,sha256=xeZcV-MAaT-l8NOktPa_54WkmXLn4nG5E7CyKQC2iAI,610
2
- x_transformers/attend.py,sha256=MFl_FbgPsm9mziZPTi_s8QbxASETwbGeciMH8sUIwT8,10188
3
- x_transformers/autoregressive_wrapper.py,sha256=f2u0usjUfAlXwgTz87O8J8XjGTbsbrx2XEP6K2beSNI,8944
4
- x_transformers/continuous.py,sha256=mLVaSaPSdZyB6ctIP54ax5SMmUo3vTWhp5KgXJpKuns,5349
5
- x_transformers/nonautoregressive_wrapper.py,sha256=AQLE4rA_Kh8VNoe9OzpwyeWson34sRkhks4dn4seNjI,10414
6
- x_transformers/x_transformers.py,sha256=exkQkU_3S5RL0OA9tX4-h8ZWPOdGkoszvLkOStYVj_o,58543
7
- x_transformers/xl_autoregressive_wrapper.py,sha256=DCx4n0_c1tFai4nOqaWVnqx2p9eutsZsDMiMP1ckxNU,4117
8
- x_transformers/xval.py,sha256=lS9W_E_RskPQAqVZkPiUzbByoW1Ajsw_phsikA3JDAg,8139
9
- x_transformers-1.24.6.dist-info/LICENSE,sha256=As9u198X-U-vph5noInuUfqsAG2zX_oXPHDmdjwlPPY,1066
10
- x_transformers-1.24.6.dist-info/METADATA,sha256=9HcuKlXrBntL3TZIb1vyDRqj8GleTyENK5hiFJrZ7jg,661
11
- x_transformers-1.24.6.dist-info/WHEEL,sha256=Xo9-1PvkuimrydujYJAjF7pCkriuXBpUPEjma1nZyJ0,92
12
- x_transformers-1.24.6.dist-info/top_level.txt,sha256=hO6KGpFuGucRNEtRfme4A_rGcM53AKwGP7RVlRIxS5Q,15
13
- x_transformers-1.24.6.dist-info/RECORD,,