workbench 0.8.213__py3-none-any.whl → 0.8.217__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
  2. workbench/algorithms/dataframe/fingerprint_proximity.py +257 -80
  3. workbench/algorithms/dataframe/projection_2d.py +38 -21
  4. workbench/algorithms/dataframe/proximity.py +75 -150
  5. workbench/algorithms/graph/light/proximity_graph.py +5 -5
  6. workbench/algorithms/models/cleanlab_model.py +382 -0
  7. workbench/algorithms/models/noise_model.py +2 -2
  8. workbench/api/__init__.py +3 -0
  9. workbench/api/endpoint.py +10 -5
  10. workbench/api/feature_set.py +76 -6
  11. workbench/api/meta_model.py +289 -0
  12. workbench/api/model.py +43 -4
  13. workbench/core/artifacts/endpoint_core.py +63 -115
  14. workbench/core/artifacts/feature_set_core.py +1 -1
  15. workbench/core/artifacts/model_core.py +6 -4
  16. workbench/core/pipelines/pipeline_executor.py +1 -1
  17. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +30 -10
  18. workbench/model_script_utils/pytorch_utils.py +11 -1
  19. workbench/model_scripts/chemprop/chemprop.template +145 -69
  20. workbench/model_scripts/chemprop/generated_model_script.py +147 -71
  21. workbench/model_scripts/custom_models/chem_info/fingerprints.py +7 -3
  22. workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
  23. workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +6 -6
  24. workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
  25. workbench/model_scripts/custom_models/uq_models/meta_uq.template +6 -6
  26. workbench/model_scripts/meta_model/generated_model_script.py +209 -0
  27. workbench/model_scripts/meta_model/meta_model.template +209 -0
  28. workbench/model_scripts/pytorch_model/generated_model_script.py +42 -24
  29. workbench/model_scripts/pytorch_model/pytorch.template +42 -24
  30. workbench/model_scripts/pytorch_model/pytorch_utils.py +11 -1
  31. workbench/model_scripts/script_generation.py +4 -0
  32. workbench/model_scripts/xgb_model/generated_model_script.py +169 -158
  33. workbench/model_scripts/xgb_model/xgb_model.template +163 -152
  34. workbench/repl/workbench_shell.py +0 -5
  35. workbench/scripts/endpoint_test.py +2 -2
  36. workbench/utils/chem_utils/fingerprints.py +7 -3
  37. workbench/utils/chemprop_utils.py +23 -5
  38. workbench/utils/meta_model_simulator.py +471 -0
  39. workbench/utils/metrics_utils.py +94 -10
  40. workbench/utils/model_utils.py +91 -9
  41. workbench/utils/pytorch_utils.py +1 -1
  42. workbench/web_interface/components/plugins/scatter_plot.py +4 -8
  43. {workbench-0.8.213.dist-info → workbench-0.8.217.dist-info}/METADATA +2 -1
  44. {workbench-0.8.213.dist-info → workbench-0.8.217.dist-info}/RECORD +48 -43
  45. workbench/model_scripts/custom_models/proximity/proximity.py +0 -410
  46. workbench/model_scripts/custom_models/uq_models/proximity.py +0 -410
  47. {workbench-0.8.213.dist-info → workbench-0.8.217.dist-info}/WHEEL +0 -0
  48. {workbench-0.8.213.dist-info → workbench-0.8.217.dist-info}/entry_points.txt +0 -0
  49. {workbench-0.8.213.dist-info → workbench-0.8.217.dist-info}/licenses/LICENSE +0 -0
  50. {workbench-0.8.213.dist-info → workbench-0.8.217.dist-info}/top_level.txt +0 -0
@@ -93,16 +93,17 @@ def get_custom_script_path(package: str, script_name: str) -> Path:
93
93
  return script_path
94
94
 
95
95
 
96
- def proximity_model_local(model: "Model"):
97
- """Create a Proximity Model for this Model
96
+ def proximity_model_local(model: "Model", include_all_columns: bool = False):
97
+ """Create a FeatureSpaceProximity Model for this Model
98
98
 
99
99
  Args:
100
100
  model (Model): The Model/FeatureSet used to create the proximity model
101
+ include_all_columns (bool): Include all DataFrame columns in neighbor results (default: False)
101
102
 
102
103
  Returns:
103
- Proximity: The proximity model
104
+ FeatureSpaceProximity: The proximity model
104
105
  """
105
- from workbench.algorithms.dataframe.proximity import Proximity # noqa: F401 (avoid circular import)
106
+ from workbench.algorithms.dataframe.feature_space_proximity import FeatureSpaceProximity # noqa: F401
106
107
  from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
107
108
 
108
109
  # Get Feature and Target Columns from the existing given Model
@@ -121,8 +122,59 @@ def proximity_model_local(model: "Model"):
121
122
  model_ids = set(model_df[id_column])
122
123
  full_df["in_model"] = full_df[id_column].isin(model_ids)
123
124
 
124
- # Create and return the Proximity Model
125
- return Proximity(full_df, id_column, features, target, track_columns=features)
125
+ # Create and return the FeatureSpaceProximity Model
126
+ return FeatureSpaceProximity(
127
+ full_df, id_column=id_column, features=features, target=target, include_all_columns=include_all_columns
128
+ )
129
+
130
+
131
+ def fingerprint_prox_model_local(
132
+ model: "Model",
133
+ include_all_columns: bool = False,
134
+ radius: int = 2,
135
+ n_bits: int = 1024,
136
+ counts: bool = False,
137
+ ):
138
+ """Create a FingerprintProximity Model for this Model
139
+
140
+ Args:
141
+ model (Model): The Model used to create the fingerprint proximity model
142
+ include_all_columns (bool): Include all DataFrame columns in neighbor results (default: False)
143
+ radius (int): Morgan fingerprint radius (default: 2)
144
+ n_bits (int): Number of bits for the fingerprint (default: 1024)
145
+ counts (bool): Use count fingerprints instead of binary (default: False)
146
+
147
+ Returns:
148
+ FingerprintProximity: The fingerprint proximity model
149
+ """
150
+ from workbench.algorithms.dataframe.fingerprint_proximity import FingerprintProximity # noqa: F401
151
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
152
+
153
+ # Get Target Column from the existing given Model
154
+ target = model.target()
155
+
156
+ # Backtrack our FeatureSet to get the ID column
157
+ fs = FeatureSet(model.get_input())
158
+ id_column = fs.id_column
159
+
160
+ # Create the Proximity Model from both the full FeatureSet and the Model training data
161
+ full_df = fs.pull_dataframe()
162
+ model_df = model.training_view().pull_dataframe()
163
+
164
+ # Mark rows that are in the model
165
+ model_ids = set(model_df[id_column])
166
+ full_df["in_model"] = full_df[id_column].isin(model_ids)
167
+
168
+ # Create and return the FingerprintProximity Model
169
+ return FingerprintProximity(
170
+ full_df,
171
+ id_column=id_column,
172
+ target=target,
173
+ include_all_columns=include_all_columns,
174
+ radius=radius,
175
+ n_bits=n_bits,
176
+ counts=counts,
177
+ )
126
178
 
127
179
 
128
180
  def noise_model_local(model: "Model"):
@@ -157,13 +209,43 @@ def noise_model_local(model: "Model"):
157
209
  return NoiseModel(full_df, id_column, features, target)
158
210
 
159
211
 
160
- def published_proximity_model(model: "Model", prox_model_name: str, track_columns: list = None) -> "Model":
212
+ def cleanlab_model_local(model: "Model"):
213
+ """Create a CleanlabModels instance for detecting data quality issues in a Model's training data.
214
+
215
+ Args:
216
+ model (Model): The Model used to create the cleanlab models
217
+
218
+ Returns:
219
+ CleanlabModels: Factory providing access to CleanLearning and Datalab models.
220
+ - clean_learning(): CleanLearning model with enhanced get_label_issues()
221
+ - datalab(): Datalab instance with report(), get_issues()
222
+ """
223
+ from workbench.algorithms.models.cleanlab_model import create_cleanlab_model # noqa: F401 (avoid circular import)
224
+ from workbench.api import Model, FeatureSet # noqa: F401 (avoid circular import)
225
+
226
+ # Get Feature and Target Columns from the existing given Model
227
+ features = model.features()
228
+ target = model.target()
229
+ model_type = model.model_type
230
+
231
+ # Backtrack our FeatureSet to get the ID column
232
+ fs = FeatureSet(model.get_input())
233
+ id_column = fs.id_column
234
+
235
+ # Get the full FeatureSet data
236
+ full_df = fs.pull_dataframe()
237
+
238
+ # Create and return the CleanLearning model
239
+ return create_cleanlab_model(full_df, id_column, features, target, model_type=model_type)
240
+
241
+
242
+ def published_proximity_model(model: "Model", prox_model_name: str, include_all_columns: bool = False) -> "Model":
161
243
  """Create a published proximity model based on the given model
162
244
 
163
245
  Args:
164
246
  model (Model): The model to create the proximity model from
165
247
  prox_model_name (str): The name of the proximity model to create
166
- track_columns (list, optional): List of columns to track in the proximity model
248
+ include_all_columns (bool): Include all DataFrame columns in results (default: False)
167
249
  Returns:
168
250
  Model: The proximity model
169
251
  """
@@ -186,7 +268,7 @@ def published_proximity_model(model: "Model", prox_model_name: str, track_column
186
268
  description=f"Proximity Model for {model.name}",
187
269
  tags=["proximity", model.name],
188
270
  custom_script=script_path,
189
- custom_args={"track_columns": track_columns},
271
+ custom_args={"include_all_columns": include_all_columns},
190
272
  )
191
273
  return prox_model
192
274
 
@@ -75,7 +75,7 @@ if __name__ == "__main__":
75
75
  from workbench.api import Model
76
76
 
77
77
  # Test pulling CV results
78
- model_name = "aqsol-pytorch-reg"
78
+ model_name = "aqsol-reg-pytorch"
79
79
  print(f"Loading Workbench model: {model_name}")
80
80
  model = Model(model_name)
81
81
  print(f"Model Framework: {model.model_framework}")
@@ -420,21 +420,17 @@ if __name__ == "__main__":
420
420
  df = pd.DataFrame(data)
421
421
 
422
422
  # Get a UQ regressor model
423
- # from workbench.api import Endpoint, DFStore
424
- # end = Endpoint("aqsol-uq")
425
- # df = end.auto_inference()
426
- # DFStore().upsert("/workbench/models/aqsol-uq/auto_inference", df)
423
+ from workbench.api import Model
427
424
 
428
- from workbench.api import DFStore
429
-
430
- df = DFStore().get("/workbench/models/aqsol-uq-100/full_cross_fold_inference")
425
+ model = Model("logd-reg-xgb")
426
+ df = model.get_inference_predictions("full_cross_fold")
431
427
 
432
428
  # Run the Unit Test on the Plugin
433
429
  PluginUnitTest(
434
430
  ScatterPlot,
435
431
  input_data=df,
436
432
  theme="midnight_blue",
437
- x="solubility",
433
+ x="logd",
438
434
  y="prediction",
439
435
  color="prediction_std",
440
436
  suppress_hover_display=True,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: workbench
3
- Version: 0.8.213
3
+ Version: 0.8.217
4
4
  Summary: Workbench: A Dashboard and Python API for creating and deploying AWS SageMaker Model Pipelines
5
5
  Author-email: SuperCowPowers LLC <support@supercowpowers.com>
6
6
  License: MIT License
@@ -47,6 +47,7 @@ Requires-Dist: cryptography>=44.0.2
47
47
  Requires-Dist: ipython>=8.37.0
48
48
  Requires-Dist: pyreadline3; sys_platform == "win32"
49
49
  Requires-Dist: scikit-learn>=1.5.2
50
+ Requires-Dist: umap-learn>=0.5.8
50
51
  Requires-Dist: xgboost>=3.0.3
51
52
  Requires-Dist: joblib>=1.3.2
52
53
  Requires-Dist: requests>=2.26.0
@@ -3,10 +3,10 @@ workbench/algorithms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hS
3
3
  workbench/algorithms/dataframe/Readme.md,sha256=ZoCEi2BRJ4ZH0wlkFELTV_njIvYt7Wnhanuv4eoFluw,378
4
4
  workbench/algorithms/dataframe/__init__.py,sha256=AXpwD4WYOk7odNS9vaKSO0DM-bMRuC93faq0JAltQ54,419
5
5
  workbench/algorithms/dataframe/data_source_eda.py,sha256=WgVL6tzBCw1tznQr8RQ6daQnTxQ0-DQUiMwbjztVMSU,1606
6
- workbench/algorithms/dataframe/feature_space_proximity.py,sha256=6RxzvbpLdDkHMm1D49Nv59SFcyYUj8bisd6_5EpBEGI,3515
7
- workbench/algorithms/dataframe/fingerprint_proximity.py,sha256=nGxfmYQ3bfMtvs90s4p7gaY9DN4gijdDU7R6B2lRHgo,5825
8
- workbench/algorithms/dataframe/projection_2d.py,sha256=zK4hc0OQrySmfcfFg8y0GxEL34uDNqvZL4OgttB9vRs,7834
9
- workbench/algorithms/dataframe/proximity.py,sha256=dPTYD1N-JTIqg6iL7ak_JSouaCdfmBPjG08IRRvTLXU,15836
6
+ workbench/algorithms/dataframe/feature_space_proximity.py,sha256=FYsQd5Lf5CrSWi-1Dcs_NVFN86izifxkWk1-EOvEV54,6950
7
+ workbench/algorithms/dataframe/fingerprint_proximity.py,sha256=MZcWEVho7w18gLCxRUi3jIDlspI3vtymk_wUtwbAL3s,13298
8
+ workbench/algorithms/dataframe/projection_2d.py,sha256=xO3hfqV8EbHnv3q1wcBz1pfip-UV65tpxU84-uhYE08,8744
9
+ workbench/algorithms/dataframe/proximity.py,sha256=rjoTtZceaQmuMOwhgARFbm379JdGxqrz_kGFec-Js7A,13203
10
10
  workbench/algorithms/dataframe/storage/aggregation.py,sha256=VuTb7A6Vh6IS5djZeItvOLnnEOlf7tzMQ8OaYIuftvU,2852
11
11
  workbench/algorithms/dataframe/storage/feature_resolution.py,sha256=w_iLf8EFTg7Jc5laH-bsq8MEtZVqcg05W-GihCqR-r4,9450
12
12
  workbench/algorithms/dataframe/storage/feature_spider.py,sha256=uIZ4JHIKuhpy08wBFReSrohb5DGxx8vGroHUbjPm1jE,14353
@@ -17,8 +17,9 @@ workbench/algorithms/graph/__init__.py,sha256=Hi2vBi-qw2OPLZnCu5qVTDdorRMOd3wNIt
17
17
  workbench/algorithms/graph/heavy/Readme.md,sha256=QzefnMevGXHBtaP3umzMNn2KEdNQMvJkJNbhkrUw7QE,96
18
18
  workbench/algorithms/graph/light/Readme.md,sha256=8kP_hRrRC6JtKtl5qyTwrV6gdO5rz6uq54c8WW1fTLg,122
19
19
  workbench/algorithms/graph/light/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- workbench/algorithms/graph/light/proximity_graph.py,sha256=CdHQ7-Tt_Ab7KrKTsnXR-p8OoX52RiiM6zD0OS4dGK0,9631
21
- workbench/algorithms/models/noise_model.py,sha256=_--Ri76OK60qcNzF34XqwWNqSsieOreVJ5PFpV1Rvpo,14346
20
+ workbench/algorithms/graph/light/proximity_graph.py,sha256=X-4MCvMPiwYy0nP8ztKeF3z05fB6vA-alu58uUBp7Rk,9688
21
+ workbench/algorithms/models/cleanlab_model.py,sha256=jBPuEv6hDp0nQc0aHPgbNtlXRzFzaqOU8RKTK7Go8ys,14027
22
+ workbench/algorithms/models/noise_model.py,sha256=WVCKjda_-p0ovj-Ze6eKmKREO-3rJlmBiCMSldeWYf0,14384
22
23
  workbench/algorithms/spark/Readme.md,sha256=18bPoFISlT3Ls5t1cBGb5N5Z6lOWyJupQkQxab1wcO4,615
23
24
  workbench/algorithms/sql/Readme.md,sha256=fzm4jQ-unJWT-fp5JhIjpApYSAqHUGSiuHE0eNfbF4A,685
24
25
  workbench/algorithms/sql/__init__.py,sha256=TbOZQwCfx6Tjc3pCCLCiM31wpCX26j5MBNQ6yG11EwY,462
@@ -28,15 +29,16 @@ workbench/algorithms/sql/descriptive_stats.py,sha256=VxSR5zQi8NmAWrJvOCO3wrmgVHY
28
29
  workbench/algorithms/sql/outliers.py,sha256=2hoilOk0gaz9pwrnGEBY2y7M-UqFED3KO_mFm_0_3ac,10645
29
30
  workbench/algorithms/sql/sample_rows.py,sha256=SRYoGb24QP_iPvOoW9bGZ95yZuseYDtyoNhilfoLu34,2688
30
31
  workbench/algorithms/sql/value_counts.py,sha256=F-rZoLTTKv1cHYl2_tDlvWDjczy76uLTr3EMHa-WrEk,3340
31
- workbench/api/__init__.py,sha256=KDKzFb4SL8AArtd9ucTkFYdCxbsBMbK1ZMkj0G2rACY,1065
32
+ workbench/api/__init__.py,sha256=1JAQKD82biia4h07BRA9ytjxuJUYQqgHvkf8FwpnlVQ,1195
32
33
  workbench/api/compound.py,sha256=kf5EaM5qjWwsZutcxqj9IC_MPnDV1uVHDMns9OA_GOo,2545
33
34
  workbench/api/data_source.py,sha256=Ngz36YZWxFfpJbmURhM1LQPYjh5kdpZNGo6_fCRePbA,8321
34
35
  workbench/api/df_store.py,sha256=1qSYM3Xb4MwMMTMaF3CX0hOCEzhIbnra5Deivg4cryk,3014
35
- workbench/api/endpoint.py,sha256=q8KEoQ-KH0DxW4ZCKP8Mlqry5n9_QCg0QTgrPrwTp44,3724
36
- workbench/api/feature_set.py,sha256=4zorGPAxcXorsckF8f7ym0FrJwziZCqFelNDUxWF8S4,8054
36
+ workbench/api/endpoint.py,sha256=tvPINPv_EFwphuZ3tv09jwO6dee-DRH371ZzXrrUxfM,3897
37
+ workbench/api/feature_set.py,sha256=7li_Wdpo8tPQAsxCit293I4g9FvyDi4qv82B89auM9o,10993
37
38
  workbench/api/graph_store.py,sha256=LremJyPrQFgsHb7hxsctuCsoxx3p7TKtaY5qALHe6pc,4372
38
39
  workbench/api/meta.py,sha256=1_9989cPvf3hd3tA-83hLijOGNnhwXAF8aZF45adeDQ,8596
39
- workbench/api/model.py,sha256=Y4LXMjxaPT1wFrw86NuccHZllYAWM5w5h_OaTX0IeWQ,4047
40
+ workbench/api/meta_model.py,sha256=2DpjjBSw60QPMWQ2sTu2492PrFWFMXK8hH9U13gXzi8,11226
41
+ workbench/api/model.py,sha256=uU2sO7qm1wqdVhl7WVzzg79p1Z26Kf5inMhYzgmhzDw,5523
40
42
  workbench/api/monitor.py,sha256=Cez89Uac7Tzt47FxkjoX-YDGccEhvBcxw3sZFtw4ud8,4506
41
43
  workbench/api/parameter_store.py,sha256=_3MmPxKiVy7_OIgCSRlUv9xbk8nuiOWiCtZgT-AxN1k,2574
42
44
  workbench/api/pipeline.py,sha256=MSYGrDSXrRB_oQELtAlOwBfxSBTw3REAkHy5XBHau0Y,6261
@@ -56,9 +58,9 @@ workbench/core/artifacts/data_capture_core.py,sha256=q8f79rRTYiZ7T4IQRWXl8ZvPpcv
56
58
  workbench/core/artifacts/data_source_abstract.py,sha256=5IRCzFVK-17cd4NXPMRfx99vQAmQ0WHE5jcm5RfsVTg,10619
57
59
  workbench/core/artifacts/data_source_factory.py,sha256=YL_tA5fsgubbB3dPF6T4tO0rGgz-6oo3ge4i_YXVC-M,2380
58
60
  workbench/core/artifacts/df_store_core.py,sha256=AueNr_JvuLLu_ByE7cb3u-isH9u0Q7cMP-UCgCX-Ctg,3536
59
- workbench/core/artifacts/endpoint_core.py,sha256=qEjdbzUMeiZZHyJoGQbjCuFKjCVa89fFISnD5hfC7Yw,56787
60
- workbench/core/artifacts/feature_set_core.py,sha256=wZy-02WXWmSBet5t8mWXFRdv9O4MtW3hWqJuVv7Kok0,39330
61
- workbench/core/artifacts/model_core.py,sha256=LDH6wgN1521q7klkVF17t7tmueKH095B42_PlSAileo,52251
61
+ workbench/core/artifacts/endpoint_core.py,sha256=VAEDP4eLl_Obwcb_Tg4tqDsAti4kXa0UzhGON57M4Hs,54071
62
+ workbench/core/artifacts/feature_set_core.py,sha256=EAvFbkNWDaiTnQvsugNJXAt1sgbzOs4tCvSycPB7Ry8,39332
63
+ workbench/core/artifacts/model_core.py,sha256=wPkpdRlxnAXMqsDtJGPotGFO146Hm7NCfYbImHwZo9c,52343
62
64
  workbench/core/artifacts/monitor_core.py,sha256=M307yz7tEzOEHgv-LmtVy9jKjSbM98fHW3ckmNYrwlU,27897
63
65
  workbench/core/artifacts/parameter_store_core.py,sha256=sHvjJMuybM4qdcKhH-Sx6Ur6Yn5ozA3QHwtidsnhyG8,2867
64
66
  workbench/core/cloud_platform/cloud_meta.py,sha256=-g4-LTC3D0PXb3VfaXdLR1ERijKuHdffeMK_zhD-koQ,8809
@@ -71,7 +73,7 @@ workbench/core/cloud_platform/aws/aws_session.py,sha256=2Gc_k4Q87BBeQDgXgVR-w-qm
71
73
  workbench/core/cloud_platform/aws/cache_dataframe.py,sha256=VnObkVqcjg7v4fegrIkXR1j-K2AHTBpSAoriUXDe12A,2314
72
74
  workbench/core/cloud_platform/azure/README.md,sha256=ciIXZwjtOPYf9ViquFQxjLKuFwje_hZJHJ2hMQghziI,101
73
75
  workbench/core/cloud_platform/gcp/README.md,sha256=MzObe3mWQzjviKD2aXlAV9r_bU4HzTJGapWRsFn6pCU,106
74
- workbench/core/pipelines/pipeline_executor.py,sha256=_4vQ2wEmx-vXnDymphGo8EvWh4iRO7XeuweJ8wgjHvY,6890
76
+ workbench/core/pipelines/pipeline_executor.py,sha256=HP69SWXHTXo7TrdUHa4z2cf57oBbMwL6bWj4MFepNZ8,6878
75
77
  workbench/core/transforms/Readme.md,sha256=ncEH7DqVBoKCbu9cMeAMr3cvMpAn7pUmwDpv1E1ArGs,1432
76
78
  workbench/core/transforms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
79
  workbench/core/transforms/transform.py,sha256=3gWAgRs9WUcLooAoKwpsiiJUtyiANsTBsZ4iSWigx7g,5660
@@ -105,7 +107,7 @@ workbench/core/transforms/features_to_features/heavy/glue/Readme.md,sha256=TuyCa
105
107
  workbench/core/transforms/features_to_model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
108
  workbench/core/transforms/features_to_model/features_to_model.py,sha256=Xbw20zMeeOKAueNeIWaRNQJFrw8N465qC3TkW0eGdu8,21074
107
109
  workbench/core/transforms/model_to_endpoint/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=INu7q_tjkI52WA5Xhyas74LK7larIUQyvz9MlsrCYtc,7012
110
+ workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=a_y4IGrhj-ZtKcAYDwsnM44y1hqRhhGsGxgadxgqcaM,8028
109
111
  workbench/core/transforms/pandas_transforms/__init__.py,sha256=xL4MT8-fZ1SFqDbTLc8XyxjupHtB1YR6Ej0AC2nwd7I,894
110
112
  workbench/core/transforms/pandas_transforms/data_to_pandas.py,sha256=sJHPeuNF8Q8aQqgRnkdWkyvur5cbggdUVIwR-xF3Dlo,3621
111
113
  workbench/core/transforms/pandas_transforms/features_to_pandas.py,sha256=af6xdPt2V4zhh-SzQa_UYxdmNMzMLXbrbsznV5QoIJg,3441
@@ -124,15 +126,15 @@ workbench/core/views/view.py,sha256=DvmEA1xdvL980GET_cnbmHzqSy6IhlNaZcoQnVTtYis,
124
126
  workbench/core/views/view_utils.py,sha256=CwOlpqXpumCr6REi-ey7Qjz5_tpg-s4oWHmlOVu8POQ,12270
125
127
  workbench/core/views/storage/mdq_view.py,sha256=qf_ep1KwaXOIfO930laEwNIiCYP7VNOqjE3VdHfopRE,5195
126
128
  workbench/model_script_utils/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
127
- workbench/model_script_utils/pytorch_utils.py,sha256=ra9LS-9-u4fmRy2Zlcih6KL8LCose42mXCxdaaaf9As,13321
129
+ workbench/model_script_utils/pytorch_utils.py,sha256=vr8ybK45U0H8Jhjb5qx6xbJNozdcl7bVqubknDwh6U0,13704
128
130
  workbench/model_script_utils/uq_harness.py,sha256=70b7dI9Wls03ff6zm2TpfKIsboVBKsj7P7fNzmMe6c0,10305
129
- workbench/model_scripts/script_generation.py,sha256=1wbMyIN-cnuopmt8L2YG68Mn4k9vP6NPrQfNsWqjaaA,8005
130
- workbench/model_scripts/chemprop/chemprop.template,sha256=3qgZCI0cIxCQKy9RxzGR_UeVPZ7fFTWNa6xD2Uq5kaY,26110
131
- workbench/model_scripts/chemprop/generated_model_script.py,sha256=Zce9seKhWInKKyk9nN_EJedAFlkbNDJqVqzc3SnwA5A,26820
131
+ workbench/model_scripts/script_generation.py,sha256=w3L2VYGnGUvBtd01BWzH38DuHKULtYsc_Xz_3_Eavvo,8258
132
+ workbench/model_scripts/chemprop/chemprop.template,sha256=Vh2DW3E6ryrvM3VizZ2JVlBeFTu247guB_3cPcF2Hgw,29386
133
+ workbench/model_scripts/chemprop/generated_model_script.py,sha256=7h0sVMIlfe53XHUCRdKyVFUoq6lKOJBcxD15BmZhC8c,29408
132
134
  workbench/model_scripts/chemprop/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
133
135
  workbench/model_scripts/chemprop/requirements.txt,sha256=2IBHZZNYqhX9Ed7AmRVgN06tO3EHeBbN2EM8-tjWZhs,216
134
136
  workbench/model_scripts/custom_models/chem_info/Readme.md,sha256=mH1lxJ4Pb7F5nBnVXaiuxpi8zS_yjUw_LBJepVKXhlA,574
135
- workbench/model_scripts/custom_models/chem_info/fingerprints.py,sha256=Qvs8jaUwguWUq3Q3j695MY0t0Wk3BvroW-oWBwalMUo,5255
137
+ workbench/model_scripts/custom_models/chem_info/fingerprints.py,sha256=XHRxoP6eV5z_k7w6BmfwpPO8rr6PZIF7KW9jwGjnj7o,5449
136
138
  workbench/model_scripts/custom_models/chem_info/mol_descriptors.py,sha256=c8gkHZ-8s3HJaW9zN9pnYGK7YVW8Y0xFqQ1G_ysrF2Y,18789
137
139
  workbench/model_scripts/custom_models/chem_info/mol_standardize.py,sha256=qPLCdVMSXMOWN-01O1isg2zq7eQyFAI0SNatHkRq1uw,17524
138
140
  workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py,sha256=xljMjdfh4Idi4v1Afq1zZxvF1SDa7pDOLSAhvGBEj88,2891
@@ -141,42 +143,44 @@ workbench/model_scripts/custom_models/chem_info/requirements.txt,sha256=7HBUzvNi
141
143
  workbench/model_scripts/custom_models/meta_endpoints/example.py,sha256=hzOAuLhIGB8vei-555ruNxpsE1GhuByHGjGB0zw8GSs,1726
142
144
  workbench/model_scripts/custom_models/network_security/Readme.md,sha256=Z2gtiu0hLHvEJ1x-_oFq3qJZcsK81sceBAGAGltpqQ8,222
143
145
  workbench/model_scripts/custom_models/proximity/Readme.md,sha256=RlMFAJZgAT2mCgDk-UwR_R0Y_NbCqeI5-8DUsxsbpWQ,289
144
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.template,sha256=eOllmqB20BWtTiV53dgpIqXKtgSbPFDW_zf8PvM3oF0,4813
145
- workbench/model_scripts/custom_models/proximity/proximity.py,sha256=dPTYD1N-JTIqg6iL7ak_JSouaCdfmBPjG08IRRvTLXU,15836
146
+ workbench/model_scripts/custom_models/proximity/feature_space_proximity.py,sha256=FYsQd5Lf5CrSWi-1Dcs_NVFN86izifxkWk1-EOvEV54,6950
147
+ workbench/model_scripts/custom_models/proximity/feature_space_proximity.template,sha256=m0hrgI8wLq98ZbCVj1rrhHuvZRnFD_MZ228R2uXq46A,4943
146
148
  workbench/model_scripts/custom_models/proximity/requirements.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
147
149
  workbench/model_scripts/custom_models/uq_models/Readme.md,sha256=UVpL-lvtTrLqwBeQFinLhd_uNrEw4JUlggIdUSDrd-w,188
148
150
  workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template,sha256=ca3CaAk6HVuNv1HnPgABTzRY3oDrRxomjgD4V1ZDwoc,6448
149
151
  workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template,sha256=449Enh4-7RrMrxt1oS_SHJHGV8yYcFlWHsLrCVTFQGI,13778
152
+ workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py,sha256=FYsQd5Lf5CrSWi-1Dcs_NVFN86izifxkWk1-EOvEV54,6950
150
153
  workbench/model_scripts/custom_models/uq_models/gaussian_process.template,sha256=3nMlCi8nEbc4N-MQTzjfIcljfDQkUmWeLBfmd18m5fg,6632
151
- workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=RIC90o9iI37ylOOJBUVDVF2FmYs9kJl8AifL-AYIwAI,14282
154
+ workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=wLilHll9Hzwyo-y9Vsqx7PjzdMca4xkUt3Ed1zcgOBE,14412
152
155
  workbench/model_scripts/custom_models/uq_models/ngboost.template,sha256=_ukYcsL4pnWvFV1oA89_wfVpxWbvoEx6MGwKxc38kSI,8512
153
- workbench/model_scripts/custom_models/uq_models/proximity.py,sha256=dPTYD1N-JTIqg6iL7ak_JSouaCdfmBPjG08IRRvTLXU,15836
154
156
  workbench/model_scripts/custom_models/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
155
157
  workbench/model_scripts/custom_script_example/custom_model_script.py,sha256=T8aydawgRVAdSlDimoWpXxG2YuWWQkbcjBVjAeSG2_0,6408
156
158
  workbench/model_scripts/custom_script_example/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
157
159
  workbench/model_scripts/ensemble_xgb/ensemble_xgb.template,sha256=lMEx0IkawcpTI52gSjCp1Wr0g2vWd4kIGuIqjXhA2GA,10671
158
160
  workbench/model_scripts/ensemble_xgb/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
159
- workbench/model_scripts/pytorch_model/generated_model_script.py,sha256=miO9iCd7a9wA2UAS8vnI1yODIkYZeQnlQoxtPvY5oVU,23794
161
+ workbench/model_scripts/meta_model/generated_model_script.py,sha256=ncPrHd9-R8l_98vAiuTUJ92C9PKpEgAtpIrmd7TuqSQ,8341
162
+ workbench/model_scripts/meta_model/meta_model.template,sha256=viz-AKVq3YRwOUBt8-rUO1TwdEPFzyP7nnifqcIJurw,8244
163
+ workbench/model_scripts/pytorch_model/generated_model_script.py,sha256=qw5lqFhkRjMGjTWC9SH1lgGETwqEXEmgzk_cdEs2ZFw,24598
160
164
  workbench/model_scripts/pytorch_model/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
161
- workbench/model_scripts/pytorch_model/pytorch.template,sha256=wxQT5WKquqhAAXexwPtTRpS55Qf4FKHYElqEVVGWpmc,20287
162
- workbench/model_scripts/pytorch_model/pytorch_utils.py,sha256=ra9LS-9-u4fmRy2Zlcih6KL8LCose42mXCxdaaaf9As,13321
165
+ workbench/model_scripts/pytorch_model/pytorch.template,sha256=KOH7nhq_3u0pHmjGymY5aycF0_ZlwLQ16qmDKUQcE9k,21091
166
+ workbench/model_scripts/pytorch_model/pytorch_utils.py,sha256=vr8ybK45U0H8Jhjb5qx6xbJNozdcl7bVqubknDwh6U0,13704
163
167
  workbench/model_scripts/pytorch_model/requirements.txt,sha256=ES7YehHEL4E5oV8FScHm3oNQmkMI4ODgbC1fSbaY7T4,183
164
168
  workbench/model_scripts/pytorch_model/uq_harness.py,sha256=70b7dI9Wls03ff6zm2TpfKIsboVBKsj7P7fNzmMe6c0,10305
165
169
  workbench/model_scripts/scikit_learn/generated_model_script.py,sha256=xhQIglpAgPRCH9iwI3wI0N0V6p9AgqW0mVOMuSXzUCk,17187
166
170
  workbench/model_scripts/scikit_learn/requirements.txt,sha256=aVvwiJ3LgBUhM_PyFlb2gHXu_kpGPho3ANBzlOkfcvs,107
167
171
  workbench/model_scripts/scikit_learn/scikit_learn.template,sha256=QQvqx-eX9ZTbYmyupq6R6vIQwosmsmY_MRBPaHyfjdk,12586
168
172
  workbench/model_scripts/uq_models/generated_model_script.py,sha256=kgcIWghY6eazcBWS77MukhQUyYFmfJcS8SQ8RmjM82I,9006
169
- workbench/model_scripts/xgb_model/generated_model_script.py,sha256=yFWjTMGPzstcKAI7Cu20FtPO7tehMTGW265zg-LIrzo,21104
173
+ workbench/model_scripts/xgb_model/generated_model_script.py,sha256=bIue0u9S1y1rBCcTVZ0Aa0PO8-XBphJmAgm0e8ov90k,18585
170
174
  workbench/model_scripts/xgb_model/model_script_utils.py,sha256=9Js8bc57osH-kkreWPq09VtWeIQ7buzMqutgV63u0UI,11479
171
175
  workbench/model_scripts/xgb_model/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
172
176
  workbench/model_scripts/xgb_model/uq_harness.py,sha256=70b7dI9Wls03ff6zm2TpfKIsboVBKsj7P7fNzmMe6c0,10305
173
- workbench/model_scripts/xgb_model/xgb_model.template,sha256=SRTzIeK2xG__MU0R7LF_RJe5QAiKaEIFwYewmN8Avww,17571
177
+ workbench/model_scripts/xgb_model/xgb_model.template,sha256=w4-yx82yws-_esObZQIq13S8WKXXnZxqe86ZuyWoP5w,18367
174
178
  workbench/repl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
175
- workbench/repl/workbench_shell.py,sha256=__FOnBqe3I6Luzb-N9mAecOUfcPEkctzxBfJSKTqDDA,22504
179
+ workbench/repl/workbench_shell.py,sha256=RuuJVfO7pVTXWiwKGpBdDAL_fXJZfSay4KRDbhNNBXY,22309
176
180
  workbench/resources/open_source_api.key,sha256=vi9099CjkNnZ1IXB6AQWcG83iFYn2db0iTfTlpGVA1o,432
177
181
  workbench/resources/signature_verify_pub.pem,sha256=V3-u-3_z2PH-805ybkKvzDOBwAbvHxcKn0jLBImEtzM,272
178
182
  workbench/scripts/check_double_bond_stereo.py,sha256=p5hnL54Weq77ES0HCELq9JeoM-PyUGkvVSeWYF2dKyo,7776
179
- workbench/scripts/endpoint_test.py,sha256=G4GdQMa7KlKX7WiUSFX_OHAzDdCyf8ZbVYbZBkAPiSo,5339
183
+ workbench/scripts/endpoint_test.py,sha256=RV52DZZTOD_ou-ywZjaxQ2_wqnSJqvlnHQZbvf4iM6I,5339
180
184
  workbench/scripts/glue_launcher.py,sha256=bIKQvfGxpAhzbeNvTnHfRW_5kQhY-169_868ZnCejJk,10692
181
185
  workbench/scripts/lambda_test.py,sha256=SLAPIXeGQn82neQ6-Hif3VS3LWLwT0-dGw8yWw2aXRQ,2077
182
186
  workbench/scripts/ml_pipeline_batch.py,sha256=1T5JnLlUJR7bwAGBLHmLPOuj1xFRqVIQX8PsuDhHy8o,4907
@@ -211,7 +215,7 @@ workbench/utils/athena_utils.py,sha256=DDyLhJujzh1PfejtGU7ZzOf5hLPOgoXmi4Lrn-_AJ
211
215
  workbench/utils/aws_utils.py,sha256=x8c_WxtdSKmBqNg8P_Z6K2m4AsSMEiD_kh2nVaUZ28c,22077
212
216
  workbench/utils/bulk_utils.py,sha256=s1lYN2Uk536MNGetekLYL_VL0N34hUjk1FX9BAz3Qu0,1182
213
217
  workbench/utils/cache.py,sha256=0R5RXYEz_XHARK3anmQC4VRMawMks_cJ8S4vwC2roAE,5524
214
- workbench/utils/chemprop_utils.py,sha256=MHrnPS0OnHD-Yqj4KTeAUtMCETdSCkyUZpC24Pr0rV4,3954
218
+ workbench/utils/chemprop_utils.py,sha256=_cy7iZ96xoDVeZGkLdXr7sMsgZjAUMjg5CHyHX6W6zY,4694
215
219
  workbench/utils/cloudwatch_handler.py,sha256=t0L280Qa1nMq95dwnf8lB5g8FHrQAyGY5S4JwP3yIa8,5165
216
220
  workbench/utils/cloudwatch_utils.py,sha256=wXSqKcJlSnHyC0D6d4RsH8wwmx_0CsffcetUgXlZ_78,4828
217
221
  workbench/utils/color_utils.py,sha256=TmDGLK44t975lkfjt_1O-ee02QxrKfke7vPuXb-V-Uo,11779
@@ -232,8 +236,9 @@ workbench/utils/lambda_utils.py,sha256=7GhGRPyXn9o-toWb9HBGSnI8-DhK9YRkwhCSk_mNK
232
236
  workbench/utils/license_manager.py,sha256=lNE9zZIglmX3zqqCKBdN1xqTgHCEZgJDxavF6pdG7fc,6825
233
237
  workbench/utils/log_utils.py,sha256=7n1NJXO_jUX82e6LWAQug6oPo3wiPDBYsqk9gsYab_A,3167
234
238
  workbench/utils/markdown_utils.py,sha256=4lEqzgG4EVmLcvvKKNUwNxVCySLQKJTJmWDiaDroI1w,8306
235
- workbench/utils/metrics_utils.py,sha256=oY-EK4nAr01Xcqo150pfHGJaWZ8ESZowQVI9A5sMeXE,6177
236
- workbench/utils/model_utils.py,sha256=WKG0BlTe3XnsDIzxi22tGWxPQxt202aFNc-i3AX5gJ4,16108
239
+ workbench/utils/meta_model_simulator.py,sha256=E8O8z4sbSDhKd22_nbuFLUcPNbPGzMacznBdL2H4trU,18755
240
+ workbench/utils/metrics_utils.py,sha256=iAoKrAM4iRX8wFSjSJhfNKbbW1BqB3eI_U3wvdhUdhE,9496
241
+ workbench/utils/model_utils.py,sha256=jiybuv6gGE-p2i2JEQcyAY-ffigtuzZFNvp_rHKCi3A,19284
237
242
  workbench/utils/monitor_utils.py,sha256=kVaJ7BgUXs3VPMFYfLC03wkIV4Dq-pEhoXS0wkJFxCc,7858
238
243
  workbench/utils/pandas_utils.py,sha256=uTUx-d1KYfjbS9PMQp2_9FogCV7xVZR6XLzU5YAGmfs,39371
239
244
  workbench/utils/performance_utils.py,sha256=WDNvz-bOdC99cDuXl0urAV4DJ7alk_V3yzKPwvqgST4,1329
@@ -241,7 +246,7 @@ workbench/utils/pipeline_utils.py,sha256=yzR5tgAzz6zNqvxzZR6YqsbS7r3QDKzBXozaM_A
241
246
  workbench/utils/plot_utils.py,sha256=yFveic-4aY7lKT-CPhYdbIkBr-mZqjbhaRmCySWG_kE,6537
242
247
  workbench/utils/plugin_manager.py,sha256=JWfyFHQih_J_MMtAT1cgjGVnNVPk9bM917LkfH8Z-_A,13873
243
248
  workbench/utils/prox_utils.py,sha256=V0YSxI6lboZl8Bed1GUobFqfMhfpehn2FtgqHpkuhDQ,6170
244
- workbench/utils/pytorch_utils.py,sha256=_q4SHA0JQRKPUMwmM-lWkLN5xwQdw7Wo8XkmljflShs,2879
249
+ workbench/utils/pytorch_utils.py,sha256=RoltE9-fOX2UixzaEmnxN6oJtBEKQ9Jklu0LRzYKVDY,2879
245
250
  workbench/utils/redis_cache.py,sha256=39LFSWmOlNNcah02D3sBnmibc-DPeKC3SNq71K4HaB4,12893
246
251
  workbench/utils/repl_utils.py,sha256=rWOMv2HiEIp8ZL6Ps6DlwiJlGr-pOhv9OZQhm3aR-1A,4668
247
252
  workbench/utils/s3_utils.py,sha256=Xme_o_cftC_jWnw6R9YKS6-6C11zaCBAoQDlY3dZb5o,7337
@@ -259,7 +264,7 @@ workbench/utils/workbench_sqs.py,sha256=RwM80z7YWwdtMaCKh7KWF8v38f7eBRU7kyC7ZhTR
259
264
  workbench/utils/xgboost_local_crossfold.py,sha256=GY61F6-avQDiteIb1LAgvkHvAKvLg6H85xBDvfgCVDM,10718
260
265
  workbench/utils/xgboost_model_utils.py,sha256=qEnB1viCIXMYLW0LJuyCioKMSilbmKTMuppaxBZqwhc,12967
261
266
  workbench/utils/chem_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
262
- workbench/utils/chem_utils/fingerprints.py,sha256=Qvs8jaUwguWUq3Q3j695MY0t0Wk3BvroW-oWBwalMUo,5255
267
+ workbench/utils/chem_utils/fingerprints.py,sha256=XHRxoP6eV5z_k7w6BmfwpPO8rr6PZIF7KW9jwGjnj7o,5449
263
268
  workbench/utils/chem_utils/misc.py,sha256=Nevf8_opu-uIPrv_1_0ubuFVVo2_fGUkMoLAHB3XAeo,7372
264
269
  workbench/utils/chem_utils/mol_descriptors.py,sha256=c8gkHZ-8s3HJaW9zN9pnYGK7YVW8Y0xFqQ1G_ysrF2Y,18789
265
270
  workbench/utils/chem_utils/mol_standardize.py,sha256=qPLCdVMSXMOWN-01O1isg2zq7eQyFAI0SNatHkRq1uw,17524
@@ -293,7 +298,7 @@ workbench/web_interface/components/plugins/molecule_panel.py,sha256=xGCEI5af8F5l
293
298
  workbench/web_interface/components/plugins/molecule_viewer.py,sha256=xavixcu4RNzh6Nj_-3-XlK09DgpNx5jGmo3wEPNftiE,4529
294
299
  workbench/web_interface/components/plugins/pipeline_details.py,sha256=caiFIakHk-1dGGNW7wlio2X7iAm2_tCNbSjDzoRWGEk,5534
295
300
  workbench/web_interface/components/plugins/proximity_mini_graph.py,sha256=b_YYnvLczJUhaDbrrXnyjUDYF7C4R4ufCZXtJiyRnJ0,7233
296
- workbench/web_interface/components/plugins/scatter_plot.py,sha256=8tYnHlgi2UnuKLoxi9-89QF8ZHFrPhpRkzBY5gzlVdo,19130
301
+ workbench/web_interface/components/plugins/scatter_plot.py,sha256=p2mXBKXT25uVfU9Ps3xSx5q1dxRcL9z6tPEyhfoXQ0A,18945
297
302
  workbench/web_interface/components/plugins/shap_summary_plot.py,sha256=_V-xxVehU-60IpYWvAqTW5x_6u6pbjz9mI8r0ppIXKg,9454
298
303
  workbench/web_interface/page_views/data_sources_page_view.py,sha256=SXNUG6n_eP9i4anddEXd5E9rMRt-R2EyNR-bbe8OQK4,4673
299
304
  workbench/web_interface/page_views/endpoints_page_view.py,sha256=EI3hA18pEn-mAPEzGAw0W-wM8qJR2j_8pQEJlbJCENk,2770
@@ -302,9 +307,9 @@ workbench/web_interface/page_views/main_page.py,sha256=X4-KyGTKLAdxR-Zk2niuLJB2Y
302
307
  workbench/web_interface/page_views/models_page_view.py,sha256=M0bdC7bAzLyIaE2jviY12FF4abdMFZmg6sFuOY_LaGI,2650
303
308
  workbench/web_interface/page_views/page_view.py,sha256=Gh6YnpOGlUejx-bHZAf5pzqoQ1H1R0OSwOpGhOBO06w,455
304
309
  workbench/web_interface/page_views/pipelines_page_view.py,sha256=v2pxrIbsHBcYiblfius3JK766NZ7ciD2yPx0t3E5IJo,2656
305
- workbench-0.8.213.dist-info/licenses/LICENSE,sha256=RTBoTMeEwTgEhS-n8vgQ-VUo5qig0PWVd8xFPKU6Lck,1080
306
- workbench-0.8.213.dist-info/METADATA,sha256=hKbYNrdgKqm0wqivCTflFzZu0ekaU64UdTw5BBamkJc,10492
307
- workbench-0.8.213.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
308
- workbench-0.8.213.dist-info/entry_points.txt,sha256=viJ6aXRj63sBIs7avj4kFbCO2J2E7jTCrIk8U1SIc3I,511
309
- workbench-0.8.213.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
310
- workbench-0.8.213.dist-info/RECORD,,
310
+ workbench-0.8.217.dist-info/licenses/LICENSE,sha256=RTBoTMeEwTgEhS-n8vgQ-VUo5qig0PWVd8xFPKU6Lck,1080
311
+ workbench-0.8.217.dist-info/METADATA,sha256=7aIfI1eWuhBsh22ymfAboL7MK6l3z-8FlA1AXQ5xzMg,10525
312
+ workbench-0.8.217.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
313
+ workbench-0.8.217.dist-info/entry_points.txt,sha256=viJ6aXRj63sBIs7avj4kFbCO2J2E7jTCrIk8U1SIc3I,511
314
+ workbench-0.8.217.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
315
+ workbench-0.8.217.dist-info/RECORD,,