workbench 0.8.217__py3-none-any.whl → 0.8.224__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. workbench/algorithms/dataframe/compound_dataset_overlap.py +321 -0
  2. workbench/algorithms/dataframe/fingerprint_proximity.py +190 -31
  3. workbench/algorithms/dataframe/projection_2d.py +8 -2
  4. workbench/algorithms/dataframe/proximity.py +3 -0
  5. workbench/algorithms/sql/outliers.py +3 -3
  6. workbench/api/feature_set.py +0 -1
  7. workbench/core/artifacts/endpoint_core.py +2 -2
  8. workbench/core/artifacts/feature_set_core.py +185 -230
  9. workbench/core/transforms/features_to_model/features_to_model.py +2 -8
  10. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +2 -0
  11. workbench/model_script_utils/model_script_utils.py +15 -11
  12. workbench/model_scripts/chemprop/chemprop.template +195 -70
  13. workbench/model_scripts/chemprop/generated_model_script.py +198 -73
  14. workbench/model_scripts/chemprop/model_script_utils.py +15 -11
  15. workbench/model_scripts/custom_models/chem_info/fingerprints.py +80 -43
  16. workbench/model_scripts/pytorch_model/generated_model_script.py +2 -2
  17. workbench/model_scripts/pytorch_model/model_script_utils.py +15 -11
  18. workbench/model_scripts/xgb_model/generated_model_script.py +7 -7
  19. workbench/model_scripts/xgb_model/model_script_utils.py +15 -11
  20. workbench/scripts/meta_model_sim.py +35 -0
  21. workbench/scripts/ml_pipeline_sqs.py +71 -2
  22. workbench/themes/light/custom.css +7 -1
  23. workbench/themes/midnight_blue/custom.css +34 -0
  24. workbench/utils/chem_utils/fingerprints.py +80 -43
  25. workbench/utils/chem_utils/projections.py +16 -6
  26. workbench/utils/meta_model_simulator.py +41 -13
  27. workbench/utils/model_utils.py +0 -1
  28. workbench/utils/plot_utils.py +146 -28
  29. workbench/utils/shap_utils.py +1 -55
  30. workbench/utils/theme_manager.py +95 -30
  31. workbench/web_interface/components/plugins/scatter_plot.py +152 -66
  32. workbench/web_interface/components/settings_menu.py +184 -0
  33. {workbench-0.8.217.dist-info → workbench-0.8.224.dist-info}/METADATA +4 -13
  34. {workbench-0.8.217.dist-info → workbench-0.8.224.dist-info}/RECORD +38 -37
  35. {workbench-0.8.217.dist-info → workbench-0.8.224.dist-info}/entry_points.txt +1 -0
  36. workbench/model_scripts/custom_models/meta_endpoints/example.py +0 -53
  37. workbench/model_scripts/custom_models/uq_models/meta_uq.template +0 -377
  38. {workbench-0.8.217.dist-info → workbench-0.8.224.dist-info}/WHEEL +0 -0
  39. {workbench-0.8.217.dist-info → workbench-0.8.224.dist-info}/licenses/LICENSE +0 -0
  40. {workbench-0.8.217.dist-info → workbench-0.8.224.dist-info}/top_level.txt +0 -0
@@ -2,11 +2,12 @@ workbench/__init__.py,sha256=Kbp7lpicM-LH4ODhViZyas4uuvlDUzZQW8Dioks19Dc,1241
2
2
  workbench/algorithms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  workbench/algorithms/dataframe/Readme.md,sha256=ZoCEi2BRJ4ZH0wlkFELTV_njIvYt7Wnhanuv4eoFluw,378
4
4
  workbench/algorithms/dataframe/__init__.py,sha256=AXpwD4WYOk7odNS9vaKSO0DM-bMRuC93faq0JAltQ54,419
5
+ workbench/algorithms/dataframe/compound_dataset_overlap.py,sha256=rE3UvPnDDUAQXcZOHde2W4HdVixak4BVTM6ftolL4-Y,12694
5
6
  workbench/algorithms/dataframe/data_source_eda.py,sha256=WgVL6tzBCw1tznQr8RQ6daQnTxQ0-DQUiMwbjztVMSU,1606
6
7
  workbench/algorithms/dataframe/feature_space_proximity.py,sha256=FYsQd5Lf5CrSWi-1Dcs_NVFN86izifxkWk1-EOvEV54,6950
7
- workbench/algorithms/dataframe/fingerprint_proximity.py,sha256=MZcWEVho7w18gLCxRUi3jIDlspI3vtymk_wUtwbAL3s,13298
8
- workbench/algorithms/dataframe/projection_2d.py,sha256=xO3hfqV8EbHnv3q1wcBz1pfip-UV65tpxU84-uhYE08,8744
9
- workbench/algorithms/dataframe/proximity.py,sha256=rjoTtZceaQmuMOwhgARFbm379JdGxqrz_kGFec-Js7A,13203
8
+ workbench/algorithms/dataframe/fingerprint_proximity.py,sha256=EJhbiio99-6ZyymswFD69pmLQa2UECclvt2-mWfp3-M,20174
9
+ workbench/algorithms/dataframe/projection_2d.py,sha256=UgdAWYXFxCdMGZpWSbRSPbjZAGjaumP7va1FyUnwiIA,9114
10
+ workbench/algorithms/dataframe/proximity.py,sha256=Qbgs9uhfQTceXWXf-fc26aYMPsQrZLOHuFUm8KqQHmc,13387
10
11
  workbench/algorithms/dataframe/storage/aggregation.py,sha256=VuTb7A6Vh6IS5djZeItvOLnnEOlf7tzMQ8OaYIuftvU,2852
11
12
  workbench/algorithms/dataframe/storage/feature_resolution.py,sha256=w_iLf8EFTg7Jc5laH-bsq8MEtZVqcg05W-GihCqR-r4,9450
12
13
  workbench/algorithms/dataframe/storage/feature_spider.py,sha256=uIZ4JHIKuhpy08wBFReSrohb5DGxx8vGroHUbjPm1jE,14353
@@ -26,7 +27,7 @@ workbench/algorithms/sql/__init__.py,sha256=TbOZQwCfx6Tjc3pCCLCiM31wpCX26j5MBNQ6
26
27
  workbench/algorithms/sql/column_stats.py,sha256=IwgddvPVITdAvUgxaK_px2IVSEX-jA-8cPIVFoVkbN8,5943
27
28
  workbench/algorithms/sql/correlations.py,sha256=0DMgAkzIdR0cApQ_5vs4CxPSRz1qItcAToz7GAOFqzI,3935
28
29
  workbench/algorithms/sql/descriptive_stats.py,sha256=VxSR5zQi8NmAWrJvOCO3wrmgVHYrwhenSy5Gl0AOqoo,4075
29
- workbench/algorithms/sql/outliers.py,sha256=2hoilOk0gaz9pwrnGEBY2y7M-UqFED3KO_mFm_0_3ac,10645
30
+ workbench/algorithms/sql/outliers.py,sha256=LbOYaE3bNR4x-aEIrA2KAX3Aq07ZowRgrW9buCeKisQ,10663
30
31
  workbench/algorithms/sql/sample_rows.py,sha256=SRYoGb24QP_iPvOoW9bGZ95yZuseYDtyoNhilfoLu34,2688
31
32
  workbench/algorithms/sql/value_counts.py,sha256=F-rZoLTTKv1cHYl2_tDlvWDjczy76uLTr3EMHa-WrEk,3340
32
33
  workbench/api/__init__.py,sha256=1JAQKD82biia4h07BRA9ytjxuJUYQqgHvkf8FwpnlVQ,1195
@@ -34,7 +35,7 @@ workbench/api/compound.py,sha256=kf5EaM5qjWwsZutcxqj9IC_MPnDV1uVHDMns9OA_GOo,254
34
35
  workbench/api/data_source.py,sha256=Ngz36YZWxFfpJbmURhM1LQPYjh5kdpZNGo6_fCRePbA,8321
35
36
  workbench/api/df_store.py,sha256=1qSYM3Xb4MwMMTMaF3CX0hOCEzhIbnra5Deivg4cryk,3014
36
37
  workbench/api/endpoint.py,sha256=tvPINPv_EFwphuZ3tv09jwO6dee-DRH371ZzXrrUxfM,3897
37
- workbench/api/feature_set.py,sha256=7li_Wdpo8tPQAsxCit293I4g9FvyDi4qv82B89auM9o,10993
38
+ workbench/api/feature_set.py,sha256=-21ztp7JDqs7CKF3KtNdPoXppkiDqfb4JVK8xBK9rIY,10966
38
39
  workbench/api/graph_store.py,sha256=LremJyPrQFgsHb7hxsctuCsoxx3p7TKtaY5qALHe6pc,4372
39
40
  workbench/api/meta.py,sha256=1_9989cPvf3hd3tA-83hLijOGNnhwXAF8aZF45adeDQ,8596
40
41
  workbench/api/meta_model.py,sha256=2DpjjBSw60QPMWQ2sTu2492PrFWFMXK8hH9U13gXzi8,11226
@@ -58,8 +59,8 @@ workbench/core/artifacts/data_capture_core.py,sha256=q8f79rRTYiZ7T4IQRWXl8ZvPpcv
58
59
  workbench/core/artifacts/data_source_abstract.py,sha256=5IRCzFVK-17cd4NXPMRfx99vQAmQ0WHE5jcm5RfsVTg,10619
59
60
  workbench/core/artifacts/data_source_factory.py,sha256=YL_tA5fsgubbB3dPF6T4tO0rGgz-6oo3ge4i_YXVC-M,2380
60
61
  workbench/core/artifacts/df_store_core.py,sha256=AueNr_JvuLLu_ByE7cb3u-isH9u0Q7cMP-UCgCX-Ctg,3536
61
- workbench/core/artifacts/endpoint_core.py,sha256=VAEDP4eLl_Obwcb_Tg4tqDsAti4kXa0UzhGON57M4Hs,54071
62
- workbench/core/artifacts/feature_set_core.py,sha256=EAvFbkNWDaiTnQvsugNJXAt1sgbzOs4tCvSycPB7Ry8,39332
62
+ workbench/core/artifacts/endpoint_core.py,sha256=fLOxgwNmbsrOpKafXN8zLCzazKdpJQZr2zanKJ14KRc,54057
63
+ workbench/core/artifacts/feature_set_core.py,sha256=HjZd_RoP07piwALzt0eAjk3co-YJ6B88UdEfv-7Kx40,39404
63
64
  workbench/core/artifacts/model_core.py,sha256=wPkpdRlxnAXMqsDtJGPotGFO146Hm7NCfYbImHwZo9c,52343
64
65
  workbench/core/artifacts/monitor_core.py,sha256=M307yz7tEzOEHgv-LmtVy9jKjSbM98fHW3ckmNYrwlU,27897
65
66
  workbench/core/artifacts/parameter_store_core.py,sha256=sHvjJMuybM4qdcKhH-Sx6Ur6Yn5ozA3QHwtidsnhyG8,2867
@@ -105,9 +106,9 @@ workbench/core/transforms/features_to_features/__init__.py,sha256=47DEQpj8HBSa-_
105
106
  workbench/core/transforms/features_to_features/heavy/emr/Readme.md,sha256=YtQgCEQeKe0CQXQkhzMTYq9xOtCsCYb5P5LW2BmRKWQ,68
106
107
  workbench/core/transforms/features_to_features/heavy/glue/Readme.md,sha256=TuyCatWfoDr99zUwvOcxf-TqMkQzaMqXlj5nmFcRzfo,48
107
108
  workbench/core/transforms/features_to_model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
- workbench/core/transforms/features_to_model/features_to_model.py,sha256=Xbw20zMeeOKAueNeIWaRNQJFrw8N465qC3TkW0eGdu8,21074
109
+ workbench/core/transforms/features_to_model/features_to_model.py,sha256=stTOKAh_OJaI4ao6G8GRECa78sViaJXBzwt9myK5joM,20892
109
110
  workbench/core/transforms/model_to_endpoint/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
110
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=a_y4IGrhj-ZtKcAYDwsnM44y1hqRhhGsGxgadxgqcaM,8028
111
+ workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=MGsc-pRNxTpDQz8i3DmYCIAAVyZOKmWBDFmkQHt2h4Y,8152
111
112
  workbench/core/transforms/pandas_transforms/__init__.py,sha256=xL4MT8-fZ1SFqDbTLc8XyxjupHtB1YR6Ej0AC2nwd7I,894
112
113
  workbench/core/transforms/pandas_transforms/data_to_pandas.py,sha256=sJHPeuNF8Q8aQqgRnkdWkyvur5cbggdUVIwR-xF3Dlo,3621
113
114
  workbench/core/transforms/pandas_transforms/features_to_pandas.py,sha256=af6xdPt2V4zhh-SzQa_UYxdmNMzMLXbrbsznV5QoIJg,3441
@@ -125,22 +126,21 @@ workbench/core/views/training_view.py,sha256=7HwhbQhDBhT3Zo_gssS-b4eueJ0h9nqqT8Y
125
126
  workbench/core/views/view.py,sha256=DvmEA1xdvL980GET_cnbmHzqSy6IhlNaZcoQnVTtYis,13534
126
127
  workbench/core/views/view_utils.py,sha256=CwOlpqXpumCr6REi-ey7Qjz5_tpg-s4oWHmlOVu8POQ,12270
127
128
  workbench/core/views/storage/mdq_view.py,sha256=qf_ep1KwaXOIfO930laEwNIiCYP7VNOqjE3VdHfopRE,5195
128
- workbench/model_script_utils/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
129
+ workbench/model_script_utils/model_script_utils.py,sha256=rGPdjxmQUPcZNXK_8nKYQWb7IPQ5ietne7UMYRQZpMo,11841
129
130
  workbench/model_script_utils/pytorch_utils.py,sha256=vr8ybK45U0H8Jhjb5qx6xbJNozdcl7bVqubknDwh6U0,13704
130
131
  workbench/model_script_utils/uq_harness.py,sha256=70b7dI9Wls03ff6zm2TpfKIsboVBKsj7P7fNzmMe6c0,10305
131
132
  workbench/model_scripts/script_generation.py,sha256=w3L2VYGnGUvBtd01BWzH38DuHKULtYsc_Xz_3_Eavvo,8258
132
- workbench/model_scripts/chemprop/chemprop.template,sha256=Vh2DW3E6ryrvM3VizZ2JVlBeFTu247guB_3cPcF2Hgw,29386
133
- workbench/model_scripts/chemprop/generated_model_script.py,sha256=7h0sVMIlfe53XHUCRdKyVFUoq6lKOJBcxD15BmZhC8c,29408
134
- workbench/model_scripts/chemprop/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
133
+ workbench/model_scripts/chemprop/chemprop.template,sha256=0d_7Pmna6UCR1lyx6cdXnP9eC_sSXW9dOqXx-5W0MX4,35814
134
+ workbench/model_scripts/chemprop/generated_model_script.py,sha256=j-XxQ0qLDQpWykAkuv4p2hmFxedriL30muw6pOc2W-c,36003
135
+ workbench/model_scripts/chemprop/model_script_utils.py,sha256=rGPdjxmQUPcZNXK_8nKYQWb7IPQ5ietne7UMYRQZpMo,11841
135
136
  workbench/model_scripts/chemprop/requirements.txt,sha256=2IBHZZNYqhX9Ed7AmRVgN06tO3EHeBbN2EM8-tjWZhs,216
136
137
  workbench/model_scripts/custom_models/chem_info/Readme.md,sha256=mH1lxJ4Pb7F5nBnVXaiuxpi8zS_yjUw_LBJepVKXhlA,574
137
- workbench/model_scripts/custom_models/chem_info/fingerprints.py,sha256=XHRxoP6eV5z_k7w6BmfwpPO8rr6PZIF7KW9jwGjnj7o,5449
138
+ workbench/model_scripts/custom_models/chem_info/fingerprints.py,sha256=ECDzjZs4wSx3ZvAQipMl2NEqI2isCWHLYBv7mp0NVgk,6939
138
139
  workbench/model_scripts/custom_models/chem_info/mol_descriptors.py,sha256=c8gkHZ-8s3HJaW9zN9pnYGK7YVW8Y0xFqQ1G_ysrF2Y,18789
139
140
  workbench/model_scripts/custom_models/chem_info/mol_standardize.py,sha256=qPLCdVMSXMOWN-01O1isg2zq7eQyFAI0SNatHkRq1uw,17524
140
141
  workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py,sha256=xljMjdfh4Idi4v1Afq1zZxvF1SDa7pDOLSAhvGBEj88,2891
141
142
  workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py,sha256=LqVh_AHObo0uxHt_uNmeemScTLjM2j9C3I_QFJXdmUI,3232
142
143
  workbench/model_scripts/custom_models/chem_info/requirements.txt,sha256=7HBUzvNiM8lOir-UfQabXYlUp3gxdGJ42u18EuSMGjc,39
143
- workbench/model_scripts/custom_models/meta_endpoints/example.py,sha256=hzOAuLhIGB8vei-555ruNxpsE1GhuByHGjGB0zw8GSs,1726
144
144
  workbench/model_scripts/custom_models/network_security/Readme.md,sha256=Z2gtiu0hLHvEJ1x-_oFq3qJZcsK81sceBAGAGltpqQ8,222
145
145
  workbench/model_scripts/custom_models/proximity/Readme.md,sha256=RlMFAJZgAT2mCgDk-UwR_R0Y_NbCqeI5-8DUsxsbpWQ,289
146
146
  workbench/model_scripts/custom_models/proximity/feature_space_proximity.py,sha256=FYsQd5Lf5CrSWi-1Dcs_NVFN86izifxkWk1-EOvEV54,6950
@@ -151,7 +151,6 @@ workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template,sha256=c
151
151
  workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template,sha256=449Enh4-7RrMrxt1oS_SHJHGV8yYcFlWHsLrCVTFQGI,13778
152
152
  workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py,sha256=FYsQd5Lf5CrSWi-1Dcs_NVFN86izifxkWk1-EOvEV54,6950
153
153
  workbench/model_scripts/custom_models/uq_models/gaussian_process.template,sha256=3nMlCi8nEbc4N-MQTzjfIcljfDQkUmWeLBfmd18m5fg,6632
154
- workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=wLilHll9Hzwyo-y9Vsqx7PjzdMca4xkUt3Ed1zcgOBE,14412
155
154
  workbench/model_scripts/custom_models/uq_models/ngboost.template,sha256=_ukYcsL4pnWvFV1oA89_wfVpxWbvoEx6MGwKxc38kSI,8512
156
155
  workbench/model_scripts/custom_models/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
157
156
  workbench/model_scripts/custom_script_example/custom_model_script.py,sha256=T8aydawgRVAdSlDimoWpXxG2YuWWQkbcjBVjAeSG2_0,6408
@@ -160,8 +159,8 @@ workbench/model_scripts/ensemble_xgb/ensemble_xgb.template,sha256=lMEx0IkawcpTI5
160
159
  workbench/model_scripts/ensemble_xgb/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
161
160
  workbench/model_scripts/meta_model/generated_model_script.py,sha256=ncPrHd9-R8l_98vAiuTUJ92C9PKpEgAtpIrmd7TuqSQ,8341
162
161
  workbench/model_scripts/meta_model/meta_model.template,sha256=viz-AKVq3YRwOUBt8-rUO1TwdEPFzyP7nnifqcIJurw,8244
163
- workbench/model_scripts/pytorch_model/generated_model_script.py,sha256=qw5lqFhkRjMGjTWC9SH1lgGETwqEXEmgzk_cdEs2ZFw,24598
164
- workbench/model_scripts/pytorch_model/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
162
+ workbench/model_scripts/pytorch_model/generated_model_script.py,sha256=FEpTjCDSbw-xAqLNGXas90KsN2-h7qs78nc24VNeBx8,25348
163
+ workbench/model_scripts/pytorch_model/model_script_utils.py,sha256=rGPdjxmQUPcZNXK_8nKYQWb7IPQ5ietne7UMYRQZpMo,11841
165
164
  workbench/model_scripts/pytorch_model/pytorch.template,sha256=KOH7nhq_3u0pHmjGymY5aycF0_ZlwLQ16qmDKUQcE9k,21091
166
165
  workbench/model_scripts/pytorch_model/pytorch_utils.py,sha256=vr8ybK45U0H8Jhjb5qx6xbJNozdcl7bVqubknDwh6U0,13704
167
166
  workbench/model_scripts/pytorch_model/requirements.txt,sha256=ES7YehHEL4E5oV8FScHm3oNQmkMI4ODgbC1fSbaY7T4,183
@@ -170,8 +169,8 @@ workbench/model_scripts/scikit_learn/generated_model_script.py,sha256=xhQIglpAgP
170
169
  workbench/model_scripts/scikit_learn/requirements.txt,sha256=aVvwiJ3LgBUhM_PyFlb2gHXu_kpGPho3ANBzlOkfcvs,107
171
170
  workbench/model_scripts/scikit_learn/scikit_learn.template,sha256=QQvqx-eX9ZTbYmyupq6R6vIQwosmsmY_MRBPaHyfjdk,12586
172
171
  workbench/model_scripts/uq_models/generated_model_script.py,sha256=kgcIWghY6eazcBWS77MukhQUyYFmfJcS8SQ8RmjM82I,9006
173
- workbench/model_scripts/xgb_model/generated_model_script.py,sha256=bIue0u9S1y1rBCcTVZ0Aa0PO8-XBphJmAgm0e8ov90k,18585
174
- workbench/model_scripts/xgb_model/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
172
+ workbench/model_scripts/xgb_model/generated_model_script.py,sha256=ENLuKqbRAVrqNymtcrJcYSm1eE4KUgU-oZN4PMalOZg,22647
173
+ workbench/model_scripts/xgb_model/model_script_utils.py,sha256=rGPdjxmQUPcZNXK_8nKYQWb7IPQ5ietne7UMYRQZpMo,11841
175
174
  workbench/model_scripts/xgb_model/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
176
175
  workbench/model_scripts/xgb_model/uq_harness.py,sha256=70b7dI9Wls03ff6zm2TpfKIsboVBKsj7P7fNzmMe6c0,10305
177
176
  workbench/model_scripts/xgb_model/xgb_model.template,sha256=w4-yx82yws-_esObZQIq13S8WKXXnZxqe86ZuyWoP5w,18367
@@ -183,8 +182,9 @@ workbench/scripts/check_double_bond_stereo.py,sha256=p5hnL54Weq77ES0HCELq9JeoM-P
183
182
  workbench/scripts/endpoint_test.py,sha256=RV52DZZTOD_ou-ywZjaxQ2_wqnSJqvlnHQZbvf4iM6I,5339
184
183
  workbench/scripts/glue_launcher.py,sha256=bIKQvfGxpAhzbeNvTnHfRW_5kQhY-169_868ZnCejJk,10692
185
184
  workbench/scripts/lambda_test.py,sha256=SLAPIXeGQn82neQ6-Hif3VS3LWLwT0-dGw8yWw2aXRQ,2077
185
+ workbench/scripts/meta_model_sim.py,sha256=6iGpInA-nH6DSjk0z63fcoL8P7icqnZmKLE5Sqyrh7E,1026
186
186
  workbench/scripts/ml_pipeline_batch.py,sha256=1T5JnLlUJR7bwAGBLHmLPOuj1xFRqVIQX8PsuDhHy8o,4907
187
- workbench/scripts/ml_pipeline_sqs.py,sha256=5c8qX-SoV4htOUcSXk4OzD7BQskCnaA7cLMiF4Et24c,6666
187
+ workbench/scripts/ml_pipeline_sqs.py,sha256=s9V7l4dogEYXtTyNFsgYMDiZoPnG3Zq3ITcVDGoyH8g,8703
188
188
  workbench/scripts/monitor_cloud_watch.py,sha256=s7MY4bsHts0nup9G0lWESCvgJZ9Mw1Eo-c8aKRgLjMw,9235
189
189
  workbench/scripts/redis_expire.py,sha256=DxI_RKSNlrW2BsJZXcsSbaWGBgPZdPhtzHjV9SUtElE,1120
190
190
  workbench/scripts/redis_report.py,sha256=iaJSuGPyLCs6e0TMcZDoT0YyJ43xJ1u74YD8FLnnUg4,990
@@ -195,11 +195,11 @@ workbench/themes/dark/custom.css,sha256=hw5R9JSH40ZvtSo1GXRqDb4XDze6uiGkU0IL5flZ
195
195
  workbench/themes/dark/plotly.json,sha256=w37jZYCWz18FdiYXgOwBKyBgtvl5JYMG4QSFMocFo2A,18184
196
196
  workbench/themes/light/base_css.url,sha256=Y4c_u6Qjkt7GyQf5gvlHNCHnS8XxIzubuSmBQ8XizCQ,17
197
197
  workbench/themes/light/branding.json,sha256=13-LMVeNETpwXlC-p-x6sWGq58gd4dF3LuGDtq147Hk,77
198
- workbench/themes/light/custom.css,sha256=45-_T1rIzJlal_nIDqrYgUD6dSpfd7mkUtC2iEySeRQ,3375
198
+ workbench/themes/light/custom.css,sha256=JCgBcYYNexFrQEHOTvpatuD4lEUKbENljpPNlsB_pwA,3503
199
199
  workbench/themes/light/plotly.json,sha256=Fm9HIEgp1VQlqOmoT3eyUG5B9GD62GZR5toodBD-A8Y,18734
200
200
  workbench/themes/midnight_blue/base_css.url,sha256=IN-Pth07vNDtfH2r2_9m3vCkKxy-pPjIaXoD1uTmFmY,17
201
201
  workbench/themes/midnight_blue/branding.json,sha256=DvTVjVlB8hLyYIYUHqE2COPyfOUvPV9fAApTEY24DVk,77
202
- workbench/themes/midnight_blue/custom.css,sha256=IUsRORRMeYIMVcF4J1bOGFHITh9qcjWVvdBEczwGuig,3066
202
+ workbench/themes/midnight_blue/custom.css,sha256=Aob0GII0umQOEqLveSoFD-YBrf6uT1ZEjDywl5ZMDvs,4004
203
203
  workbench/themes/midnight_blue/plotly.json,sha256=IQYIdzT5aDcCbhRGDwA7byUNs_tFLHVjAfNzWLCkXFI,18578
204
204
  workbench/themes/quartz/base_css.url,sha256=gkxV2TRI8NFtWFwv19wG2HQO6muChXBNWwWQpEj0Q2U,18
205
205
  workbench/themes/quartz/custom.css,sha256=ui7fcp7_dNye5GxDWL40-A7TAr5bxQB-PmEO4rGcfp4,2414
@@ -236,25 +236,25 @@ workbench/utils/lambda_utils.py,sha256=7GhGRPyXn9o-toWb9HBGSnI8-DhK9YRkwhCSk_mNK
236
236
  workbench/utils/license_manager.py,sha256=lNE9zZIglmX3zqqCKBdN1xqTgHCEZgJDxavF6pdG7fc,6825
237
237
  workbench/utils/log_utils.py,sha256=7n1NJXO_jUX82e6LWAQug6oPo3wiPDBYsqk9gsYab_A,3167
238
238
  workbench/utils/markdown_utils.py,sha256=4lEqzgG4EVmLcvvKKNUwNxVCySLQKJTJmWDiaDroI1w,8306
239
- workbench/utils/meta_model_simulator.py,sha256=E8O8z4sbSDhKd22_nbuFLUcPNbPGzMacznBdL2H4trU,18755
239
+ workbench/utils/meta_model_simulator.py,sha256=fMKZoLi_VEJohNVvbZSMvZWNdUbIpGlB6Bg6mJQW33s,20630
240
240
  workbench/utils/metrics_utils.py,sha256=iAoKrAM4iRX8wFSjSJhfNKbbW1BqB3eI_U3wvdhUdhE,9496
241
- workbench/utils/model_utils.py,sha256=jiybuv6gGE-p2i2JEQcyAY-ffigtuzZFNvp_rHKCi3A,19284
241
+ workbench/utils/model_utils.py,sha256=ApUg3EclAIEzzGr7i1zwJsO-OV1NUqjOMV6Fd9lWlno,19261
242
242
  workbench/utils/monitor_utils.py,sha256=kVaJ7BgUXs3VPMFYfLC03wkIV4Dq-pEhoXS0wkJFxCc,7858
243
243
  workbench/utils/pandas_utils.py,sha256=uTUx-d1KYfjbS9PMQp2_9FogCV7xVZR6XLzU5YAGmfs,39371
244
244
  workbench/utils/performance_utils.py,sha256=WDNvz-bOdC99cDuXl0urAV4DJ7alk_V3yzKPwvqgST4,1329
245
245
  workbench/utils/pipeline_utils.py,sha256=yzR5tgAzz6zNqvxzZR6YqsbS7r3QDKzBXozaM_ADXlc,2171
246
- workbench/utils/plot_utils.py,sha256=yFveic-4aY7lKT-CPhYdbIkBr-mZqjbhaRmCySWG_kE,6537
246
+ workbench/utils/plot_utils.py,sha256=iW7kjUgBTioeRi9IIZN7YRgXwuxQks9ApAihn-j7zkY,11022
247
247
  workbench/utils/plugin_manager.py,sha256=JWfyFHQih_J_MMtAT1cgjGVnNVPk9bM917LkfH8Z-_A,13873
248
248
  workbench/utils/prox_utils.py,sha256=V0YSxI6lboZl8Bed1GUobFqfMhfpehn2FtgqHpkuhDQ,6170
249
249
  workbench/utils/pytorch_utils.py,sha256=RoltE9-fOX2UixzaEmnxN6oJtBEKQ9Jklu0LRzYKVDY,2879
250
250
  workbench/utils/redis_cache.py,sha256=39LFSWmOlNNcah02D3sBnmibc-DPeKC3SNq71K4HaB4,12893
251
251
  workbench/utils/repl_utils.py,sha256=rWOMv2HiEIp8ZL6Ps6DlwiJlGr-pOhv9OZQhm3aR-1A,4668
252
252
  workbench/utils/s3_utils.py,sha256=Xme_o_cftC_jWnw6R9YKS6-6C11zaCBAoQDlY3dZb5o,7337
253
- workbench/utils/shap_utils.py,sha256=dtjSIwSyvYSaQjjvIp5A9LGS7pr-5Vt907rvVKOrqNY,12651
253
+ workbench/utils/shap_utils.py,sha256=FeFNRH5mJTbuHlpHyFJgjHcU5BU7UthJL1Gb5Gl8_zw,10590
254
254
  workbench/utils/shapley_values.py,sha256=3DvQz4HIPnxW42idgtuQ5vtzU-oF4_lToaWzLRjU-E4,3673
255
255
  workbench/utils/symbols.py,sha256=PioF1yAQyOabw7kLg8nhvaZBPFe7ABkpfpPPE0qz_2k,1265
256
256
  workbench/utils/test_data_generator.py,sha256=gqRXL7IUKG4wVfO1onflY3wg7vLkgx402_Zy3iqY7NU,11921
257
- workbench/utils/theme_manager.py,sha256=eXnvOShiO5Z9GimCiNtKZ0piXJjmfUcnirFsBbT4x8o,11439
257
+ workbench/utils/theme_manager.py,sha256=NEd4q10RxqReWI2WL9Y0BR3MjfiuDSJuW1d094iktXE,14044
258
258
  workbench/utils/trace_calls.py,sha256=tY4DOVMGXBh-mbUWzo1l-X9XjD0ux_qR9I1ypkjWNIQ,2092
259
259
  workbench/utils/type_abbrev.py,sha256=3ai7ZbE8BgvdotOSb48w_BmgrEGVYvLoyzoNYH8ZuOs,1470
260
260
  workbench/utils/workbench_cache.py,sha256=IQchxB81iR4eVggHBxUJdXxUCRkqWz1jKe5gxN3z6yc,5657
@@ -264,12 +264,12 @@ workbench/utils/workbench_sqs.py,sha256=RwM80z7YWwdtMaCKh7KWF8v38f7eBRU7kyC7ZhTR
264
264
  workbench/utils/xgboost_local_crossfold.py,sha256=GY61F6-avQDiteIb1LAgvkHvAKvLg6H85xBDvfgCVDM,10718
265
265
  workbench/utils/xgboost_model_utils.py,sha256=qEnB1viCIXMYLW0LJuyCioKMSilbmKTMuppaxBZqwhc,12967
266
266
  workbench/utils/chem_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
267
- workbench/utils/chem_utils/fingerprints.py,sha256=XHRxoP6eV5z_k7w6BmfwpPO8rr6PZIF7KW9jwGjnj7o,5449
267
+ workbench/utils/chem_utils/fingerprints.py,sha256=ECDzjZs4wSx3ZvAQipMl2NEqI2isCWHLYBv7mp0NVgk,6939
268
268
  workbench/utils/chem_utils/misc.py,sha256=Nevf8_opu-uIPrv_1_0ubuFVVo2_fGUkMoLAHB3XAeo,7372
269
269
  workbench/utils/chem_utils/mol_descriptors.py,sha256=c8gkHZ-8s3HJaW9zN9pnYGK7YVW8Y0xFqQ1G_ysrF2Y,18789
270
270
  workbench/utils/chem_utils/mol_standardize.py,sha256=qPLCdVMSXMOWN-01O1isg2zq7eQyFAI0SNatHkRq1uw,17524
271
271
  workbench/utils/chem_utils/mol_tagging.py,sha256=8Bt6gHvyN8B2jvVuz12JgYMHVLDkCLnEPAfqkyMEoMc,9995
272
- workbench/utils/chem_utils/projections.py,sha256=smV-VTB-pqRrgn4DXyDIpuCYcopJdPZ54YoCQv60JY0,7480
272
+ workbench/utils/chem_utils/projections.py,sha256=V__MUp9zoCJcsTUS3REwIZv28fKIxc_Zd9BPBylLIkw,7977
273
273
  workbench/utils/chem_utils/salts.py,sha256=ZzFb6Z71Z_kMjVF-PKwHx0fn9pN9rPMj-oEY8Nt5JWA,9095
274
274
  workbench/utils/chem_utils/sdf.py,sha256=wucyMtnmdg6onBa5N_sX6ONDE4PThJokImFxCBk22RI,10319
275
275
  workbench/utils/chem_utils/toxicity.py,sha256=OmVvR05XjP8rLteQ0gjlC5tRh3WitjoahPnSLPhbUXQ,10195
@@ -282,6 +282,7 @@ workbench/web_interface/components/model_plot.py,sha256=9KSILXvq1L_DUZszj5ozWwi4
282
282
  workbench/web_interface/components/plugin_interface.py,sha256=jGRq4igUTVXUT4sDqqsKKI2yjilV0ORNBQq6CjEWE84,9563
283
283
  workbench/web_interface/components/plugin_unit_test.py,sha256=Lx3HhIMHzrwDUYs2bADSFYzQq3sFHS9RyA415hyUOdc,7747
284
284
  workbench/web_interface/components/regression_plot.py,sha256=k18Bd0fcH7ig6kL5GqC_dINci3_YLle_fSEM32zXtzY,3342
285
+ workbench/web_interface/components/settings_menu.py,sha256=JHh7kfLtpkWCVQMdcKU_Qby3GMJ5GoOQrZOhbEiN-Fw,6609
285
286
  workbench/web_interface/components/violin_plots.py,sha256=3_T85hIs_R_WZpfFkSrqY2eYXmYzWsywDqsLhB7W1RQ,5320
286
287
  workbench/web_interface/components/experiments/dashboard_metric_plots.py,sha256=DPIw13tO9XOGxA6IeRPLgl-C3XUJ2N287JkSEg73Rjg,2984
287
288
  workbench/web_interface/components/experiments/outlier_plot.py,sha256=5bWsmJEXyt50npeQxLHXCPtiq4WRVgg938Sl0DVjNWg,3647
@@ -298,7 +299,7 @@ workbench/web_interface/components/plugins/molecule_panel.py,sha256=xGCEI5af8F5l
298
299
  workbench/web_interface/components/plugins/molecule_viewer.py,sha256=xavixcu4RNzh6Nj_-3-XlK09DgpNx5jGmo3wEPNftiE,4529
299
300
  workbench/web_interface/components/plugins/pipeline_details.py,sha256=caiFIakHk-1dGGNW7wlio2X7iAm2_tCNbSjDzoRWGEk,5534
300
301
  workbench/web_interface/components/plugins/proximity_mini_graph.py,sha256=b_YYnvLczJUhaDbrrXnyjUDYF7C4R4ufCZXtJiyRnJ0,7233
301
- workbench/web_interface/components/plugins/scatter_plot.py,sha256=p2mXBKXT25uVfU9Ps3xSx5q1dxRcL9z6tPEyhfoXQ0A,18945
302
+ workbench/web_interface/components/plugins/scatter_plot.py,sha256=quF4oVUsuVOnqQk7_ix-JIZD4LkpI8IeSvSIeNCLSZQ,22582
302
303
  workbench/web_interface/components/plugins/shap_summary_plot.py,sha256=_V-xxVehU-60IpYWvAqTW5x_6u6pbjz9mI8r0ppIXKg,9454
303
304
  workbench/web_interface/page_views/data_sources_page_view.py,sha256=SXNUG6n_eP9i4anddEXd5E9rMRt-R2EyNR-bbe8OQK4,4673
304
305
  workbench/web_interface/page_views/endpoints_page_view.py,sha256=EI3hA18pEn-mAPEzGAw0W-wM8qJR2j_8pQEJlbJCENk,2770
@@ -307,9 +308,9 @@ workbench/web_interface/page_views/main_page.py,sha256=X4-KyGTKLAdxR-Zk2niuLJB2Y
307
308
  workbench/web_interface/page_views/models_page_view.py,sha256=M0bdC7bAzLyIaE2jviY12FF4abdMFZmg6sFuOY_LaGI,2650
308
309
  workbench/web_interface/page_views/page_view.py,sha256=Gh6YnpOGlUejx-bHZAf5pzqoQ1H1R0OSwOpGhOBO06w,455
309
310
  workbench/web_interface/page_views/pipelines_page_view.py,sha256=v2pxrIbsHBcYiblfius3JK766NZ7ciD2yPx0t3E5IJo,2656
310
- workbench-0.8.217.dist-info/licenses/LICENSE,sha256=RTBoTMeEwTgEhS-n8vgQ-VUo5qig0PWVd8xFPKU6Lck,1080
311
- workbench-0.8.217.dist-info/METADATA,sha256=7aIfI1eWuhBsh22ymfAboL7MK6l3z-8FlA1AXQ5xzMg,10525
312
- workbench-0.8.217.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
313
- workbench-0.8.217.dist-info/entry_points.txt,sha256=viJ6aXRj63sBIs7avj4kFbCO2J2E7jTCrIk8U1SIc3I,511
314
- workbench-0.8.217.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
315
- workbench-0.8.217.dist-info/RECORD,,
311
+ workbench-0.8.224.dist-info/licenses/LICENSE,sha256=RTBoTMeEwTgEhS-n8vgQ-VUo5qig0PWVd8xFPKU6Lck,1080
312
+ workbench-0.8.224.dist-info/METADATA,sha256=cVbRbeJqtXHvwRmb4XQnTCyMGJGRHQL2hWhTSMZppLQ,10102
313
+ workbench-0.8.224.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
314
+ workbench-0.8.224.dist-info/entry_points.txt,sha256=t_9tY7iYku9z96qFZZtUgbWDh_nHtehXxLPLBSpAzeM,566
315
+ workbench-0.8.224.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
316
+ workbench-0.8.224.dist-info/RECORD,,
@@ -3,6 +3,7 @@ cloud_watch = workbench.scripts.monitor_cloud_watch:main
3
3
  endpoint_test = workbench.scripts.endpoint_test:main
4
4
  glue_launcher = workbench.scripts.glue_launcher:main
5
5
  lambda_test = workbench.scripts.lambda_test:main
6
+ meta_model_sim = workbench.scripts.meta_model_sim:main
6
7
  ml_pipeline_batch = workbench.scripts.ml_pipeline_batch:main
7
8
  ml_pipeline_sqs = workbench.scripts.ml_pipeline_sqs:main
8
9
  training_test = workbench.scripts.training_test:main
@@ -1,53 +0,0 @@
1
- # Model: Meta Endpoint Example
2
- # This script is a template for creating a custom meta endpoint in AWS Workbench.
3
- from io import StringIO
4
- import pandas as pd
5
- import json
6
-
7
- # Workbench Bridges imports
8
- try:
9
- from workbench_bridges.endpoints.fast_inference import fast_inference
10
- except ImportError:
11
- print("workbench_bridges not found, this is fine for training...")
12
-
13
-
14
- # Not Used: We need to define this function for SageMaker
15
- def model_fn(model_dir):
16
- return None
17
-
18
-
19
- def input_fn(input_data, content_type):
20
- """Parse input data and return a DataFrame."""
21
- if not input_data:
22
- raise ValueError("Empty input data is not supported!")
23
-
24
- # Decode bytes to string if necessary
25
- if isinstance(input_data, bytes):
26
- input_data = input_data.decode("utf-8")
27
-
28
- # Support CSV and JSON input formats
29
- if "text/csv" in content_type:
30
- return pd.read_csv(StringIO(input_data))
31
- elif "application/json" in content_type:
32
- return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
33
- else:
34
- raise ValueError(f"{content_type} not supported!")
35
-
36
-
37
- def output_fn(output_df, accept_type):
38
- """Supports both CSV and JSON output formats."""
39
- if "text/csv" in accept_type:
40
- csv_output = output_df.to_csv(index=False)
41
- return csv_output, "text/csv"
42
- elif "application/json" in accept_type:
43
- return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
44
- else:
45
- raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
46
-
47
-
48
- # Prediction function
49
- def predict_fn(df, model):
50
-
51
- # Call inference on an endpoint
52
- df = fast_inference("abalone-regression", df)
53
- return df