ws-bom-robot-app 0.0.105__py3-none-any.whl → 0.0.107__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ws_bom_robot_app/llm/models/api.py +4 -0
- ws_bom_robot_app/llm/tools/tool_manager.py +77 -1
- ws_bom_robot_app/llm/utils/chunker.py +77 -7
- ws_bom_robot_app/llm/vector_store/db/base.py +3 -0
- ws_bom_robot_app/llm/vector_store/db/chroma.py +4 -1
- ws_bom_robot_app/llm/vector_store/db/faiss.py +4 -1
- ws_bom_robot_app/llm/vector_store/db/qdrant.py +7 -4
- ws_bom_robot_app/llm/vector_store/generator.py +1 -1
- ws_bom_robot_app/llm/vector_store/integration/api.py +216 -216
- {ws_bom_robot_app-0.0.105.dist-info → ws_bom_robot_app-0.0.107.dist-info}/METADATA +1 -1
- {ws_bom_robot_app-0.0.105.dist-info → ws_bom_robot_app-0.0.107.dist-info}/RECORD +13 -13
- {ws_bom_robot_app-0.0.105.dist-info → ws_bom_robot_app-0.0.107.dist-info}/WHEEL +1 -1
- {ws_bom_robot_app-0.0.105.dist-info → ws_bom_robot_app-0.0.107.dist-info}/top_level.txt +0 -0
|
@@ -66,6 +66,7 @@ class LlmAppToolChainSettings(BaseModel):
|
|
|
66
66
|
|
|
67
67
|
class LlmAppToolDbSettings(BaseModel):
|
|
68
68
|
connection_string: Optional[str] = Field(None, validation_alias=AliasChoices("connectionString","connection_string"))
|
|
69
|
+
additionalPrompt: Optional[str] = Field(None, validation_alias=AliasChoices("additionalPrompt","additional_prompt"))
|
|
69
70
|
|
|
70
71
|
class LlmAppTool(BaseModel):
|
|
71
72
|
id: Optional[str] = None
|
|
@@ -235,6 +236,9 @@ class RulesRequest(VectorDbRequest):
|
|
|
235
236
|
rules: List[str]
|
|
236
237
|
|
|
237
238
|
class KbRequest(VectorDbRequest):
|
|
239
|
+
chucking_method: Optional[str] = Field("recursive", validation_alias=AliasChoices("chunkingMethod","chunking_method"))
|
|
240
|
+
chuck_size: Optional[int] = Field(3_000, validation_alias=AliasChoices("chunkSize","chuckt_size"))
|
|
241
|
+
chunk_overlap: Optional[int] = Field(300, validation_alias=AliasChoices("chunkOverlap","chunk_overlap"))
|
|
238
242
|
files: Optional[List[str]] = []
|
|
239
243
|
integrations: Optional[List[LlmKbIntegration]] = []
|
|
240
244
|
endpoints: Optional[List[LlmKbEndpoint]] = []
|
|
@@ -78,6 +78,80 @@ class ToolManager:
|
|
|
78
78
|
source=app_tool.function_id,
|
|
79
79
|
)
|
|
80
80
|
|
|
81
|
+
async def __download_sqlite_file(self, db_uri: str) -> str:
|
|
82
|
+
"""
|
|
83
|
+
Scarica il file SQLite dalla CMS se necessario e restituisce il percorso locale.
|
|
84
|
+
Usa la stessa logica dell'integrazione Sitemap.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
db_uri: URI del database o nome del file SQLite
|
|
88
|
+
|
|
89
|
+
Returns:
|
|
90
|
+
str: URI del database locale (sqlite:///path/to/file.db)
|
|
91
|
+
"""
|
|
92
|
+
import os
|
|
93
|
+
from ws_bom_robot_app.config import config
|
|
94
|
+
from ws_bom_robot_app.llm.utils.download import download_file
|
|
95
|
+
|
|
96
|
+
if not db_uri.endswith('.db') and not db_uri.endswith('.sqlite') and not db_uri.endswith('.sqlite3'):
|
|
97
|
+
return db_uri
|
|
98
|
+
|
|
99
|
+
if db_uri.startswith('sqlite:///'):
|
|
100
|
+
file_path = db_uri.replace('sqlite:///', '')
|
|
101
|
+
if os.path.isabs(file_path) and os.path.exists(file_path):
|
|
102
|
+
return db_uri
|
|
103
|
+
filename = os.path.basename(file_path)
|
|
104
|
+
else:
|
|
105
|
+
filename = db_uri
|
|
106
|
+
|
|
107
|
+
db_folder = os.path.join(config.robot_data_folder, 'db')
|
|
108
|
+
os.makedirs(db_folder, exist_ok=True)
|
|
109
|
+
|
|
110
|
+
local_db_path = os.path.join(db_folder, filename)
|
|
111
|
+
|
|
112
|
+
if os.path.exists(local_db_path):
|
|
113
|
+
return f"sqlite:///{local_db_path}"
|
|
114
|
+
|
|
115
|
+
cms_file_url = f"{config.robot_cms_host}/{config.robot_cms_kb_folder}/{filename}"
|
|
116
|
+
auth = config.robot_cms_auth
|
|
117
|
+
|
|
118
|
+
try:
|
|
119
|
+
result = await download_file(cms_file_url, local_db_path, authorization=auth)
|
|
120
|
+
if result:
|
|
121
|
+
return f"sqlite:///{local_db_path}"
|
|
122
|
+
else:
|
|
123
|
+
raise ValueError(f"File SQLite {filename} non trovato nella CMS")
|
|
124
|
+
except Exception as e:
|
|
125
|
+
raise ValueError(f"Errore durante il download del file SQLite {filename}: {str(e)}")
|
|
126
|
+
|
|
127
|
+
async def __query_database(self, query: str, app_tool: LlmAppTool):
|
|
128
|
+
from langchain_community.agent_toolkits.sql.base import create_sql_agent
|
|
129
|
+
from langchain_community.utilities import SQLDatabase
|
|
130
|
+
|
|
131
|
+
secrets = app_tool.secrets_to_dict()
|
|
132
|
+
|
|
133
|
+
db_uri = app_tool.db_settings.connection_string
|
|
134
|
+
additional_prompt = app_tool.db_settings.additionalPrompt
|
|
135
|
+
if not db_uri:
|
|
136
|
+
raise ValueError("Database URI not found in tool secrets")
|
|
137
|
+
|
|
138
|
+
db_uri = await self.__download_sqlite_file(db_uri)
|
|
139
|
+
|
|
140
|
+
db = SQLDatabase.from_uri(db_uri)
|
|
141
|
+
llm = self.llm.get_llm()
|
|
142
|
+
|
|
143
|
+
agent = create_sql_agent(
|
|
144
|
+
llm=llm,
|
|
145
|
+
db=db,
|
|
146
|
+
agent_type="tool-calling",
|
|
147
|
+
suffix=additional_prompt if additional_prompt else None,
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
result = await agent.ainvoke({"input": query}, config={"callbacks": []})
|
|
151
|
+
if result and "output" in result:
|
|
152
|
+
return result["output"]
|
|
153
|
+
return None
|
|
154
|
+
|
|
81
155
|
#region functions
|
|
82
156
|
async def document_retriever(self, query: str) -> list:
|
|
83
157
|
"""
|
|
@@ -99,9 +173,11 @@ class ToolManager:
|
|
|
99
173
|
"""
|
|
100
174
|
if (
|
|
101
175
|
self.app_tool.type == "function" and self.app_tool.vector_db
|
|
102
|
-
|
|
176
|
+
and self.app_tool.data_source == "knowledgebase"
|
|
103
177
|
):
|
|
104
178
|
return await self.__extract_documents(query, self.app_tool)
|
|
179
|
+
elif self.app_tool.type == "function" and self.app_tool.data_source == "database":
|
|
180
|
+
return await self.__query_database(query, self.app_tool)
|
|
105
181
|
|
|
106
182
|
async def image_generator(self, query: str, language: str = "it"):
|
|
107
183
|
"""
|
|
@@ -1,13 +1,17 @@
|
|
|
1
1
|
from langchain_core.documents import Document
|
|
2
2
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
3
|
+
from langchain_text_splitters import MarkdownHeaderTextSplitter
|
|
3
4
|
|
|
4
5
|
class DocumentChunker:
|
|
5
6
|
@staticmethod
|
|
6
|
-
def chunk(documents: list[Document]) -> list[Document]:
|
|
7
|
-
|
|
7
|
+
def chunk(documents: list[Document], chucking_method: str = "recursive", chunk_size: int=3_000, chunk_overlap: int=300) -> list[Document]:
|
|
8
|
+
if chucking_method == "recursive":
|
|
9
|
+
return DocumentChunker.chunk_recursive(documents, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
10
|
+
elif chucking_method == "markdownHeader":
|
|
11
|
+
return DocumentChunker.chunk_markdown(documents, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
8
12
|
|
|
9
13
|
@staticmethod
|
|
10
|
-
def chunk_recursive(documents: list[Document], chunk_size: int=3_000) -> list[Document]:
|
|
14
|
+
def chunk_recursive(documents: list[Document], chunk_size: int=3_000, chunk_overlap: int=300) -> list[Document]:
|
|
11
15
|
"""
|
|
12
16
|
Recursively split documents into smaller chunks while preserving metadata.
|
|
13
17
|
|
|
@@ -17,16 +21,16 @@ class DocumentChunker:
|
|
|
17
21
|
|
|
18
22
|
Args:
|
|
19
23
|
documents (list[Document]): A list of Document objects to be chunked.
|
|
20
|
-
chunk_size (int, optional): The maximum size of each chunk in characters.
|
|
24
|
+
chunk_size (int, optional): The maximum size of each chunk in characters.
|
|
21
25
|
Defaults to 3,000.
|
|
22
26
|
|
|
23
27
|
Returns:
|
|
24
|
-
list[Document]: A list of Document objects where each document's content is
|
|
25
|
-
at most chunk_size characters. Each chunk preserves the metadata from
|
|
28
|
+
list[Document]: A list of Document objects where each document's content is
|
|
29
|
+
at most chunk_size characters. Each chunk preserves the metadata from
|
|
26
30
|
its original document.
|
|
27
31
|
|
|
28
32
|
Notes:
|
|
29
|
-
- Chunk overlap is automatically set to 10% of the chunk_size to maintain
|
|
33
|
+
- Chunk overlap is automatically set to 10% of the chunk_size to maintain
|
|
30
34
|
context between chunks.
|
|
31
35
|
- Documents smaller than or equal to chunk_size are returned unchanged.
|
|
32
36
|
- Metadata from the original document is copied to all resulting chunks.
|
|
@@ -80,3 +84,69 @@ class DocumentChunker:
|
|
|
80
84
|
)
|
|
81
85
|
return chunked_documents
|
|
82
86
|
|
|
87
|
+
@staticmethod
|
|
88
|
+
def chunk_markdown(documents: list[Document], chunk_size: int=3_000, chunk_overlap: int=300) -> list[Document]:
|
|
89
|
+
"""
|
|
90
|
+
Splits markdown documents based on headers and then into smaller chunks.
|
|
91
|
+
|
|
92
|
+
This function takes a list of Document objects containing markdown content and splits
|
|
93
|
+
them based on markdown headers (# H1, ## H2, ### H3, etc.). After splitting by headers,
|
|
94
|
+
it further chunks large sections using RecursiveCharacterTextSplitter to ensure no
|
|
95
|
+
chunk exceeds the specified size.
|
|
96
|
+
|
|
97
|
+
Args:
|
|
98
|
+
documents (list[Document]): A list of Document objects with markdown content.
|
|
99
|
+
chunk_size (int, optional): The maximum size of each chunk in characters.
|
|
100
|
+
Defaults to 3,000.
|
|
101
|
+
|
|
102
|
+
Returns:
|
|
103
|
+
list[Document]: A list of Document objects where each document represents a chunk.
|
|
104
|
+
Metadata includes the markdown header hierarchy and original document metadata.
|
|
105
|
+
|
|
106
|
+
Note:
|
|
107
|
+
- Headers are split at levels: H1 (#), H2 (##), and H3 (###)
|
|
108
|
+
- Header information is preserved in the metadata
|
|
109
|
+
- Large sections are further split to respect chunk_size limit
|
|
110
|
+
- Chunk overlap is set to 10% of chunk_size for context preservation
|
|
111
|
+
"""
|
|
112
|
+
# Define headers to split on
|
|
113
|
+
headers_to_split_on = [
|
|
114
|
+
("#", "h1"),
|
|
115
|
+
("##", "h2"),
|
|
116
|
+
("###", "h3"),
|
|
117
|
+
("####", "h4"),
|
|
118
|
+
]
|
|
119
|
+
|
|
120
|
+
markdown_splitter = MarkdownHeaderTextSplitter(
|
|
121
|
+
headers_to_split_on=headers_to_split_on,
|
|
122
|
+
strip_headers=False
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
# Secondary splitter for large sections
|
|
126
|
+
text_splitter = RecursiveCharacterTextSplitter(
|
|
127
|
+
chunk_size=chunk_size,
|
|
128
|
+
chunk_overlap=chunk_overlap
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
chunked_documents = []
|
|
132
|
+
for doc in documents:
|
|
133
|
+
# First split by markdown headers
|
|
134
|
+
md_chunks = markdown_splitter.split_text(doc.page_content)
|
|
135
|
+
|
|
136
|
+
# Then split large sections if needed
|
|
137
|
+
for md_chunk in md_chunks:
|
|
138
|
+
# Merge metadata from original doc and header metadata
|
|
139
|
+
merged_metadata = {**doc.metadata, **md_chunk.metadata}
|
|
140
|
+
if len(md_chunk.page_content) <= chunk_size:
|
|
141
|
+
chunked_documents.append(
|
|
142
|
+
Document(page_content=md_chunk.page_content, metadata=merged_metadata)
|
|
143
|
+
)
|
|
144
|
+
else:
|
|
145
|
+
# Further split large sections
|
|
146
|
+
sub_chunks = text_splitter.split_text(md_chunk.page_content)
|
|
147
|
+
for sub_chunk in sub_chunks:
|
|
148
|
+
chunked_documents.append(
|
|
149
|
+
Document(page_content=sub_chunk, metadata=merged_metadata)
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
return chunked_documents
|
|
@@ -46,11 +46,14 @@ class Chroma(VectorDBStrategy):
|
|
|
46
46
|
embeddings: Embeddings,
|
|
47
47
|
documents: list[Document],
|
|
48
48
|
storage_id: str,
|
|
49
|
+
chucking_method: str,
|
|
50
|
+
chunk_size: int,
|
|
51
|
+
chunk_overlap: int,
|
|
49
52
|
**kwargs
|
|
50
53
|
) -> Optional[str]:
|
|
51
54
|
try:
|
|
52
55
|
documents = self._remove_empty_documents(documents)
|
|
53
|
-
chunked_docs = DocumentChunker.chunk(documents)
|
|
56
|
+
chunked_docs = DocumentChunker.chunk(documents, chucking_method, chunk_size, chunk_overlap)
|
|
54
57
|
batches = self._batch_documents_by_tokens(chunked_docs)
|
|
55
58
|
logging.info(f"documents: {len(documents)}, after chunking: {len(chunked_docs)}, processing batches: {len(batches)}")
|
|
56
59
|
_instance: CHROMA = None
|
|
@@ -30,11 +30,14 @@ class Faiss(VectorDBStrategy):
|
|
|
30
30
|
embeddings: Embeddings,
|
|
31
31
|
documents: list[Document],
|
|
32
32
|
storage_id: str,
|
|
33
|
+
chucking_method: str,
|
|
34
|
+
chunk_size: int,
|
|
35
|
+
chunk_overlap: int,
|
|
33
36
|
**kwargs
|
|
34
37
|
) -> Optional[str]:
|
|
35
38
|
try:
|
|
36
39
|
documents = self._remove_empty_documents(documents)
|
|
37
|
-
chunked_docs = DocumentChunker.chunk(documents)
|
|
40
|
+
chunked_docs = DocumentChunker.chunk(documents, chucking_method, chunk_size, chunk_overlap)
|
|
38
41
|
batches = self._batch_documents_by_tokens(chunked_docs)
|
|
39
42
|
logging.info(f"documents: {len(documents)}, after chunking: {len(chunked_docs)}, processing batches: {len(batches)}")
|
|
40
43
|
_instance: FAISS = None
|
|
@@ -14,14 +14,17 @@ class Qdrant(VectorDBStrategy):
|
|
|
14
14
|
embeddings: Embeddings,
|
|
15
15
|
documents: list[Document],
|
|
16
16
|
storage_id: str,
|
|
17
|
+
chucking_method: str,
|
|
18
|
+
chunk_size: int,
|
|
19
|
+
chunk_overlap: int,
|
|
17
20
|
**kwargs
|
|
18
21
|
) -> Optional[str]:
|
|
19
22
|
try:
|
|
20
23
|
documents = self._remove_empty_documents(documents)
|
|
21
|
-
chunked_docs = DocumentChunker.chunk(documents)
|
|
24
|
+
chunked_docs = DocumentChunker.chunk(documents, chucking_method, chunk_size, chunk_overlap)
|
|
22
25
|
batches = self._batch_documents_by_tokens(chunked_docs)
|
|
23
26
|
logging.info(f"documents: {len(documents)}, after chunking: {len(chunked_docs)}, processing batches: {len(batches)}")
|
|
24
|
-
_instance: QDRANT = None
|
|
27
|
+
_instance: QDRANT = None
|
|
25
28
|
if not os.path.exists(storage_id):
|
|
26
29
|
os.makedirs(storage_id)
|
|
27
30
|
|
|
@@ -45,10 +48,10 @@ class Qdrant(VectorDBStrategy):
|
|
|
45
48
|
# add a small delay to avoid rate limiting
|
|
46
49
|
if i < len(batches) - 1: # except last batch
|
|
47
50
|
await asyncio.sleep(1)
|
|
48
|
-
if _instance:
|
|
51
|
+
if _instance:
|
|
49
52
|
self._clear_cache(storage_id)
|
|
50
53
|
logging.info(f"Successfully created {Qdrant.__name__} index with {len(chunked_docs)} total documents")
|
|
51
|
-
return storage_id
|
|
54
|
+
return storage_id
|
|
52
55
|
except Exception as e:
|
|
53
56
|
logging.error(f"{Qdrant.__name__} create error: {e}")
|
|
54
57
|
raise e
|
|
@@ -112,7 +112,7 @@ async def kb(rq: KbRequest) -> VectorDbResponse:
|
|
|
112
112
|
db_file_path = await aiofiles.os.wrap(shutil.make_archive)(
|
|
113
113
|
os.path.join(_config.robot_data_folder, _config.robot_data_db_folder, _config.robot_data_db_folder_out, db_name),
|
|
114
114
|
"zip",
|
|
115
|
-
await VectorDbManager.get_strategy(rq.vector_type).create(rq.embeddings(), documents, store_path, return_folder_path=True)
|
|
115
|
+
await VectorDbManager.get_strategy(rq.vector_type).create(rq.embeddings(), documents, store_path, rq.chucking_method, rq.chuck_size, rq.chunk_overlap, return_folder_path=True)
|
|
116
116
|
)
|
|
117
117
|
return VectorDbResponse(file = os.path.basename(db_file_path), vector_type=rq.vector_type)
|
|
118
118
|
except Exception as e:
|
|
@@ -1,216 +1,216 @@
|
|
|
1
|
-
import asyncio, logging, aiohttp
|
|
2
|
-
from ws_bom_robot_app.llm.vector_store.integration.base import IntegrationStrategy
|
|
3
|
-
from langchain_core.documents import Document
|
|
4
|
-
from ws_bom_robot_app.llm.vector_store.loader.base import Loader
|
|
5
|
-
from typing import List, Union, Optional, Dict, Any, Literal
|
|
6
|
-
from pydantic import BaseModel, Field, AliasChoices, field_validator
|
|
7
|
-
import json
|
|
8
|
-
import os
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
class AuthConfig(BaseModel):
|
|
12
|
-
"""
|
|
13
|
-
Configuration for API authentication.
|
|
14
|
-
|
|
15
|
-
Attributes:
|
|
16
|
-
type: Type of authentication (bearer, basic, api_key, custom, none)
|
|
17
|
-
token: Bearer token or API key value
|
|
18
|
-
username: Username for basic auth
|
|
19
|
-
password: Password for basic auth
|
|
20
|
-
header_name: Custom header name for API key
|
|
21
|
-
prefix: Prefix for the auth value (e.g., 'Bearer', 'Token')
|
|
22
|
-
"""
|
|
23
|
-
type: Literal["bearer", "basic", "api_key", "custom", "none"] = Field(default="none")
|
|
24
|
-
token: Optional[str] = Field(default=None)
|
|
25
|
-
username: Optional[str] = Field(default=None)
|
|
26
|
-
password: Optional[str] = Field(default=None)
|
|
27
|
-
header_name: Optional[str] = Field(default=None, validation_alias=AliasChoices("headerName", "header_name"))
|
|
28
|
-
prefix: Optional[str] = Field(default=None)
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
class ApiParams(BaseModel):
|
|
32
|
-
"""
|
|
33
|
-
Generic API Integration Parameters.
|
|
34
|
-
|
|
35
|
-
Attributes:
|
|
36
|
-
url: The base URL of the API endpoint
|
|
37
|
-
method: HTTP method (GET, POST, PUT, DELETE, PATCH)
|
|
38
|
-
headers: Custom headers to include in the request
|
|
39
|
-
params: Query parameters for the request
|
|
40
|
-
body: Request body for POST/PUT/PATCH requests
|
|
41
|
-
auth: Authentication configuration
|
|
42
|
-
response_data_path: JSON path to extract data from response (e.g., 'data.items', 'results')
|
|
43
|
-
max_retries: Maximum number of retry attempts for failed requests
|
|
44
|
-
retry_delay: Base delay in seconds between retries (uses exponential backoff)
|
|
45
|
-
timeout: Request timeout in seconds
|
|
46
|
-
"""
|
|
47
|
-
url: str = Field(validation_alias=AliasChoices("url", "endpoint"))
|
|
48
|
-
method: Literal["GET", "POST", "PUT", "DELETE", "PATCH"] = Field(default="GET")
|
|
49
|
-
headers: Optional[Dict[str, str]] = Field(default_factory=dict)
|
|
50
|
-
params: Optional[Dict[str, Any]] = Field(default_factory=dict)
|
|
51
|
-
body: Optional[Union[Dict[str, Any], str]] = Field(default=None)
|
|
52
|
-
auth: Optional[AuthConfig] = Field(default_factory=lambda: AuthConfig())
|
|
53
|
-
response_data_path: Optional[str] = Field(default=None, validation_alias=AliasChoices("responseDataPath", "response_data_path"))
|
|
54
|
-
max_retries: int = Field(default=5, validation_alias=AliasChoices("maxRetries", "max_retries"))
|
|
55
|
-
retry_delay: float = Field(default=1.0, validation_alias=AliasChoices("retryDelay", "retry_delay"))
|
|
56
|
-
timeout: int = Field(default=30)
|
|
57
|
-
|
|
58
|
-
@field_validator('auth', mode='before')
|
|
59
|
-
@classmethod
|
|
60
|
-
def parse_auth(cls, v):
|
|
61
|
-
"""Parse auth config from dict if needed"""
|
|
62
|
-
if isinstance(v, dict):
|
|
63
|
-
return AuthConfig(**v)
|
|
64
|
-
return v or AuthConfig()
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
class Api(IntegrationStrategy):
|
|
68
|
-
"""
|
|
69
|
-
Generic API Integration that supports:
|
|
70
|
-
- Multiple HTTP methods (GET, POST, PUT, DELETE, PATCH)
|
|
71
|
-
- Various authentication types (Bearer, Basic, API Key, Custom)
|
|
72
|
-
- Custom headers and parameters
|
|
73
|
-
- Automatic retry with exponential backoff
|
|
74
|
-
- Flexible response data extraction
|
|
75
|
-
"""
|
|
76
|
-
|
|
77
|
-
def __init__(self, knowledgebase_path: str, data: dict[str, Union[str, int, list]]):
|
|
78
|
-
super().__init__(knowledgebase_path, data)
|
|
79
|
-
self.__data = ApiParams.model_validate(self.data)
|
|
80
|
-
|
|
81
|
-
def working_subdirectory(self) -> str:
|
|
82
|
-
return 'api_integration'
|
|
83
|
-
|
|
84
|
-
async def run(self) -> None:
|
|
85
|
-
"""Fetch data from the API and save to JSON file"""
|
|
86
|
-
_data = await self.__fetch_data()
|
|
87
|
-
json_file_path = os.path.join(self.working_directory, 'api_data.json')
|
|
88
|
-
with open(json_file_path, 'w', encoding='utf-8') as f:
|
|
89
|
-
json.dump(_data, f, ensure_ascii=False, indent=2)
|
|
90
|
-
logging.info(f"Saved {len(_data) if isinstance(_data, list) else 1} items to {json_file_path}")
|
|
91
|
-
|
|
92
|
-
async def load(self) -> list[Document]:
|
|
93
|
-
"""Load data from API and convert to documents"""
|
|
94
|
-
await self.run()
|
|
95
|
-
await asyncio.sleep(1)
|
|
96
|
-
return await Loader(self.working_directory).load()
|
|
97
|
-
|
|
98
|
-
def __prepare_headers(self) -> Dict[str, str]:
|
|
99
|
-
"""Prepare request headers with authentication"""
|
|
100
|
-
headers = self.__data.headers.copy() if self.__data.headers else {}
|
|
101
|
-
|
|
102
|
-
# Add Content-Type if not present
|
|
103
|
-
if 'Content-Type' not in headers and self.__data.method in ["POST", "PUT", "PATCH"]:
|
|
104
|
-
headers['Content-Type'] = 'application/json'
|
|
105
|
-
|
|
106
|
-
# Add authentication
|
|
107
|
-
auth = self.__data.auth
|
|
108
|
-
if auth.type == "bearer":
|
|
109
|
-
prefix = auth.prefix or "Bearer"
|
|
110
|
-
headers['Authorization'] = f"{prefix} {auth.token}"
|
|
111
|
-
elif auth.type == "basic":
|
|
112
|
-
import base64
|
|
113
|
-
credentials = f"{auth.username}:{auth.password}"
|
|
114
|
-
encoded = base64.b64encode(credentials.encode()).decode()
|
|
115
|
-
headers['Authorization'] = f"Basic {encoded}"
|
|
116
|
-
elif auth.type == "api_key" and auth.header_name:
|
|
117
|
-
prefix = f"{auth.prefix} " if auth.prefix else ""
|
|
118
|
-
headers[auth.header_name] = f"{prefix}{auth.token}"
|
|
119
|
-
|
|
120
|
-
return headers
|
|
121
|
-
|
|
122
|
-
def __get_nested_value(self, data: Any, path: Optional[str]) -> Any:
|
|
123
|
-
"""Extract nested value from data using dot notation path"""
|
|
124
|
-
if not path:
|
|
125
|
-
return data
|
|
126
|
-
|
|
127
|
-
keys = path.split('.')
|
|
128
|
-
current = data
|
|
129
|
-
for key in keys:
|
|
130
|
-
if isinstance(current, dict):
|
|
131
|
-
current = current.get(key)
|
|
132
|
-
elif isinstance(current, list) and key.isdigit():
|
|
133
|
-
current = current[int(key)]
|
|
134
|
-
else:
|
|
135
|
-
return None
|
|
136
|
-
|
|
137
|
-
if current is None:
|
|
138
|
-
return None
|
|
139
|
-
|
|
140
|
-
return current
|
|
141
|
-
|
|
142
|
-
async def __make_request(
|
|
143
|
-
self,
|
|
144
|
-
url: str,
|
|
145
|
-
headers: Dict[str, str],
|
|
146
|
-
params: Optional[Dict[str, Any]] = None
|
|
147
|
-
) -> Dict[str, Any]:
|
|
148
|
-
"""Make HTTP request with retry logic"""
|
|
149
|
-
retry_count = 0
|
|
150
|
-
|
|
151
|
-
while retry_count <= self.__data.max_retries:
|
|
152
|
-
try:
|
|
153
|
-
timeout = aiohttp.ClientTimeout(total=self.__data.timeout)
|
|
154
|
-
|
|
155
|
-
async with aiohttp.ClientSession(timeout=timeout) as session:
|
|
156
|
-
request_kwargs = {
|
|
157
|
-
"headers": headers,
|
|
158
|
-
"params": params or self.__data.params
|
|
159
|
-
}
|
|
160
|
-
|
|
161
|
-
# Add body for POST/PUT/PATCH
|
|
162
|
-
if self.__data.method in ["POST", "PUT", "PATCH"] and self.__data.body:
|
|
163
|
-
if isinstance(self.__data.body, dict):
|
|
164
|
-
request_kwargs["json"] = self.__data.body
|
|
165
|
-
else:
|
|
166
|
-
request_kwargs["data"] = self.__data.body
|
|
167
|
-
|
|
168
|
-
async with session.request(
|
|
169
|
-
self.__data.method,
|
|
170
|
-
url,
|
|
171
|
-
**request_kwargs
|
|
172
|
-
) as response:
|
|
173
|
-
# Check response status
|
|
174
|
-
if response.status == 429: # Rate limit
|
|
175
|
-
retry_count += 1
|
|
176
|
-
if retry_count > self.__data.max_retries:
|
|
177
|
-
raise Exception("Rate limit exceeded. Maximum retries reached.")
|
|
178
|
-
|
|
179
|
-
wait_time = self.__data.retry_delay * (2 ** retry_count)
|
|
180
|
-
logging.warning(f"Rate limited. Waiting {wait_time}s (Attempt {retry_count}/{self.__data.max_retries})")
|
|
181
|
-
await asyncio.sleep(wait_time)
|
|
182
|
-
continue
|
|
183
|
-
|
|
184
|
-
response.raise_for_status()
|
|
185
|
-
|
|
186
|
-
# Parse response
|
|
187
|
-
try:
|
|
188
|
-
data = await response.json()
|
|
189
|
-
return data
|
|
190
|
-
except aiohttp.ContentTypeError:
|
|
191
|
-
text = await response.text()
|
|
192
|
-
logging.warning(f"Non-JSON response received: {text[:200]}")
|
|
193
|
-
return {"text": text}
|
|
194
|
-
|
|
195
|
-
except aiohttp.ClientError as e:
|
|
196
|
-
retry_count += 1
|
|
197
|
-
if retry_count > self.__data.max_retries:
|
|
198
|
-
raise Exception(f"Request failed after {self.__data.max_retries} retries: {e}")
|
|
199
|
-
|
|
200
|
-
wait_time = self.__data.retry_delay * (2 ** retry_count)
|
|
201
|
-
logging.warning(f"Request error: {e}. Retrying in {wait_time}s...")
|
|
202
|
-
await asyncio.sleep(wait_time)
|
|
203
|
-
continue
|
|
204
|
-
|
|
205
|
-
raise Exception("Maximum retries exceeded")
|
|
206
|
-
|
|
207
|
-
async def __fetch_data(self) -> Any:
|
|
208
|
-
"""Fetch data from API"""
|
|
209
|
-
headers = self.__prepare_headers()
|
|
210
|
-
response = await self.__make_request(self.__data.url, headers)
|
|
211
|
-
|
|
212
|
-
# Extract data from response using path if specified
|
|
213
|
-
data = self.__get_nested_value(response, self.__data.response_data_path)
|
|
214
|
-
result = data if data is not None else response
|
|
215
|
-
|
|
216
|
-
return result
|
|
1
|
+
import asyncio, logging, aiohttp
|
|
2
|
+
from ws_bom_robot_app.llm.vector_store.integration.base import IntegrationStrategy
|
|
3
|
+
from langchain_core.documents import Document
|
|
4
|
+
from ws_bom_robot_app.llm.vector_store.loader.base import Loader
|
|
5
|
+
from typing import List, Union, Optional, Dict, Any, Literal
|
|
6
|
+
from pydantic import BaseModel, Field, AliasChoices, field_validator
|
|
7
|
+
import json
|
|
8
|
+
import os
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class AuthConfig(BaseModel):
|
|
12
|
+
"""
|
|
13
|
+
Configuration for API authentication.
|
|
14
|
+
|
|
15
|
+
Attributes:
|
|
16
|
+
type: Type of authentication (bearer, basic, api_key, custom, none)
|
|
17
|
+
token: Bearer token or API key value
|
|
18
|
+
username: Username for basic auth
|
|
19
|
+
password: Password for basic auth
|
|
20
|
+
header_name: Custom header name for API key
|
|
21
|
+
prefix: Prefix for the auth value (e.g., 'Bearer', 'Token')
|
|
22
|
+
"""
|
|
23
|
+
type: Literal["bearer", "basic", "api_key", "custom", "none"] = Field(default="none")
|
|
24
|
+
token: Optional[str] = Field(default=None)
|
|
25
|
+
username: Optional[str] = Field(default=None)
|
|
26
|
+
password: Optional[str] = Field(default=None)
|
|
27
|
+
header_name: Optional[str] = Field(default=None, validation_alias=AliasChoices("headerName", "header_name"))
|
|
28
|
+
prefix: Optional[str] = Field(default=None)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class ApiParams(BaseModel):
|
|
32
|
+
"""
|
|
33
|
+
Generic API Integration Parameters.
|
|
34
|
+
|
|
35
|
+
Attributes:
|
|
36
|
+
url: The base URL of the API endpoint
|
|
37
|
+
method: HTTP method (GET, POST, PUT, DELETE, PATCH)
|
|
38
|
+
headers: Custom headers to include in the request
|
|
39
|
+
params: Query parameters for the request
|
|
40
|
+
body: Request body for POST/PUT/PATCH requests
|
|
41
|
+
auth: Authentication configuration
|
|
42
|
+
response_data_path: JSON path to extract data from response (e.g., 'data.items', 'results')
|
|
43
|
+
max_retries: Maximum number of retry attempts for failed requests
|
|
44
|
+
retry_delay: Base delay in seconds between retries (uses exponential backoff)
|
|
45
|
+
timeout: Request timeout in seconds
|
|
46
|
+
"""
|
|
47
|
+
url: str = Field(validation_alias=AliasChoices("url", "endpoint"))
|
|
48
|
+
method: Literal["GET", "POST", "PUT", "DELETE", "PATCH"] = Field(default="GET")
|
|
49
|
+
headers: Optional[Dict[str, str]] = Field(default_factory=dict)
|
|
50
|
+
params: Optional[Dict[str, Any]] = Field(default_factory=dict)
|
|
51
|
+
body: Optional[Union[Dict[str, Any], str]] = Field(default=None)
|
|
52
|
+
auth: Optional[AuthConfig] = Field(default_factory=lambda: AuthConfig())
|
|
53
|
+
response_data_path: Optional[str] = Field(default=None, validation_alias=AliasChoices("responseDataPath", "response_data_path"))
|
|
54
|
+
max_retries: int = Field(default=5, validation_alias=AliasChoices("maxRetries", "max_retries"))
|
|
55
|
+
retry_delay: float = Field(default=1.0, validation_alias=AliasChoices("retryDelay", "retry_delay"))
|
|
56
|
+
timeout: int = Field(default=30)
|
|
57
|
+
|
|
58
|
+
@field_validator('auth', mode='before')
|
|
59
|
+
@classmethod
|
|
60
|
+
def parse_auth(cls, v):
|
|
61
|
+
"""Parse auth config from dict if needed"""
|
|
62
|
+
if isinstance(v, dict):
|
|
63
|
+
return AuthConfig(**v)
|
|
64
|
+
return v or AuthConfig()
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class Api(IntegrationStrategy):
|
|
68
|
+
"""
|
|
69
|
+
Generic API Integration that supports:
|
|
70
|
+
- Multiple HTTP methods (GET, POST, PUT, DELETE, PATCH)
|
|
71
|
+
- Various authentication types (Bearer, Basic, API Key, Custom)
|
|
72
|
+
- Custom headers and parameters
|
|
73
|
+
- Automatic retry with exponential backoff
|
|
74
|
+
- Flexible response data extraction
|
|
75
|
+
"""
|
|
76
|
+
|
|
77
|
+
def __init__(self, knowledgebase_path: str, data: dict[str, Union[str, int, list]]):
|
|
78
|
+
super().__init__(knowledgebase_path, data)
|
|
79
|
+
self.__data = ApiParams.model_validate(self.data)
|
|
80
|
+
|
|
81
|
+
def working_subdirectory(self) -> str:
|
|
82
|
+
return 'api_integration'
|
|
83
|
+
|
|
84
|
+
async def run(self) -> None:
|
|
85
|
+
"""Fetch data from the API and save to JSON file"""
|
|
86
|
+
_data = await self.__fetch_data()
|
|
87
|
+
json_file_path = os.path.join(self.working_directory, 'api_data.json')
|
|
88
|
+
with open(json_file_path, 'w', encoding='utf-8') as f:
|
|
89
|
+
json.dump(_data, f, ensure_ascii=False, indent=2)
|
|
90
|
+
logging.info(f"Saved {len(_data) if isinstance(_data, list) else 1} items to {json_file_path}")
|
|
91
|
+
|
|
92
|
+
async def load(self) -> list[Document]:
|
|
93
|
+
"""Load data from API and convert to documents"""
|
|
94
|
+
await self.run()
|
|
95
|
+
await asyncio.sleep(1)
|
|
96
|
+
return await Loader(self.working_directory).load()
|
|
97
|
+
|
|
98
|
+
def __prepare_headers(self) -> Dict[str, str]:
|
|
99
|
+
"""Prepare request headers with authentication"""
|
|
100
|
+
headers = self.__data.headers.copy() if self.__data.headers else {}
|
|
101
|
+
|
|
102
|
+
# Add Content-Type if not present
|
|
103
|
+
if 'Content-Type' not in headers and self.__data.method in ["POST", "PUT", "PATCH"]:
|
|
104
|
+
headers['Content-Type'] = 'application/json'
|
|
105
|
+
|
|
106
|
+
# Add authentication
|
|
107
|
+
auth = self.__data.auth
|
|
108
|
+
if auth.type == "bearer":
|
|
109
|
+
prefix = auth.prefix or "Bearer"
|
|
110
|
+
headers['Authorization'] = f"{prefix} {auth.token}"
|
|
111
|
+
elif auth.type == "basic":
|
|
112
|
+
import base64
|
|
113
|
+
credentials = f"{auth.username}:{auth.password}"
|
|
114
|
+
encoded = base64.b64encode(credentials.encode()).decode()
|
|
115
|
+
headers['Authorization'] = f"Basic {encoded}"
|
|
116
|
+
elif auth.type == "api_key" and auth.header_name:
|
|
117
|
+
prefix = f"{auth.prefix} " if auth.prefix else ""
|
|
118
|
+
headers[auth.header_name] = f"{prefix}{auth.token}"
|
|
119
|
+
|
|
120
|
+
return headers
|
|
121
|
+
|
|
122
|
+
def __get_nested_value(self, data: Any, path: Optional[str]) -> Any:
|
|
123
|
+
"""Extract nested value from data using dot notation path"""
|
|
124
|
+
if not path:
|
|
125
|
+
return data
|
|
126
|
+
|
|
127
|
+
keys = path.split('.')
|
|
128
|
+
current = data
|
|
129
|
+
for key in keys:
|
|
130
|
+
if isinstance(current, dict):
|
|
131
|
+
current = current.get(key)
|
|
132
|
+
elif isinstance(current, list) and key.isdigit():
|
|
133
|
+
current = current[int(key)]
|
|
134
|
+
else:
|
|
135
|
+
return None
|
|
136
|
+
|
|
137
|
+
if current is None:
|
|
138
|
+
return None
|
|
139
|
+
|
|
140
|
+
return current
|
|
141
|
+
|
|
142
|
+
async def __make_request(
|
|
143
|
+
self,
|
|
144
|
+
url: str,
|
|
145
|
+
headers: Dict[str, str],
|
|
146
|
+
params: Optional[Dict[str, Any]] = None
|
|
147
|
+
) -> Dict[str, Any]:
|
|
148
|
+
"""Make HTTP request with retry logic"""
|
|
149
|
+
retry_count = 0
|
|
150
|
+
|
|
151
|
+
while retry_count <= self.__data.max_retries:
|
|
152
|
+
try:
|
|
153
|
+
timeout = aiohttp.ClientTimeout(total=self.__data.timeout)
|
|
154
|
+
|
|
155
|
+
async with aiohttp.ClientSession(timeout=timeout) as session:
|
|
156
|
+
request_kwargs = {
|
|
157
|
+
"headers": headers,
|
|
158
|
+
"params": params or self.__data.params
|
|
159
|
+
}
|
|
160
|
+
|
|
161
|
+
# Add body for POST/PUT/PATCH
|
|
162
|
+
if self.__data.method in ["POST", "PUT", "PATCH"] and self.__data.body:
|
|
163
|
+
if isinstance(self.__data.body, dict):
|
|
164
|
+
request_kwargs["json"] = self.__data.body
|
|
165
|
+
else:
|
|
166
|
+
request_kwargs["data"] = self.__data.body
|
|
167
|
+
|
|
168
|
+
async with session.request(
|
|
169
|
+
self.__data.method,
|
|
170
|
+
url,
|
|
171
|
+
**request_kwargs
|
|
172
|
+
) as response:
|
|
173
|
+
# Check response status
|
|
174
|
+
if response.status == 429: # Rate limit
|
|
175
|
+
retry_count += 1
|
|
176
|
+
if retry_count > self.__data.max_retries:
|
|
177
|
+
raise Exception("Rate limit exceeded. Maximum retries reached.")
|
|
178
|
+
|
|
179
|
+
wait_time = self.__data.retry_delay * (2 ** retry_count)
|
|
180
|
+
logging.warning(f"Rate limited. Waiting {wait_time}s (Attempt {retry_count}/{self.__data.max_retries})")
|
|
181
|
+
await asyncio.sleep(wait_time)
|
|
182
|
+
continue
|
|
183
|
+
|
|
184
|
+
response.raise_for_status()
|
|
185
|
+
|
|
186
|
+
# Parse response
|
|
187
|
+
try:
|
|
188
|
+
data = await response.json()
|
|
189
|
+
return data
|
|
190
|
+
except aiohttp.ContentTypeError:
|
|
191
|
+
text = await response.text()
|
|
192
|
+
logging.warning(f"Non-JSON response received: {text[:200]}")
|
|
193
|
+
return {"text": text}
|
|
194
|
+
|
|
195
|
+
except aiohttp.ClientError as e:
|
|
196
|
+
retry_count += 1
|
|
197
|
+
if retry_count > self.__data.max_retries:
|
|
198
|
+
raise Exception(f"Request failed after {self.__data.max_retries} retries: {e}")
|
|
199
|
+
|
|
200
|
+
wait_time = self.__data.retry_delay * (2 ** retry_count)
|
|
201
|
+
logging.warning(f"Request error: {e}. Retrying in {wait_time}s...")
|
|
202
|
+
await asyncio.sleep(wait_time)
|
|
203
|
+
continue
|
|
204
|
+
|
|
205
|
+
raise Exception("Maximum retries exceeded")
|
|
206
|
+
|
|
207
|
+
async def __fetch_data(self) -> Any:
|
|
208
|
+
"""Fetch data from API"""
|
|
209
|
+
headers = self.__prepare_headers()
|
|
210
|
+
response = await self.__make_request(self.__data.url, headers)
|
|
211
|
+
|
|
212
|
+
# Extract data from response using path if specified
|
|
213
|
+
data = self.__get_nested_value(response, self.__data.response_data_path)
|
|
214
|
+
result = data if data is not None else response
|
|
215
|
+
|
|
216
|
+
return result
|
|
@@ -19,7 +19,7 @@ ws_bom_robot_app/llm/nebuly_handler.py,sha256=wFO2UG849kv5hmjM5EoOp0Jsloy-BtQjrR
|
|
|
19
19
|
ws_bom_robot_app/llm/feedbacks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
20
20
|
ws_bom_robot_app/llm/feedbacks/feedback_manager.py,sha256=vNcZLG9IKhurAk7hjBqyFgQTjnh3Cd4GnxeYsX7ZdiA,2922
|
|
21
21
|
ws_bom_robot_app/llm/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
22
|
-
ws_bom_robot_app/llm/models/api.py,sha256=
|
|
22
|
+
ws_bom_robot_app/llm/models/api.py,sha256=jvoU8z82L7xGkqo2a2m--0OxZrENoLVPuucA-rdr74o,12798
|
|
23
23
|
ws_bom_robot_app/llm/models/base.py,sha256=1TqxuTK3rjJEALn7lvgoen_1ba3R2brAgGx6EDTtDZo,152
|
|
24
24
|
ws_bom_robot_app/llm/models/feedback.py,sha256=pYNQGxNOBgeAAfdJLI95l7ePLBI5tVdsgnyjp5oMOQU,1722
|
|
25
25
|
ws_bom_robot_app/llm/models/kb.py,sha256=oVSw6_dmNxikAHrPqcfxDXz9M0ezLIYuxpgvzfs_Now,9514
|
|
@@ -27,13 +27,13 @@ ws_bom_robot_app/llm/providers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5
|
|
|
27
27
|
ws_bom_robot_app/llm/providers/llm_manager.py,sha256=oVeEmZUnR1ysV-BI_zpwQ-gpXqmhSzjKFQQAHtaFGSI,16596
|
|
28
28
|
ws_bom_robot_app/llm/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
29
|
ws_bom_robot_app/llm/tools/tool_builder.py,sha256=CtZwJ94aj0YGA3yVWkyCUxNE7WgU2zWjhl_tEfEskxw,3432
|
|
30
|
-
ws_bom_robot_app/llm/tools/tool_manager.py,sha256=
|
|
30
|
+
ws_bom_robot_app/llm/tools/tool_manager.py,sha256=6qPzFbcp9zH3tiNMfGBPV_N4WAp65LUIfmjOXvNU8mI,18973
|
|
31
31
|
ws_bom_robot_app/llm/tools/utils.py,sha256=Ba7ScFZPVJ3ke8KLO8ik1wyR2f_zC99Bikqx0OGnKoI,1924
|
|
32
32
|
ws_bom_robot_app/llm/tools/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
33
33
|
ws_bom_robot_app/llm/tools/models/main.py,sha256=1hICqHs-KS2heenkH7b2eH0N2GrPaaNGBrn64cl_A40,827
|
|
34
34
|
ws_bom_robot_app/llm/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
35
35
|
ws_bom_robot_app/llm/utils/agent.py,sha256=uFuSfYMfGIE2WCKGNSKL-T2SDFn-tUKvbAYbGTPIw6g,1445
|
|
36
|
-
ws_bom_robot_app/llm/utils/chunker.py,sha256
|
|
36
|
+
ws_bom_robot_app/llm/utils/chunker.py,sha256=-WfDG6xUU_oOUJmWhDlQbI1hsGCRkmnKyqkY_bEG8WA,7420
|
|
37
37
|
ws_bom_robot_app/llm/utils/cleanup.py,sha256=ARLZTX4mLbkLCEnMdIWYDYEAPOjzfy1laLGkYnxZe30,3063
|
|
38
38
|
ws_bom_robot_app/llm/utils/cms.py,sha256=gfIXvY3DxgbgDf0LCzyekWitaduxKGLHfV6gbRmh8zk,6960
|
|
39
39
|
ws_bom_robot_app/llm/utils/download.py,sha256=rvc88E63UGHnFVlJJeMb05Z2FcBYIITqKnIE3ldEu6I,7293
|
|
@@ -41,15 +41,15 @@ ws_bom_robot_app/llm/utils/print.py,sha256=HK3zhZOd4cEyXZ8QcudLtTIfqqtMOERce_yTo
|
|
|
41
41
|
ws_bom_robot_app/llm/utils/secrets.py,sha256=-HtqLIDVIJrpvGC5YhPAVyLsq8P4ChVM5g3GOfdwqVk,878
|
|
42
42
|
ws_bom_robot_app/llm/utils/webhooks.py,sha256=LAAZqyN6VhV13wu4X-X85TwdDgAV2rNvIwQFIIc0FJM,2114
|
|
43
43
|
ws_bom_robot_app/llm/vector_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
44
|
-
ws_bom_robot_app/llm/vector_store/generator.py,sha256=
|
|
44
|
+
ws_bom_robot_app/llm/vector_store/generator.py,sha256=nSj8aLARr4h1SJlkEI7X1hDef195fAPKEi2fFkl7_wM,6504
|
|
45
45
|
ws_bom_robot_app/llm/vector_store/db/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
46
|
-
ws_bom_robot_app/llm/vector_store/db/base.py,sha256=
|
|
47
|
-
ws_bom_robot_app/llm/vector_store/db/chroma.py,sha256=
|
|
48
|
-
ws_bom_robot_app/llm/vector_store/db/faiss.py,sha256=
|
|
46
|
+
ws_bom_robot_app/llm/vector_store/db/base.py,sha256=GhTkOq4ms_vUf_nuncyskUpI6kWPKDQi5dfLU5zduFY,8576
|
|
47
|
+
ws_bom_robot_app/llm/vector_store/db/chroma.py,sha256=9tnEKQLvBt5TPthULR08ktDkcpFjuIxuYV7REFp9kuY,4752
|
|
48
|
+
ws_bom_robot_app/llm/vector_store/db/faiss.py,sha256=lHpBZV1s_OZTiRlcVM-KJBf2wWWkzvYm_gt57BdbbUs,4055
|
|
49
49
|
ws_bom_robot_app/llm/vector_store/db/manager.py,sha256=5rqBvc0QKmHFUgVHqBAr1Y4FZRl-w-ylGMjgXZywrdA,533
|
|
50
|
-
ws_bom_robot_app/llm/vector_store/db/qdrant.py,sha256
|
|
50
|
+
ws_bom_robot_app/llm/vector_store/db/qdrant.py,sha256=v3YKLZ9_ysaNB64UVA1JCYg-W1BMGfo9CLCG4roXtJ4,3323
|
|
51
51
|
ws_bom_robot_app/llm/vector_store/integration/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
52
|
-
ws_bom_robot_app/llm/vector_store/integration/api.py,sha256=
|
|
52
|
+
ws_bom_robot_app/llm/vector_store/integration/api.py,sha256=jivsqw3iMr4isnxi-jQYtFWPtBcTgIDe88hiUqXv5NE,8400
|
|
53
53
|
ws_bom_robot_app/llm/vector_store/integration/azure.py,sha256=OEa96Dlf1CX0tjrTjX4KP3D_HTn249ukc9sluPbdOyU,3389
|
|
54
54
|
ws_bom_robot_app/llm/vector_store/integration/base.py,sha256=Aat4vQCmsrTiWrzUi2_h-RKzJLhObsKFfZrzs1TnQP8,4385
|
|
55
55
|
ws_bom_robot_app/llm/vector_store/integration/confluence.py,sha256=TMmGe53tHRTgHJ7nA8DqZVodo3aMEzHrrSdl0-I0-S0,4350
|
|
@@ -70,7 +70,7 @@ ws_bom_robot_app/llm/vector_store/loader/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
|
|
|
70
70
|
ws_bom_robot_app/llm/vector_store/loader/base.py,sha256=InpRwKPxp0tuM4drezBvxxAWHe3XTmu60MGvFsT7RPE,7176
|
|
71
71
|
ws_bom_robot_app/llm/vector_store/loader/docling.py,sha256=RFYSZkZAYtU8wJSd1rN2T0lVo-wK1-ddtr6bH2fBr6Q,5170
|
|
72
72
|
ws_bom_robot_app/llm/vector_store/loader/json_loader.py,sha256=LDppW0ZATo4_1hh-KlsAM3TLawBvwBxva_a7k5Oz1sc,858
|
|
73
|
-
ws_bom_robot_app-0.0.
|
|
74
|
-
ws_bom_robot_app-0.0.
|
|
75
|
-
ws_bom_robot_app-0.0.
|
|
76
|
-
ws_bom_robot_app-0.0.
|
|
73
|
+
ws_bom_robot_app-0.0.107.dist-info/METADATA,sha256=ctg-rgQKDvVvLr_L_wJxP1FwhNdl6NZRYdYB5JhV9Ys,11011
|
|
74
|
+
ws_bom_robot_app-0.0.107.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
75
|
+
ws_bom_robot_app-0.0.107.dist-info/top_level.txt,sha256=Yl0akyHVbynsBX_N7wx3H3ZTkcMLjYyLJs5zBMDAKcM,17
|
|
76
|
+
ws_bom_robot_app-0.0.107.dist-info/RECORD,,
|
|
File without changes
|