workbench 0.8.212__py3-none-any.whl → 0.8.217__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- workbench/algorithms/dataframe/feature_space_proximity.py +168 -75
- workbench/algorithms/dataframe/fingerprint_proximity.py +257 -80
- workbench/algorithms/dataframe/projection_2d.py +38 -21
- workbench/algorithms/dataframe/proximity.py +75 -150
- workbench/algorithms/graph/light/proximity_graph.py +5 -5
- workbench/algorithms/models/cleanlab_model.py +382 -0
- workbench/algorithms/models/noise_model.py +2 -2
- workbench/api/__init__.py +3 -0
- workbench/api/endpoint.py +10 -5
- workbench/api/feature_set.py +76 -6
- workbench/api/meta_model.py +289 -0
- workbench/api/model.py +43 -4
- workbench/core/artifacts/endpoint_core.py +75 -129
- workbench/core/artifacts/feature_set_core.py +1 -1
- workbench/core/artifacts/model_core.py +6 -4
- workbench/core/pipelines/pipeline_executor.py +1 -1
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +30 -10
- workbench/model_script_utils/pytorch_utils.py +11 -1
- workbench/model_scripts/chemprop/chemprop.template +145 -69
- workbench/model_scripts/chemprop/generated_model_script.py +147 -71
- workbench/model_scripts/custom_models/chem_info/fingerprints.py +7 -3
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +6 -6
- workbench/model_scripts/custom_models/uq_models/feature_space_proximity.py +194 -0
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +6 -6
- workbench/model_scripts/meta_model/generated_model_script.py +209 -0
- workbench/model_scripts/meta_model/meta_model.template +209 -0
- workbench/model_scripts/pytorch_model/generated_model_script.py +42 -24
- workbench/model_scripts/pytorch_model/pytorch.template +42 -24
- workbench/model_scripts/pytorch_model/pytorch_utils.py +11 -1
- workbench/model_scripts/script_generation.py +4 -0
- workbench/model_scripts/xgb_model/generated_model_script.py +169 -158
- workbench/model_scripts/xgb_model/xgb_model.template +163 -152
- workbench/repl/workbench_shell.py +0 -5
- workbench/scripts/endpoint_test.py +2 -2
- workbench/utils/chem_utils/fingerprints.py +7 -3
- workbench/utils/chemprop_utils.py +23 -5
- workbench/utils/meta_model_simulator.py +471 -0
- workbench/utils/metrics_utils.py +94 -10
- workbench/utils/model_utils.py +91 -9
- workbench/utils/pytorch_utils.py +1 -1
- workbench/web_interface/components/plugins/scatter_plot.py +4 -8
- {workbench-0.8.212.dist-info → workbench-0.8.217.dist-info}/METADATA +2 -1
- {workbench-0.8.212.dist-info → workbench-0.8.217.dist-info}/RECORD +48 -43
- workbench/model_scripts/custom_models/proximity/proximity.py +0 -410
- workbench/model_scripts/custom_models/uq_models/proximity.py +0 -410
- {workbench-0.8.212.dist-info → workbench-0.8.217.dist-info}/WHEEL +0 -0
- {workbench-0.8.212.dist-info → workbench-0.8.217.dist-info}/entry_points.txt +0 -0
- {workbench-0.8.212.dist-info → workbench-0.8.217.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.212.dist-info → workbench-0.8.217.dist-info}/top_level.txt +0 -0
|
@@ -5,51 +5,36 @@
|
|
|
5
5
|
# - Out-of-fold predictions for validation metrics
|
|
6
6
|
# - Categorical feature embedding via TabularMLP
|
|
7
7
|
# - Compressed feature decompression
|
|
8
|
+
#
|
|
9
|
+
# NOTE: Imports are structured to minimize serverless endpoint startup time.
|
|
10
|
+
# Heavy imports (sklearn, awswrangler) are deferred to training time.
|
|
8
11
|
|
|
9
|
-
import argparse
|
|
10
12
|
import json
|
|
11
13
|
import os
|
|
12
14
|
|
|
13
|
-
import awswrangler as wr
|
|
14
15
|
import joblib
|
|
15
16
|
import numpy as np
|
|
16
17
|
import pandas as pd
|
|
17
18
|
import torch
|
|
18
|
-
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
|
|
19
|
-
from sklearn.preprocessing import LabelEncoder
|
|
20
|
-
|
|
21
|
-
# Enable Tensor Core optimization for GPUs that support it
|
|
22
|
-
torch.set_float32_matmul_precision("medium")
|
|
23
19
|
|
|
24
20
|
from model_script_utils import (
|
|
25
|
-
check_dataframe,
|
|
26
|
-
compute_classification_metrics,
|
|
27
|
-
compute_regression_metrics,
|
|
28
21
|
convert_categorical_types,
|
|
29
22
|
decompress_features,
|
|
30
23
|
expand_proba_column,
|
|
31
24
|
input_fn,
|
|
32
25
|
match_features_case_insensitive,
|
|
33
26
|
output_fn,
|
|
34
|
-
print_classification_metrics,
|
|
35
|
-
print_confusion_matrix,
|
|
36
|
-
print_regression_metrics,
|
|
37
27
|
)
|
|
38
28
|
from pytorch_utils import (
|
|
39
29
|
FeatureScaler,
|
|
40
|
-
create_model,
|
|
41
30
|
load_model,
|
|
42
31
|
predict,
|
|
43
32
|
prepare_data,
|
|
44
|
-
save_model,
|
|
45
|
-
train_model,
|
|
46
33
|
)
|
|
47
34
|
from uq_harness import (
|
|
48
35
|
compute_confidence,
|
|
49
36
|
load_uq_models,
|
|
50
37
|
predict_intervals,
|
|
51
|
-
save_uq_models,
|
|
52
|
-
train_uq_models,
|
|
53
38
|
)
|
|
54
39
|
|
|
55
40
|
# =============================================================================
|
|
@@ -59,13 +44,15 @@ DEFAULT_HYPERPARAMETERS = {
|
|
|
59
44
|
# Training parameters
|
|
60
45
|
"n_folds": 5,
|
|
61
46
|
"max_epochs": 200,
|
|
62
|
-
"early_stopping_patience":
|
|
47
|
+
"early_stopping_patience": 30,
|
|
63
48
|
"batch_size": 128,
|
|
64
|
-
# Model architecture
|
|
65
|
-
"layers": "256-128
|
|
49
|
+
# Model architecture (larger capacity - ensemble provides regularization)
|
|
50
|
+
"layers": "512-256-128",
|
|
66
51
|
"learning_rate": 1e-3,
|
|
67
|
-
"dropout": 0.
|
|
52
|
+
"dropout": 0.05,
|
|
68
53
|
"use_batch_norm": True,
|
|
54
|
+
# Loss function for regression (L1Loss=MAE, MSELoss=MSE, HuberLoss, SmoothL1Loss)
|
|
55
|
+
"loss": "L1Loss",
|
|
69
56
|
# Random seed
|
|
70
57
|
"seed": 42,
|
|
71
58
|
}
|
|
@@ -86,7 +73,7 @@ TEMPLATE_PARAMS = {
|
|
|
86
73
|
# Model Loading (for SageMaker inference)
|
|
87
74
|
# =============================================================================
|
|
88
75
|
def model_fn(model_dir: str) -> dict:
|
|
89
|
-
"""Load TabularMLP ensemble from the specified directory."""
|
|
76
|
+
"""Load PyTorch TabularMLP ensemble from the specified directory."""
|
|
90
77
|
# Load ensemble metadata
|
|
91
78
|
metadata_path = os.path.join(model_dir, "ensemble_metadata.joblib")
|
|
92
79
|
if os.path.exists(metadata_path):
|
|
@@ -129,7 +116,7 @@ def model_fn(model_dir: str) -> dict:
|
|
|
129
116
|
# Inference (for SageMaker inference)
|
|
130
117
|
# =============================================================================
|
|
131
118
|
def predict_fn(df: pd.DataFrame, model_dict: dict) -> pd.DataFrame:
|
|
132
|
-
"""Make predictions with TabularMLP ensemble."""
|
|
119
|
+
"""Make predictions with PyTorch TabularMLP ensemble."""
|
|
133
120
|
model_type = TEMPLATE_PARAMS["model_type"]
|
|
134
121
|
compressed_features = TEMPLATE_PARAMS["compressed_features"]
|
|
135
122
|
model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
|
|
@@ -233,6 +220,36 @@ def predict_fn(df: pd.DataFrame, model_dict: dict) -> pd.DataFrame:
|
|
|
233
220
|
# Training
|
|
234
221
|
# =============================================================================
|
|
235
222
|
if __name__ == "__main__":
|
|
223
|
+
# -------------------------------------------------------------------------
|
|
224
|
+
# Training-only imports (deferred to reduce serverless startup time)
|
|
225
|
+
# -------------------------------------------------------------------------
|
|
226
|
+
import argparse
|
|
227
|
+
|
|
228
|
+
import awswrangler as wr
|
|
229
|
+
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
|
|
230
|
+
from sklearn.preprocessing import LabelEncoder
|
|
231
|
+
|
|
232
|
+
# Enable Tensor Core optimization for GPUs that support it
|
|
233
|
+
torch.set_float32_matmul_precision("medium")
|
|
234
|
+
|
|
235
|
+
from model_script_utils import (
|
|
236
|
+
check_dataframe,
|
|
237
|
+
compute_classification_metrics,
|
|
238
|
+
compute_regression_metrics,
|
|
239
|
+
print_classification_metrics,
|
|
240
|
+
print_confusion_matrix,
|
|
241
|
+
print_regression_metrics,
|
|
242
|
+
)
|
|
243
|
+
from pytorch_utils import (
|
|
244
|
+
create_model,
|
|
245
|
+
save_model,
|
|
246
|
+
train_model,
|
|
247
|
+
)
|
|
248
|
+
from uq_harness import (
|
|
249
|
+
save_uq_models,
|
|
250
|
+
train_uq_models,
|
|
251
|
+
)
|
|
252
|
+
|
|
236
253
|
# -------------------------------------------------------------------------
|
|
237
254
|
# Setup: Parse arguments and load data
|
|
238
255
|
# -------------------------------------------------------------------------
|
|
@@ -377,6 +394,7 @@ if __name__ == "__main__":
|
|
|
377
394
|
patience=hyperparameters["early_stopping_patience"],
|
|
378
395
|
batch_size=hyperparameters["batch_size"],
|
|
379
396
|
learning_rate=hyperparameters["learning_rate"],
|
|
397
|
+
loss=hyperparameters.get("loss", "L1Loss"),
|
|
380
398
|
device=device,
|
|
381
399
|
)
|
|
382
400
|
ensemble_models.append(model)
|
|
@@ -5,51 +5,36 @@
|
|
|
5
5
|
# - Out-of-fold predictions for validation metrics
|
|
6
6
|
# - Categorical feature embedding via TabularMLP
|
|
7
7
|
# - Compressed feature decompression
|
|
8
|
+
#
|
|
9
|
+
# NOTE: Imports are structured to minimize serverless endpoint startup time.
|
|
10
|
+
# Heavy imports (sklearn, awswrangler) are deferred to training time.
|
|
8
11
|
|
|
9
|
-
import argparse
|
|
10
12
|
import json
|
|
11
13
|
import os
|
|
12
14
|
|
|
13
|
-
import awswrangler as wr
|
|
14
15
|
import joblib
|
|
15
16
|
import numpy as np
|
|
16
17
|
import pandas as pd
|
|
17
18
|
import torch
|
|
18
|
-
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
|
|
19
|
-
from sklearn.preprocessing import LabelEncoder
|
|
20
|
-
|
|
21
|
-
# Enable Tensor Core optimization for GPUs that support it
|
|
22
|
-
torch.set_float32_matmul_precision("medium")
|
|
23
19
|
|
|
24
20
|
from model_script_utils import (
|
|
25
|
-
check_dataframe,
|
|
26
|
-
compute_classification_metrics,
|
|
27
|
-
compute_regression_metrics,
|
|
28
21
|
convert_categorical_types,
|
|
29
22
|
decompress_features,
|
|
30
23
|
expand_proba_column,
|
|
31
24
|
input_fn,
|
|
32
25
|
match_features_case_insensitive,
|
|
33
26
|
output_fn,
|
|
34
|
-
print_classification_metrics,
|
|
35
|
-
print_confusion_matrix,
|
|
36
|
-
print_regression_metrics,
|
|
37
27
|
)
|
|
38
28
|
from pytorch_utils import (
|
|
39
29
|
FeatureScaler,
|
|
40
|
-
create_model,
|
|
41
30
|
load_model,
|
|
42
31
|
predict,
|
|
43
32
|
prepare_data,
|
|
44
|
-
save_model,
|
|
45
|
-
train_model,
|
|
46
33
|
)
|
|
47
34
|
from uq_harness import (
|
|
48
35
|
compute_confidence,
|
|
49
36
|
load_uq_models,
|
|
50
37
|
predict_intervals,
|
|
51
|
-
save_uq_models,
|
|
52
|
-
train_uq_models,
|
|
53
38
|
)
|
|
54
39
|
|
|
55
40
|
# =============================================================================
|
|
@@ -59,13 +44,15 @@ DEFAULT_HYPERPARAMETERS = {
|
|
|
59
44
|
# Training parameters
|
|
60
45
|
"n_folds": 5,
|
|
61
46
|
"max_epochs": 200,
|
|
62
|
-
"early_stopping_patience":
|
|
47
|
+
"early_stopping_patience": 30,
|
|
63
48
|
"batch_size": 128,
|
|
64
|
-
# Model architecture
|
|
65
|
-
"layers": "256-128
|
|
49
|
+
# Model architecture (larger capacity - ensemble provides regularization)
|
|
50
|
+
"layers": "512-256-128",
|
|
66
51
|
"learning_rate": 1e-3,
|
|
67
|
-
"dropout": 0.
|
|
52
|
+
"dropout": 0.05,
|
|
68
53
|
"use_batch_norm": True,
|
|
54
|
+
# Loss function for regression (L1Loss=MAE, MSELoss=MSE, HuberLoss, SmoothL1Loss)
|
|
55
|
+
"loss": "L1Loss",
|
|
69
56
|
# Random seed
|
|
70
57
|
"seed": 42,
|
|
71
58
|
}
|
|
@@ -86,7 +73,7 @@ TEMPLATE_PARAMS = {
|
|
|
86
73
|
# Model Loading (for SageMaker inference)
|
|
87
74
|
# =============================================================================
|
|
88
75
|
def model_fn(model_dir: str) -> dict:
|
|
89
|
-
"""Load TabularMLP ensemble from the specified directory."""
|
|
76
|
+
"""Load PyTorch TabularMLP ensemble from the specified directory."""
|
|
90
77
|
# Load ensemble metadata
|
|
91
78
|
metadata_path = os.path.join(model_dir, "ensemble_metadata.joblib")
|
|
92
79
|
if os.path.exists(metadata_path):
|
|
@@ -129,7 +116,7 @@ def model_fn(model_dir: str) -> dict:
|
|
|
129
116
|
# Inference (for SageMaker inference)
|
|
130
117
|
# =============================================================================
|
|
131
118
|
def predict_fn(df: pd.DataFrame, model_dict: dict) -> pd.DataFrame:
|
|
132
|
-
"""Make predictions with TabularMLP ensemble."""
|
|
119
|
+
"""Make predictions with PyTorch TabularMLP ensemble."""
|
|
133
120
|
model_type = TEMPLATE_PARAMS["model_type"]
|
|
134
121
|
compressed_features = TEMPLATE_PARAMS["compressed_features"]
|
|
135
122
|
model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
|
|
@@ -233,6 +220,36 @@ def predict_fn(df: pd.DataFrame, model_dict: dict) -> pd.DataFrame:
|
|
|
233
220
|
# Training
|
|
234
221
|
# =============================================================================
|
|
235
222
|
if __name__ == "__main__":
|
|
223
|
+
# -------------------------------------------------------------------------
|
|
224
|
+
# Training-only imports (deferred to reduce serverless startup time)
|
|
225
|
+
# -------------------------------------------------------------------------
|
|
226
|
+
import argparse
|
|
227
|
+
|
|
228
|
+
import awswrangler as wr
|
|
229
|
+
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
|
|
230
|
+
from sklearn.preprocessing import LabelEncoder
|
|
231
|
+
|
|
232
|
+
# Enable Tensor Core optimization for GPUs that support it
|
|
233
|
+
torch.set_float32_matmul_precision("medium")
|
|
234
|
+
|
|
235
|
+
from model_script_utils import (
|
|
236
|
+
check_dataframe,
|
|
237
|
+
compute_classification_metrics,
|
|
238
|
+
compute_regression_metrics,
|
|
239
|
+
print_classification_metrics,
|
|
240
|
+
print_confusion_matrix,
|
|
241
|
+
print_regression_metrics,
|
|
242
|
+
)
|
|
243
|
+
from pytorch_utils import (
|
|
244
|
+
create_model,
|
|
245
|
+
save_model,
|
|
246
|
+
train_model,
|
|
247
|
+
)
|
|
248
|
+
from uq_harness import (
|
|
249
|
+
save_uq_models,
|
|
250
|
+
train_uq_models,
|
|
251
|
+
)
|
|
252
|
+
|
|
236
253
|
# -------------------------------------------------------------------------
|
|
237
254
|
# Setup: Parse arguments and load data
|
|
238
255
|
# -------------------------------------------------------------------------
|
|
@@ -377,6 +394,7 @@ if __name__ == "__main__":
|
|
|
377
394
|
patience=hyperparameters["early_stopping_patience"],
|
|
378
395
|
batch_size=hyperparameters["batch_size"],
|
|
379
396
|
learning_rate=hyperparameters["learning_rate"],
|
|
397
|
+
loss=hyperparameters.get("loss", "L1Loss"),
|
|
380
398
|
device=device,
|
|
381
399
|
)
|
|
382
400
|
ensemble_models.append(model)
|
|
@@ -245,6 +245,7 @@ def train_model(
|
|
|
245
245
|
patience: int = 20,
|
|
246
246
|
batch_size: int = 128,
|
|
247
247
|
learning_rate: float = 1e-3,
|
|
248
|
+
loss: str = "L1Loss",
|
|
248
249
|
device: str = "cpu",
|
|
249
250
|
) -> tuple[TabularMLP, dict]:
|
|
250
251
|
"""Train the model with early stopping.
|
|
@@ -272,7 +273,16 @@ def train_model(
|
|
|
272
273
|
if task == "classification":
|
|
273
274
|
criterion = nn.CrossEntropyLoss()
|
|
274
275
|
else:
|
|
275
|
-
|
|
276
|
+
# Map loss name to PyTorch loss class
|
|
277
|
+
loss_map = {
|
|
278
|
+
"L1Loss": nn.L1Loss,
|
|
279
|
+
"MSELoss": nn.MSELoss,
|
|
280
|
+
"HuberLoss": nn.HuberLoss,
|
|
281
|
+
"SmoothL1Loss": nn.SmoothL1Loss,
|
|
282
|
+
}
|
|
283
|
+
if loss not in loss_map:
|
|
284
|
+
raise ValueError(f"Unknown loss '{loss}'. Supported: {list(loss_map.keys())}")
|
|
285
|
+
criterion = loss_map[loss]()
|
|
276
286
|
|
|
277
287
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
|
278
288
|
|
|
@@ -100,6 +100,7 @@ def generate_model_script(template_params: dict) -> str:
|
|
|
100
100
|
- model_metrics_s3_path (str): The S3 path to store the model metrics
|
|
101
101
|
- train_all_data (bool): Whether to train on all (100%) of the data
|
|
102
102
|
- hyperparameters (dict, optional): Hyperparameters for the model (default: None)
|
|
103
|
+
- child_endpoints (list[str], optional): For META models, list of child endpoint names
|
|
103
104
|
|
|
104
105
|
Returns:
|
|
105
106
|
str: The name of the generated model script
|
|
@@ -116,6 +117,9 @@ def generate_model_script(template_params: dict) -> str:
|
|
|
116
117
|
elif template_params["model_framework"] == ModelFramework.CHEMPROP:
|
|
117
118
|
template_name = "chemprop.template"
|
|
118
119
|
model_script_dir = "chemprop"
|
|
120
|
+
elif template_params["model_framework"] == ModelFramework.META:
|
|
121
|
+
template_name = "meta_model.template"
|
|
122
|
+
model_script_dir = "meta_model"
|
|
119
123
|
elif template_params["model_type"] in [ModelType.REGRESSOR, ModelType.UQ_REGRESSOR, ModelType.CLASSIFIER]:
|
|
120
124
|
template_name = "xgb_model.template"
|
|
121
125
|
model_script_dir = "xgb_model"
|