wsba-hockey 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. wsba_hockey/api/api/index.py +129 -0
  2. wsba_hockey/data_pipelines.py +71 -8
  3. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/game_stats/app.py +6 -5
  4. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/app.py +101 -0
  5. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/plot.py +71 -0
  6. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/goalie/rink_plot.py +245 -0
  7. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/app.py +1 -1
  8. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/plot.py +2 -0
  9. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/heatmaps/rink_plot.py +1 -1
  10. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/app.py +3 -3
  11. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/plot.py +2 -0
  12. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/matchups/rink_plot.py +1 -1
  13. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/app.py +44 -28
  14. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/plot.py +12 -3
  15. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/pbp/rink_plot.py +1 -1
  16. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/app.py +1 -1
  17. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/plot.py +5 -4
  18. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/skater/rink_plot.py +1 -1
  19. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/app.py +103 -0
  20. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/plot.py +95 -0
  21. wsba_hockey/evidence/weakside-breakout/wsba_nhl_apps/wsba_nhl_apps/team_heatmaps/rink_plot.py +245 -0
  22. wsba_hockey/flask/app.py +77 -0
  23. wsba_hockey/tools/plotting.py +1 -0
  24. wsba_hockey/tools/scraping.py +6 -2
  25. wsba_hockey/tools/xg_model.py +1 -1
  26. wsba_hockey/workspace.py +28 -12
  27. wsba_hockey/wsba_main.py +10 -17
  28. {wsba_hockey-1.1.0.dist-info → wsba_hockey-1.1.2.dist-info}/METADATA +1 -1
  29. {wsba_hockey-1.1.0.dist-info → wsba_hockey-1.1.2.dist-info}/RECORD +32 -24
  30. {wsba_hockey-1.1.0.dist-info → wsba_hockey-1.1.2.dist-info}/WHEEL +0 -0
  31. {wsba_hockey-1.1.0.dist-info → wsba_hockey-1.1.2.dist-info}/licenses/LICENSE +0 -0
  32. {wsba_hockey-1.1.0.dist-info → wsba_hockey-1.1.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,129 @@
1
+ import pandas as pd
2
+ import numpy as np
3
+ import wsba_hockey as wsba
4
+ import requests as rs
5
+ from fastapi import FastAPI
6
+ from datetime import datetime
7
+ import pytz
8
+
9
+ app = FastAPI()
10
+
11
+ @app.get("/")
12
+ def read_root():
13
+ return {"WeakSide Breakout Analysis": "Welcome to the API!"}
14
+
15
+ @app.get("/nhl/players/{player_id}")
16
+ def player(player_id: int):
17
+ player = rs.get(f'https://api-web.nhle.com/v1/player/{player_id}/landing').json()
18
+
19
+ return player
20
+
21
+ @app.get("/nhl/schedule/{date}")
22
+ def schedule_info(date: str):
23
+ data = rs.get(f'https://api-web.nhle.com/v1/schedule/{date}').json()
24
+
25
+ eastern = pytz.timezone('US/Eastern')
26
+ for game in data['gameWeek'][0]['games']:
27
+ game['startTimeEST'] = datetime.strptime(game['startTimeUTC'],'%Y-%m-%dT%H:%M:%SZ').replace(tzinfo=pytz.UTC).astimezone(eastern).strftime('%I:%M %p')
28
+
29
+ return data
30
+
31
+ @app.get("/nhl/games/{game_id}")
32
+ def pbp(game_id: int):
33
+ df = wsba.nhl_apply_xG(wsba.nhl_scrape_game([game_id],remove=[]))
34
+
35
+ skater = {}
36
+ goalie = {}
37
+ team_stats = {}
38
+ other = df.loc[~df['strength_state'].isin(['5v5','5v4','4v5']),'strength_state'].drop_duplicates().to_list()
39
+ for strength in [['5v5'],['5v4'],['4v5'],
40
+ other,
41
+ 'all']:
42
+
43
+ s = wsba.nhl_calculate_stats(df,'skater',[2,3],strength,True).replace([np.inf, -np.inf], np.nan).fillna('').to_dict(orient='records')
44
+ g = wsba.nhl_calculate_stats(df,'goalie',[2,3],strength,True).replace([np.inf, -np.inf], np.nan).fillna('').to_dict(orient='records')
45
+ t = wsba.nhl_calculate_stats(df,'team',[2,3],strength,True).replace([np.inf, -np.inf], np.nan).fillna('').to_dict(orient='records')
46
+
47
+ if strength != 'all':
48
+ if len(strength)>1:
49
+ add = 'Other'
50
+ else:
51
+ add = strength[0]
52
+ else:
53
+ add = 'All'
54
+
55
+ skater.update({add:s})
56
+ goalie.update({add:g})
57
+ team_stats.update({add:t})
58
+
59
+ df = df.fillna('')
60
+
61
+ team_data = pd.read_csv('https://weakside-breakout.s3.us-east-2.amazonaws.com/info/nhl_teaminfo.csv')[['triCode','seasonId','teamName.default','teamLogo','Primary Color','Secondary Color','WSBA']]
62
+
63
+ info = df[['season','season_type','game_id','game_date',
64
+ 'venue','venue_location']].drop_duplicates().to_dict(orient='records')[0]
65
+
66
+ info.update({'notice':'All data and materials are from the National Hockey League.'})
67
+
68
+ teams = {}
69
+ for team in ['away','home']:
70
+ df = pd.merge(df,team_data,how='left',left_on=[f'{team}_team_abbr','season'],right_on=['triCode','seasonId']).fillna('')
71
+ mod = '' if team == 'away' else '_y'
72
+ teams.update({team: df[[f'{team}_team_abbr'
73
+ ,f'{team}_coach',
74
+ f'teamName.default{mod}',
75
+ f'teamLogo{mod}',
76
+ f'Primary Color{mod}',
77
+ f'Secondary Color{mod}',
78
+ f'WSBA{mod}']].rename(columns={f'{team}_team_abbr':'team_abbr',f'{team}_coach':'coach',
79
+ f'teamName.default{mod}':'team_name',
80
+ f'teamLogo{mod}':'team_logo',
81
+ f'Primary Color{mod}':'primary_color',
82
+ f'Secondary Color{mod}':'secondary_color',
83
+ f'WSBA{mod}':'WSBA'
84
+ }).drop_duplicates().to_dict(orient='records')[0]})
85
+
86
+ play_col = [
87
+ 'event_num','period','period_type',
88
+ 'seconds_elapsed','period_time','game_time',"strength_state","strength_state_venue","home_team_defending_side",
89
+ "event_type_code","event_type","description","event_reason",
90
+ "penalty_type","penalty_duration","penalty_attribution",
91
+ "event_team_abbr","event_team_venue",
92
+ 'num_on', 'players_on','ids_on','num_off','players_off','ids_off','shift_type',
93
+ "event_player_1_name","event_player_2_name","event_player_3_name",
94
+ "event_player_1_id","event_player_2_id","event_player_3_id",
95
+ "event_player_1_pos","event_player_2_pos","event_player_3_pos",
96
+ "event_goalie_name","event_goalie_id",
97
+ "shot_type","zone_code","x","y","x_fixed","y_fixed","x_adj","y_adj",
98
+ "event_skaters","away_skaters","home_skaters",
99
+ "event_distance","event_angle","event_length","seconds_since_last",
100
+ "away_score","home_score", "away_fenwick", "home_fenwick",
101
+ "away_on_1","away_on_2","away_on_3","away_on_4","away_on_5","away_on_6","away_goalie",
102
+ "home_on_1","home_on_2","home_on_3","home_on_4","home_on_5","home_on_6","home_goalie",
103
+ "away_on_1_id","away_on_2_id","away_on_3_id","away_on_4_id","away_on_5_id","away_on_6_id","away_goalie_id",
104
+ "home_on_1_id","home_on_2_id","home_on_3_id","home_on_4_id","home_on_5_id","home_on_6_id","home_goalie_id",
105
+ "event_coach",'xG'
106
+ ]
107
+
108
+ def sanitize(value):
109
+ if isinstance(value, (np.generic, np.ndarray)):
110
+ return value.item()
111
+ return value
112
+
113
+ plays = [
114
+ {k: sanitize(v) for k, v in row.items() if v != ''}
115
+ for row in df[[col for col in play_col if col in df.columns]].to_dict(orient='records')
116
+ ]
117
+
118
+ plays = [
119
+ {k: sanitize(v) for k, v in row.items() if v != ''}
120
+ for row in df[[col for col in play_col if col in df.columns]].to_dict(orient='records')
121
+ ]
122
+
123
+ return {'info': info,
124
+ 'teams': teams,
125
+ 'skater_stats':skater,
126
+ 'goalie_stats':goalie,
127
+ 'team_stats':team_stats,
128
+ 'plays': plays
129
+ }
@@ -1,3 +1,4 @@
1
+ import os
1
2
  import numpy as np
2
3
  import pandas as pd
3
4
  import wsba_main as wsba
@@ -23,15 +24,16 @@ def pbp_db(seasons):
23
24
  for season in seasons:
24
25
  pbp = pd.read_parquet(f'pbp/parquet/nhl_pbp_{season}.parquet')
25
26
  pbp.loc[pbp['event_type'].isin(wsba.events+['penalty'])].to_csv('temp.csv',index=False)
26
- pd.read_csv('temp.csv').to_parquet(f'backblaze_pbp/{season}.parquet',index=False)
27
+ pd.read_csv('temp.csv').to_parquet(f'aws_pbp/{season}.parquet',index=False)
28
+ os.remove('temp.csv')
27
29
 
28
30
  def load_pbp(seasons):
29
31
  return pd.concat([pd.read_parquet(f'pbp/parquet/nhl_pbp_{season}.parquet') for season in seasons])
30
32
 
31
33
  def load_pbp_db(seasons):
32
- return pd.concat([pd.read_parquet(f'backblaze_pbp/{season}.parquet') for season in seasons])
34
+ return pd.concat([pd.read_parquet(f'aws_pbp/{season}.parquet') for season in seasons])
33
35
 
34
- def stats(arg,seasons):
36
+ def build_stats(arg,seasons):
35
37
  #Stats building
36
38
  for group in arg:
37
39
  for season in seasons:
@@ -73,9 +75,70 @@ def game_log(arg,seasons):
73
75
  data['Span'] = season_type[0]
74
76
  dfs.append(data)
75
77
  stat = pd.concat(dfs)
76
- stat.to_csv(f'stats/game_log/wsba_nhl_{season}_game_log.csv',index=False)
77
- stats = pd.read_csv(f'stats/game_log/wsba_nhl_{season}_game_log.csv')
78
- stats.to_parquet(f'stats/game_log/wsba_nhl_{season}_game_log.parquet',index=False)
78
+ path = 'stats/game_log' if group == 'skater' else 'stats/game_log/goalie'
79
+ stat.to_csv(f'{path}/temp.csv',index=False)
80
+ stats = pd.read_csv(f'{path}/temp.csv')
81
+ os.remove('temp.csv')
82
+ stats.to_parquet(f'{path}/wsba_nhl_{season}_game_log{'_goalie' if group == 'goalie' else ''}.parquet',index=False)
83
+
84
+ def fix_names(arg,seasons):
85
+ #Stats building
86
+ for group in arg:
87
+ for season in seasons:
88
+ print(f'Fixing names for {group} stats in {season}...')
89
+
90
+ group_name = 'Player' if 'skater' in group else 'Goalie'
91
+ if 'game_log' in group:
92
+ if 'skater' in group:
93
+ path = f'stats/{group[-8:]}/wsba_nhl_{season}_game_log.parquet'
94
+ else:
95
+ path = f'stats/{group[-8:]}/goalie/wsba_nhl_{season}_game_log_goalie.parquet'
96
+ else:
97
+ path = f'stats/{group}/wsba_nhl_{season}_{group}.csv'
98
+
99
+ if 'game_log' in group:
100
+ stats = pd.read_parquet(path)
101
+ else:
102
+ stats = pd.read_csv(path)
103
+
104
+ missing = stats.loc[stats[group_name].astype(str)=='0','ID'].drop_duplicates()
105
+
106
+ if not missing.to_list():
107
+ ''
108
+ else:
109
+ info = wsba.nhl_scrape_player_data(missing)
110
+ columns={'playerId':'ID',
111
+ 'fullName':group_name,
112
+ 'position':'Position',
113
+ 'headshot':'Headshot',
114
+ 'shootsCatches':'Handedness',
115
+ 'heightInInches':'Height (in)',
116
+ 'weightInPounds':'Weight (lbs)',
117
+ 'birthDate':'Birthday' }
118
+
119
+ info = info[list(columns.keys())]
120
+ complete = pd.merge(stats,info,how='left',left_on=['ID'],right_on=['playerId']).replace({'0':np.nan})
121
+
122
+ for key, value in zip(columns.keys(), columns.values()):
123
+ complete[value] = complete[value].combine_first(complete[key])
124
+ complete = complete.drop(columns=[key])
125
+
126
+ complete.to_csv('wtf.csv')
127
+ #Add player age
128
+ complete['Birthday'] = pd.to_datetime(complete['Birthday'],format='mixed')
129
+ complete['season_year'] = complete['Season'].astype(str).str[4:8].astype(int)
130
+ complete['Age'] = complete['season_year'] - complete['Birthday'].dt.year
131
+
132
+ complete['WSBA'] = complete[group_name]+complete['Team']+complete['Season'].astype(str)
133
+ complete = complete.sort_values(by=['Player','Season','Team','ID'])
134
+
135
+ if 'game_log' in group:
136
+ complete.to_csv('temp.csv',index=False)
137
+ pd.read_csv('temp.csv').to_parquet(path,index=False)
138
+ os.remove('temp.csv')
139
+
140
+ else:
141
+ complete.to_csv(path)
79
142
 
80
143
  def push_to_sheet(seasons, types = ['skaters','team','goalie','info'], msg = 'Data Update'):
81
144
  spread = Spread('WSBA - NHL 5v5 Shooting Metrics Public v1.0')
@@ -100,8 +163,8 @@ def push_to_sheet(seasons, types = ['skaters','team','goalie','info'], msg = 'Da
100
163
  spread.df_to_sheet(goalie,index=False,sheet='Goalie DB')
101
164
 
102
165
  if 'info' in types:
103
- team_info = pd.read_csv('teaminfo/nhl_teaminfo.csv')
104
- country = pd.read_csv('teaminfo/nhl_countryinfo.csv')
166
+ team_info = pd.read_csv('tools/teaminfo/nhl_teaminfo.csv')
167
+ country = pd.read_csv('tools/teaminfo/nhl_countryinfo.csv')
105
168
 
106
169
  spread.df_to_sheet(team_info,index=False,sheet='Team Info')
107
170
  spread.df_to_sheet(country,index=False,sheet='Country Info')
@@ -125,7 +125,7 @@ def server(input, output, session):
125
125
  game_info = reactive.Value(None)
126
126
 
127
127
  def get_schedule():
128
- games = pd.read_csv('https://f005.backblazeb2.com/file/weakside-breakout/info/schedule.csv')
128
+ games = pd.read_csv('https://weakside-breakout.s3.us-east-2.amazonaws.com/info/schedule.csv')
129
129
 
130
130
  return games.loc[games['gameState'].isin(['OFF','FINAL'])]
131
131
 
@@ -139,6 +139,7 @@ def server(input, output, session):
139
139
 
140
140
  defaults = {
141
141
  'game_id':['2024020001'],
142
+ 'title':['true']
142
143
  }
143
144
 
144
145
  for key in defaults.keys():
@@ -180,9 +181,9 @@ def server(input, output, session):
180
181
  info = game_info.get()
181
182
  season = info['season']
182
183
  #Load appropriate dataframe
183
- df = pd.read_parquet(f'https://f005.backblazeb2.com/file/weakside-breakout/game_log/wsba_nhl_{season}_game_log.parquet')
184
- goalie_df = pd.read_parquet(f'https://f005.backblazeb2.com/file/weakside-breakout/game_log/goalie/wsba_nhl_{season}_game_log_goalie.parquet')
185
- pbp = pd.read_parquet(f'https://f005.backblazeb2.com/file/weakside-breakout/pbp/{season}.parquet')
184
+ df = pd.read_parquet(f'https://weakside-breakout.s3.us-east-2.amazonaws.com/game_log/wsba_nhl_{season}_game_log.parquet')
185
+ goalie_df = pd.read_parquet(f'https://weakside-breakout.s3.us-east-2.amazonaws.com/game_log/goalie/wsba_nhl_{season}_game_log_goalie.parquet')
186
+ pbp = pd.read_parquet(f'https://weakside-breakout.s3.us-east-2.amazonaws.com/pbp/{season}.parquet')
186
187
 
187
188
  game_df.set([df.loc[(df['Game']==info['game_id'])], pbp.loc[(pbp['game_id']==info['game_id'])&(pbp['event_type']=='goal')], goalie_df.loc[(goalie_df['Game']==info['game_id'])]])
188
189
 
@@ -247,7 +248,7 @@ def server(input, output, session):
247
248
  @output
248
249
  @render.text
249
250
  def game_header():
250
- return game_info.get()['title']
251
+ return game_info.get()['title'] if active_params()['title'][0] == 'true' else None
251
252
 
252
253
  @output
253
254
  @render.text
@@ -0,0 +1,101 @@
1
+ import pandas as pd
2
+ import plot as wsba_plt
3
+ import numpy as np
4
+ from urllib.parse import *
5
+ from shiny import *
6
+ from shinywidgets import output_widget, render_widget
7
+
8
+ app_ui = ui.page_fluid(
9
+ ui.tags.style(
10
+ "body {background:#09090b"
11
+ "}"
12
+ ),
13
+ output_widget("plot_goalie"),
14
+ )
15
+
16
+ def server(input, output, session):
17
+ @output()
18
+ @render_widget
19
+ def plot_goalie():
20
+ #Retreive query parameters
21
+ search = session.input[".clientdata_url_search"]()
22
+ query = parse_qs(urlparse(search).query)
23
+
24
+ print(query)
25
+ #If no input data is provided automatically provide a select goalie and plot all 5v5 fenwick shots
26
+ defaults = {
27
+ 'goalie':['8471679'],
28
+ 'season':['20142015'],
29
+ 'team':['MTL'],
30
+ 'strength_state':['5v5'],
31
+ 'season_type':['2']
32
+ }
33
+
34
+ for key in defaults.keys():
35
+ if key not in query.keys():
36
+ query.update({key:defaults[key]})
37
+
38
+ #Iterate through query and parse params with multiple selections
39
+ for param in query.keys():
40
+ q_string = query[param][0]
41
+ query[param] = q_string.split(',')
42
+
43
+ print(query)
44
+ #Determine which season to load based on the input
45
+ season = query['season'][0]
46
+ #Load appropriate dataframe
47
+ df = pd.read_parquet(f'https://weakside-breakout.s3.us-east-2.amazonaws.com/pbp/{season}.parquet')
48
+
49
+ #Prepare dataframe for plotting based on URL parameters
50
+ df = df.loc[(df['season'].astype(str).isin(query['season']))&(df['season_type'].astype(str).isin(query['season_type']))].replace({np.nan: None})
51
+ #Return empty rink if no data exists else continue
52
+ if df.empty:
53
+ return wsba_plt.wsba_rink(setting='offense',vertical=True)
54
+ else:
55
+ rink = wsba_plt.wsba_rink(setting='offense',vertical=True)
56
+
57
+ try:
58
+ plot = wsba_plt.heatmap(df,goalie=query['goalie'][0],team=query['team'][0],events=['missed-shot','shot-on-goal','goal'],strengths=query['strength_state'])
59
+
60
+ for trace in plot.data:
61
+ rink.add_trace(trace)
62
+
63
+ player = query['goalie'][0]
64
+ season = int(season[0:4])
65
+ team = query['team'][0]
66
+ strengths = 'All Situations' if len(query['strength_state']) == 4 else query['strength_state']
67
+ span = 'Regular Season' if query['season_type'][0]=='2' else 'Playoffs'
68
+
69
+ return rink.update_layout(
70
+ title=dict(
71
+ text=f'{player} GSAx at {strengths}; {season}-{season+1}, {span}, {team}',
72
+ x=0.5, y=0.96,
73
+ xanchor='center',
74
+ yanchor='top',
75
+ font=dict(color='white')
76
+ ),
77
+ ).add_annotation(
78
+ text='Lower GSAx',
79
+ xref="paper",
80
+ yref="paper",
81
+ xanchor='right',
82
+ yanchor='top',
83
+ font=dict(color='white'),
84
+ x=0.3,
85
+ y=0.04,
86
+ showarrow=False
87
+ ).add_annotation(
88
+ text='Higher GSAx',
89
+ xref="paper",
90
+ yref="paper",
91
+ xanchor='right',
92
+ yanchor='top',
93
+ font=dict(color='white'),
94
+ x=0.76,
95
+ y=0.04,
96
+ showarrow=False
97
+ )
98
+ except:
99
+ return wsba_plt.wsba_rink(setting='offense',vertical=True)
100
+
101
+ app = App(app_ui, server)
@@ -0,0 +1,71 @@
1
+ import pandas as pd
2
+ import numpy as np
3
+ import plotly.graph_objects as go
4
+ import matplotlib.pyplot as plt
5
+ import rink_plot
6
+ from scipy.interpolate import griddata
7
+ from scipy.ndimage import gaussian_filter
8
+
9
+ def wsba_rink(setting='full', vertical=False):
10
+ return rink_plot.rink(setting=setting, vertical=vertical)
11
+
12
+ def heatmap(df,goalie,team,events,strengths):
13
+ df['event_team_abbr_2'] = np.where(df['home_team_abbr']==df['event_team_abbr'],df['away_team_abbr'],df['home_team_abbr'])
14
+ df['strength_state_2'] = df['strength_state'].str[::-1]
15
+
16
+ df = df.loc[(df['event_type'].isin(events))&(df['x_adj'].notna())&(df['y_adj'].notna())]
17
+ df['x'] = np.where(df['x_adj']<0,-df['y_adj'],df['y_adj'])
18
+ df['y'] = abs(df['x_adj'])
19
+ df['event_distance'] = abs(df['event_distance'].fillna(0))
20
+ df = df.loc[(df['event_distance']<=89)&(df['y']<=89)&(df['empty_net']==0)]
21
+
22
+ y_min = 0
23
+ y_max = 100
24
+
25
+ df['G'] = (df['event_type']=='goal').astype(int)
26
+ df['strength_state_2'] = np.where(df['strength_state_2'].isin(['5v5','5v4','4v5']),df['strength_state_2'],'Other')
27
+
28
+ if strengths != 'all':
29
+ df = df.loc[((df['strength_state_2'].isin(strengths)))]
30
+
31
+ [x,y] = np.round(np.meshgrid(np.linspace(-42.5,42.5,85),np.linspace(y_min,y_max,(y_max-y_min))))
32
+ xgoals = griddata((df['x'],df['y']),df['xG']-df['G'],(x,y),method='cubic',fill_value=0)
33
+ xgoals_smooth = gaussian_filter(xgoals,sigma=3)
34
+
35
+ player_shots = df.loc[(df['event_goalie_id'].astype(str).str.contains(goalie))&(df['event_team_abbr_2']==team)]
36
+ [x,y] = np.round(np.meshgrid(np.linspace(-42.5,42.5,85),np.linspace(y_min,y_max,(y_max-y_min))))
37
+ xgoals_player = griddata((player_shots['x'],player_shots['y']),player_shots['xG']-player_shots['G'],(x,y),method='cubic',fill_value=0)
38
+
39
+ difference = (gaussian_filter(xgoals_player,sigma = 3)) - xgoals_smooth
40
+ data_min= difference.min()
41
+ data_max= difference.max()
42
+
43
+ if abs(data_min) > data_max:
44
+ data_max = data_min * -1
45
+ elif data_max > abs(data_min):
46
+ data_min = data_max * -1
47
+
48
+ fig = go.Figure(
49
+ data = go.Contour( x=np.linspace(-42.5,42,5,85),
50
+ y=np.linspace(y_min,y_max,(y_max-y_min)),
51
+ z=xgoals_smooth,
52
+ colorscale=[[0.0,'red'],[0.5,'#09090b'],[1.0,'blue']],
53
+ connectgaps=True,
54
+ contours=dict(
55
+ type='levels',
56
+ start = data_min,
57
+ end = data_max,
58
+ size=(data_max-data_min)/11
59
+ ),
60
+ colorbar=dict(
61
+ len = 0.7,
62
+ orientation='h',
63
+ showticklabels=False,
64
+ thickness=15,
65
+ yref='paper',
66
+ yanchor='top',
67
+ y=0
68
+ ))
69
+ )
70
+
71
+ return fig