workbench 0.8.205__py3-none-any.whl → 0.8.213__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. workbench/algorithms/models/noise_model.py +388 -0
  2. workbench/api/endpoint.py +3 -6
  3. workbench/api/feature_set.py +1 -1
  4. workbench/api/model.py +5 -11
  5. workbench/cached/cached_model.py +4 -4
  6. workbench/core/artifacts/endpoint_core.py +63 -153
  7. workbench/core/artifacts/model_core.py +21 -19
  8. workbench/core/transforms/features_to_model/features_to_model.py +2 -2
  9. workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +1 -1
  10. workbench/model_script_utils/model_script_utils.py +335 -0
  11. workbench/model_script_utils/pytorch_utils.py +395 -0
  12. workbench/model_script_utils/uq_harness.py +278 -0
  13. workbench/model_scripts/chemprop/chemprop.template +289 -666
  14. workbench/model_scripts/chemprop/generated_model_script.py +292 -669
  15. workbench/model_scripts/chemprop/model_script_utils.py +335 -0
  16. workbench/model_scripts/chemprop/requirements.txt +2 -10
  17. workbench/model_scripts/pytorch_model/generated_model_script.py +355 -612
  18. workbench/model_scripts/pytorch_model/model_script_utils.py +335 -0
  19. workbench/model_scripts/pytorch_model/pytorch.template +350 -607
  20. workbench/model_scripts/pytorch_model/pytorch_utils.py +395 -0
  21. workbench/model_scripts/pytorch_model/requirements.txt +1 -1
  22. workbench/model_scripts/pytorch_model/uq_harness.py +278 -0
  23. workbench/model_scripts/script_generation.py +2 -5
  24. workbench/model_scripts/uq_models/generated_model_script.py +65 -422
  25. workbench/model_scripts/xgb_model/generated_model_script.py +349 -412
  26. workbench/model_scripts/xgb_model/model_script_utils.py +335 -0
  27. workbench/model_scripts/xgb_model/uq_harness.py +278 -0
  28. workbench/model_scripts/xgb_model/xgb_model.template +344 -407
  29. workbench/scripts/training_test.py +85 -0
  30. workbench/utils/chemprop_utils.py +18 -656
  31. workbench/utils/metrics_utils.py +172 -0
  32. workbench/utils/model_utils.py +104 -47
  33. workbench/utils/pytorch_utils.py +32 -472
  34. workbench/utils/xgboost_local_crossfold.py +267 -0
  35. workbench/utils/xgboost_model_utils.py +49 -356
  36. workbench/web_interface/components/plugins/model_details.py +30 -68
  37. {workbench-0.8.205.dist-info → workbench-0.8.213.dist-info}/METADATA +5 -5
  38. {workbench-0.8.205.dist-info → workbench-0.8.213.dist-info}/RECORD +42 -31
  39. {workbench-0.8.205.dist-info → workbench-0.8.213.dist-info}/entry_points.txt +1 -0
  40. workbench/model_scripts/uq_models/mapie.template +0 -605
  41. workbench/model_scripts/uq_models/requirements.txt +0 -1
  42. {workbench-0.8.205.dist-info → workbench-0.8.213.dist-info}/WHEEL +0 -0
  43. {workbench-0.8.205.dist-info → workbench-0.8.213.dist-info}/licenses/LICENSE +0 -0
  44. {workbench-0.8.205.dist-info → workbench-0.8.213.dist-info}/top_level.txt +0 -0
@@ -1,169 +1,53 @@
1
1
  """PyTorch Tabular utilities for Workbench models."""
2
2
 
3
- # flake8: noqa: E402
4
3
  import logging
5
4
  import os
5
+ import tarfile
6
6
  import tempfile
7
- from pprint import pformat
8
7
  from typing import Any, Tuple
9
8
 
10
- # Disable OpenMP parallelism to avoid segfaults on macOS with conflicting OpenMP runtimes
11
- # (libomp from LLVM vs libiomp from Intel). Must be set before importing numpy/sklearn/torch.
12
- # See: https://github.com/scikit-learn/scikit-learn/issues/21302
13
- os.environ.setdefault("OMP_NUM_THREADS", "1")
14
- os.environ.setdefault("MKL_NUM_THREADS", "1")
15
-
16
- import numpy as np
9
+ import awswrangler as wr
17
10
  import pandas as pd
18
- from scipy.stats import spearmanr
19
- from sklearn.metrics import (
20
- mean_absolute_error,
21
- mean_squared_error,
22
- median_absolute_error,
23
- precision_recall_fscore_support,
24
- r2_score,
25
- roc_auc_score,
26
- )
27
- from sklearn.model_selection import KFold, StratifiedKFold
28
- from sklearn.preprocessing import LabelEncoder
29
11
 
30
- from workbench.utils.model_utils import safe_extract_tarfile
31
- from workbench.utils.pandas_utils import expand_proba_column
32
12
  from workbench.utils.aws_utils import pull_s3_data
13
+ from workbench.utils.metrics_utils import compute_metrics_from_predictions
33
14
 
34
15
  log = logging.getLogger("workbench")
35
16
 
36
17
 
37
18
  def download_and_extract_model(s3_uri: str, model_dir: str) -> None:
38
- """Download model artifact from S3 and extract it.
39
-
40
- Args:
41
- s3_uri: S3 URI to the model artifact (model.tar.gz)
42
- model_dir: Directory to extract model artifacts to
43
- """
44
- import awswrangler as wr
45
-
46
- log.info(f"Downloading model from {s3_uri}...")
47
-
48
- # Download to temp file
49
- local_tar_path = os.path.join(model_dir, "model.tar.gz")
50
- wr.s3.download(path=s3_uri, local_file=local_tar_path)
51
-
52
- # Extract using safe extraction
53
- log.info(f"Extracting to {model_dir}...")
54
- safe_extract_tarfile(local_tar_path, model_dir)
55
-
56
- # Cleanup tar file
57
- os.unlink(local_tar_path)
58
-
59
-
60
- def load_pytorch_model_artifacts(model_dir: str) -> Tuple[Any, dict]:
61
- """Load PyTorch Tabular model and artifacts from an extracted model directory.
19
+ """Download and extract a PyTorch model artifact from S3.
62
20
 
63
21
  Args:
64
- model_dir: Directory containing extracted model artifacts
65
-
66
- Returns:
67
- Tuple of (TabularModel, artifacts_dict).
68
- artifacts_dict contains 'label_encoder' and 'category_mappings' if present.
22
+ s3_uri: S3 URI of the model.tar.gz artifact
23
+ model_dir: Local directory to extract the model to
69
24
  """
70
- import json
25
+ with tempfile.NamedTemporaryFile(suffix=".tar.gz", delete=False) as tmp:
26
+ tmp_path = tmp.name
71
27
 
72
- import joblib
73
-
74
- # pytorch-tabular saves complex objects, use legacy loading behavior
75
- os.environ["TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD"] = "1"
76
- from pytorch_tabular import TabularModel
77
-
78
- model_path = os.path.join(model_dir, "tabular_model")
79
- if not os.path.exists(model_path):
80
- raise FileNotFoundError(f"No tabular_model directory found in {model_dir}")
81
-
82
- # PyTorch Tabular needs write access, so chdir to /tmp
83
- original_cwd = os.getcwd()
84
28
  try:
85
- os.chdir("/tmp")
86
- model = TabularModel.load_model(model_path)
29
+ wr.s3.download(path=s3_uri, local_file=tmp_path)
30
+ with tarfile.open(tmp_path, "r:gz") as tar:
31
+ tar.extractall(model_dir)
32
+ log.info(f"Extracted model to {model_dir}")
87
33
  finally:
88
- os.chdir(original_cwd)
89
-
90
- # Load additional artifacts
91
- artifacts = {}
92
-
93
- label_encoder_path = os.path.join(model_dir, "label_encoder.joblib")
94
- if os.path.exists(label_encoder_path):
95
- artifacts["label_encoder"] = joblib.load(label_encoder_path)
96
-
97
- category_mappings_path = os.path.join(model_dir, "category_mappings.json")
98
- if os.path.exists(category_mappings_path):
99
- with open(category_mappings_path) as f:
100
- artifacts["category_mappings"] = json.load(f)
101
-
102
- return model, artifacts
103
-
104
-
105
- def _extract_model_configs(loaded_model: Any, n_train: int) -> dict:
106
- """Extract trainer and model configs from a loaded PyTorch Tabular model.
107
-
108
- Args:
109
- loaded_model: Loaded TabularModel instance
110
- n_train: Number of training samples (used for batch_size calculation)
111
-
112
- Returns:
113
- Dictionary with 'trainer' and 'model' config dictionaries
114
- """
115
- config = loaded_model.config
116
-
117
- # Trainer config - extract from loaded model, matching template defaults
118
- trainer_defaults = {
119
- "auto_lr_find": False,
120
- "batch_size": min(128, max(32, n_train // 16)),
121
- "max_epochs": 100,
122
- "min_epochs": 10,
123
- "early_stopping": "valid_loss",
124
- "early_stopping_patience": 10,
125
- "gradient_clip_val": 1.0,
126
- }
127
-
128
- trainer_config = {}
129
- for key, default in trainer_defaults.items():
130
- value = getattr(config, key, default)
131
- if value == default and not hasattr(config, key):
132
- log.warning(f"Trainer config '{key}' not found in loaded model, using default: {default}")
133
- trainer_config[key] = value
134
-
135
- # Model config - extract from loaded model, matching template defaults
136
- model_defaults = {
137
- "layers": "256-128-64",
138
- "activation": "LeakyReLU",
139
- "learning_rate": 1e-3,
140
- "dropout": 0.3,
141
- "use_batch_norm": True,
142
- "initialization": "kaiming",
143
- }
144
-
145
- model_config = {}
146
- for key, default in model_defaults.items():
147
- value = getattr(config, key, default)
148
- if value == default and not hasattr(config, key):
149
- log.warning(f"Model config '{key}' not found in loaded model, using default: {default}")
150
- model_config[key] = value
151
-
152
- return {"trainer": trainer_config, "model": model_config}
34
+ if os.path.exists(tmp_path):
35
+ os.remove(tmp_path)
153
36
 
154
37
 
155
38
  def pull_cv_results(workbench_model: Any) -> Tuple[pd.DataFrame, pd.DataFrame]:
156
39
  """Pull cross-validation results from AWS training artifacts.
157
40
 
158
- This retrieves the validation predictions and training metrics that were
159
- saved during model training.
41
+ This retrieves the validation predictions saved during model training and
42
+ computes metrics directly from them. For PyTorch models trained with
43
+ n_folds > 1, these are out-of-fold predictions from k-fold cross-validation.
160
44
 
161
45
  Args:
162
46
  workbench_model: Workbench model object
163
47
 
164
48
  Returns:
165
49
  Tuple of:
166
- - DataFrame with training metrics
50
+ - DataFrame with computed metrics
167
51
  - DataFrame with validation predictions
168
52
  """
169
53
  # Get the validation predictions from S3
@@ -175,353 +59,29 @@ def pull_cv_results(workbench_model: Any) -> Tuple[pd.DataFrame, pd.DataFrame]:
175
59
 
176
60
  log.info(f"Pulled {len(predictions_df)} validation predictions from {s3_path}")
177
61
 
178
- # Get training metrics from model metadata
179
- training_metrics = workbench_model.workbench_meta().get("workbench_training_metrics")
62
+ # Compute metrics from predictions
63
+ target = workbench_model.target()
64
+ class_labels = workbench_model.class_labels()
180
65
 
181
- if training_metrics is None:
182
- log.warning(f"No training metrics found in model metadata for {workbench_model.model_name}")
183
- metrics_df = pd.DataFrame({"error": [f"No training metrics found for {workbench_model.model_name}"]})
66
+ if target in predictions_df.columns and "prediction" in predictions_df.columns:
67
+ metrics_df = compute_metrics_from_predictions(predictions_df, target, class_labels)
184
68
  else:
185
- metrics_df = pd.DataFrame.from_dict(training_metrics)
186
- log.info(f"Metrics summary:\n{metrics_df.to_string(index=False)}")
69
+ metrics_df = pd.DataFrame()
187
70
 
188
71
  return metrics_df, predictions_df
189
72
 
190
73
 
191
- def cross_fold_inference(
192
- workbench_model: Any,
193
- nfolds: int = 5,
194
- ) -> Tuple[pd.DataFrame, pd.DataFrame]:
195
- """Performs K-fold cross-validation for PyTorch Tabular models.
196
-
197
- Replicates the training setup from the original model to ensure
198
- cross-validation results are comparable to the deployed model.
199
-
200
- Args:
201
- workbench_model: Workbench model object
202
- nfolds: Number of folds for cross-validation (default is 5)
203
-
204
- Returns:
205
- Tuple of:
206
- - DataFrame with per-class metrics (and 'all' row for overall metrics)
207
- - DataFrame with columns: id, target, prediction, and *_proba columns (for classifiers)
208
- """
209
- import shutil
210
-
211
- from pytorch_tabular import TabularModel
212
- from pytorch_tabular.config import DataConfig, OptimizerConfig, TrainerConfig
213
- from pytorch_tabular.models import CategoryEmbeddingModelConfig
214
-
215
- from workbench.api import FeatureSet
216
-
217
- # Create a temporary model directory
218
- model_dir = tempfile.mkdtemp(prefix="pytorch_cv_")
219
- log.info(f"Using model directory: {model_dir}")
220
-
221
- try:
222
- # Download and extract model artifacts to get config and artifacts
223
- model_artifact_uri = workbench_model.model_data_url()
224
- download_and_extract_model(model_artifact_uri, model_dir)
225
-
226
- # Load model and artifacts
227
- loaded_model, artifacts = load_pytorch_model_artifacts(model_dir)
228
- category_mappings = artifacts.get("category_mappings", {})
229
-
230
- # Determine if classifier from the loaded model's config
231
- is_classifier = loaded_model.config.task == "classification"
232
-
233
- # Use saved label encoder if available, otherwise create fresh one
234
- if is_classifier:
235
- label_encoder = artifacts.get("label_encoder")
236
- if label_encoder is None:
237
- log.warning("No saved label encoder found, creating fresh one")
238
- label_encoder = LabelEncoder()
239
- else:
240
- label_encoder = None
241
-
242
- # Prepare data
243
- fs = FeatureSet(workbench_model.get_input())
244
- df = workbench_model.training_view().pull_dataframe()
245
-
246
- # Get columns
247
- id_col = fs.id_column
248
- target_col = workbench_model.target()
249
- feature_cols = workbench_model.features()
250
- print(f"Target column: {target_col}")
251
- print(f"Feature columns: {len(feature_cols)} features")
252
-
253
- # Convert string columns to category for PyTorch Tabular compatibility
254
- for col in feature_cols:
255
- if pd.api.types.is_string_dtype(df[col]):
256
- if col in category_mappings:
257
- df[col] = pd.Categorical(df[col], categories=category_mappings[col])
258
- else:
259
- df[col] = df[col].astype("category")
260
-
261
- # Determine categorical and continuous columns
262
- categorical_cols = [col for col in feature_cols if df[col].dtype.name == "category"]
263
- continuous_cols = [col for col in feature_cols if col not in categorical_cols]
264
-
265
- # Cast continuous columns to float
266
- if continuous_cols:
267
- df[continuous_cols] = df[continuous_cols].astype("float64")
268
-
269
- # Drop rows with NaN features or target (PyTorch Tabular cannot handle NaN values)
270
- nan_mask = df[feature_cols].isna().any(axis=1) | df[target_col].isna()
271
- if nan_mask.any():
272
- n_nan_rows = nan_mask.sum()
273
- log.warning(
274
- f"Dropping {n_nan_rows} rows ({100*n_nan_rows/len(df):.1f}%) with NaN values for cross-validation"
275
- )
276
- df = df[~nan_mask].reset_index(drop=True)
277
-
278
- X = df[feature_cols]
279
- y = df[target_col]
280
- ids = df[id_col]
281
-
282
- # Encode target if classifier
283
- if label_encoder is not None:
284
- if not hasattr(label_encoder, "classes_"):
285
- label_encoder.fit(y)
286
- y_encoded = label_encoder.transform(y)
287
- y_for_cv = pd.Series(y_encoded, index=y.index, name=target_col)
288
- else:
289
- y_for_cv = y
290
-
291
- # Extract configs from loaded model (pass approx train size for batch_size calculation)
292
- n_train_approx = int(len(df) * (1 - 1 / nfolds))
293
- configs = _extract_model_configs(loaded_model, n_train_approx)
294
- trainer_params = configs["trainer"]
295
- model_params = configs["model"]
296
-
297
- log.info(f"Trainer config:\n{pformat(trainer_params)}")
298
- log.info(f"Model config:\n{pformat(model_params)}")
299
-
300
- # Prepare KFold
301
- kfold = (StratifiedKFold if is_classifier else KFold)(n_splits=nfolds, shuffle=True, random_state=42)
302
-
303
- # Initialize results collection
304
- fold_metrics = []
305
- predictions_df = pd.DataFrame({id_col: ids, target_col: y})
306
- if is_classifier:
307
- predictions_df["pred_proba"] = [None] * len(predictions_df)
308
-
309
- # Perform cross-validation
310
- for fold_idx, (train_idx, val_idx) in enumerate(kfold.split(X, y_for_cv), 1):
311
- print(f"\n{'='*50}")
312
- print(f"Fold {fold_idx}/{nfolds}")
313
- print(f"{'='*50}")
314
-
315
- # Split data
316
- df_train = df.iloc[train_idx].copy()
317
- df_val = df.iloc[val_idx].copy()
318
-
319
- # Encode target for this fold
320
- if is_classifier:
321
- df_train[target_col] = label_encoder.transform(df_train[target_col])
322
- df_val[target_col] = label_encoder.transform(df_val[target_col])
323
-
324
- # Create configs for this fold - matching the training template exactly
325
- data_config = DataConfig(
326
- target=[target_col],
327
- continuous_cols=continuous_cols,
328
- categorical_cols=categorical_cols,
329
- )
330
-
331
- trainer_config = TrainerConfig(
332
- auto_lr_find=trainer_params["auto_lr_find"],
333
- batch_size=trainer_params["batch_size"],
334
- max_epochs=trainer_params["max_epochs"],
335
- min_epochs=trainer_params["min_epochs"],
336
- early_stopping=trainer_params["early_stopping"],
337
- early_stopping_patience=trainer_params["early_stopping_patience"],
338
- gradient_clip_val=trainer_params["gradient_clip_val"],
339
- checkpoints="valid_loss", # Save best model based on validation loss
340
- accelerator="cpu",
341
- )
342
-
343
- optimizer_config = OptimizerConfig()
344
-
345
- model_config = CategoryEmbeddingModelConfig(
346
- task="classification" if is_classifier else "regression",
347
- layers=model_params["layers"],
348
- activation=model_params["activation"],
349
- learning_rate=model_params["learning_rate"],
350
- dropout=model_params["dropout"],
351
- use_batch_norm=model_params["use_batch_norm"],
352
- initialization=model_params["initialization"],
353
- )
354
-
355
- # Create and train fresh model
356
- tabular_model = TabularModel(
357
- data_config=data_config,
358
- model_config=model_config,
359
- optimizer_config=optimizer_config,
360
- trainer_config=trainer_config,
361
- )
362
-
363
- # Change to /tmp for training (PyTorch Tabular needs write access)
364
- original_cwd = os.getcwd()
365
- try:
366
- os.chdir("/tmp")
367
- # Clean up checkpoint directory from previous fold
368
- checkpoint_dir = "/tmp/saved_models"
369
- if os.path.exists(checkpoint_dir):
370
- shutil.rmtree(checkpoint_dir)
371
- tabular_model.fit(train=df_train, validation=df_val)
372
- finally:
373
- os.chdir(original_cwd)
374
-
375
- # Make predictions
376
- result = tabular_model.predict(df_val[feature_cols])
377
-
378
- # Extract predictions
379
- prediction_col = f"{target_col}_prediction"
380
- preds = result[prediction_col].values
381
-
382
- # Store predictions at the correct indices
383
- val_indices = df.iloc[val_idx].index
384
- if is_classifier:
385
- preds_decoded = label_encoder.inverse_transform(preds.astype(int))
386
- predictions_df.loc[val_indices, "prediction"] = preds_decoded
387
-
388
- # Get probabilities and store at validation indices only
389
- prob_cols = sorted([col for col in result.columns if col.endswith("_probability")])
390
- if prob_cols:
391
- probs = result[prob_cols].values
392
- for i, idx in enumerate(val_indices):
393
- predictions_df.at[idx, "pred_proba"] = probs[i].tolist()
394
- else:
395
- predictions_df.loc[val_indices, "prediction"] = preds
396
-
397
- # Calculate fold metrics
398
- if is_classifier:
399
- y_val_orig = label_encoder.inverse_transform(df_val[target_col])
400
- preds_orig = preds_decoded
401
-
402
- prec, rec, f1, _ = precision_recall_fscore_support(
403
- y_val_orig, preds_orig, average="weighted", zero_division=0
404
- )
405
-
406
- prec_per_class, rec_per_class, f1_per_class, _ = precision_recall_fscore_support(
407
- y_val_orig, preds_orig, average=None, zero_division=0, labels=label_encoder.classes_
408
- )
409
-
410
- y_val_encoded = df_val[target_col].values
411
- roc_auc_overall = roc_auc_score(y_val_encoded, probs, multi_class="ovr", average="macro")
412
- roc_auc_per_class = roc_auc_score(y_val_encoded, probs, multi_class="ovr", average=None)
413
-
414
- fold_metrics.append(
415
- {
416
- "fold": fold_idx,
417
- "precision": prec,
418
- "recall": rec,
419
- "f1": f1,
420
- "roc_auc": roc_auc_overall,
421
- "precision_per_class": prec_per_class,
422
- "recall_per_class": rec_per_class,
423
- "f1_per_class": f1_per_class,
424
- "roc_auc_per_class": roc_auc_per_class,
425
- }
426
- )
427
-
428
- print(f"Fold {fold_idx} - F1: {f1:.4f}, ROC-AUC: {roc_auc_overall:.4f}")
429
- else:
430
- y_val = df_val[target_col].values
431
- spearman_corr, _ = spearmanr(y_val, preds)
432
- rmse = np.sqrt(mean_squared_error(y_val, preds))
433
-
434
- fold_metrics.append(
435
- {
436
- "fold": fold_idx,
437
- "rmse": rmse,
438
- "mae": mean_absolute_error(y_val, preds),
439
- "medae": median_absolute_error(y_val, preds),
440
- "r2": r2_score(y_val, preds),
441
- "spearmanr": spearman_corr,
442
- }
443
- )
444
-
445
- print(f"Fold {fold_idx} - RMSE: {rmse:.4f}, R2: {fold_metrics[-1]['r2']:.4f}")
446
-
447
- # Calculate summary metrics
448
- fold_df = pd.DataFrame(fold_metrics)
449
-
450
- if is_classifier:
451
- if "pred_proba" in predictions_df.columns:
452
- predictions_df = expand_proba_column(predictions_df, label_encoder.classes_)
453
-
454
- metric_rows = []
455
- for idx, class_name in enumerate(label_encoder.classes_):
456
- prec_scores = np.array([fold["precision_per_class"][idx] for fold in fold_metrics])
457
- rec_scores = np.array([fold["recall_per_class"][idx] for fold in fold_metrics])
458
- f1_scores = np.array([fold["f1_per_class"][idx] for fold in fold_metrics])
459
- roc_auc_scores = np.array([fold["roc_auc_per_class"][idx] for fold in fold_metrics])
460
-
461
- y_orig = label_encoder.inverse_transform(y_for_cv)
462
- support = int((y_orig == class_name).sum())
463
-
464
- metric_rows.append(
465
- {
466
- "class": class_name,
467
- "precision": prec_scores.mean(),
468
- "recall": rec_scores.mean(),
469
- "f1": f1_scores.mean(),
470
- "roc_auc": roc_auc_scores.mean(),
471
- "support": support,
472
- }
473
- )
474
-
475
- metric_rows.append(
476
- {
477
- "class": "all",
478
- "precision": fold_df["precision"].mean(),
479
- "recall": fold_df["recall"].mean(),
480
- "f1": fold_df["f1"].mean(),
481
- "roc_auc": fold_df["roc_auc"].mean(),
482
- "support": len(y_for_cv),
483
- }
484
- )
485
-
486
- metrics_df = pd.DataFrame(metric_rows)
487
- else:
488
- metrics_df = pd.DataFrame(
489
- [
490
- {
491
- "rmse": fold_df["rmse"].mean(),
492
- "mae": fold_df["mae"].mean(),
493
- "medae": fold_df["medae"].mean(),
494
- "r2": fold_df["r2"].mean(),
495
- "spearmanr": fold_df["spearmanr"].mean(),
496
- "support": len(y_for_cv),
497
- }
498
- ]
499
- )
500
-
501
- print(f"\n{'='*50}")
502
- print("Cross-Validation Summary")
503
- print(f"{'='*50}")
504
- print(metrics_df.to_string(index=False))
505
-
506
- return metrics_df, predictions_df
507
-
508
- finally:
509
- log.info(f"Cleaning up model directory: {model_dir}")
510
- shutil.rmtree(model_dir, ignore_errors=True)
511
-
512
-
513
74
  if __name__ == "__main__":
75
+ from workbench.api import Model
514
76
 
515
- # Tests for the PyTorch utilities
516
- from workbench.api import Model, Endpoint
517
-
518
- # Initialize Workbench model
519
- model_name = "caco2-er-reg-pytorch-test"
520
- # model_name = "aqsol-pytorch-reg"
77
+ # Test pulling CV results
78
+ model_name = "aqsol-pytorch-reg"
521
79
  print(f"Loading Workbench model: {model_name}")
522
80
  model = Model(model_name)
523
81
  print(f"Model Framework: {model.model_framework}")
524
82
 
525
- # Perform cross-fold inference
526
- end = Endpoint(model.endpoints()[0])
527
- end.cross_fold_inference()
83
+ # Pull CV results from training artifacts
84
+ metrics_df, predictions_df = pull_cv_results(model)
85
+ print(f"\nMetrics:\n{metrics_df}")
86
+ print(f"\nPredictions shape: {predictions_df.shape}")
87
+ print(f"Predictions columns: {predictions_df.columns.tolist()}")