workbench 0.8.201__py3-none-any.whl → 0.8.204__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- workbench/api/df_store.py +17 -108
- workbench/api/feature_set.py +41 -7
- workbench/api/parameter_store.py +3 -52
- workbench/core/artifacts/artifact.py +5 -5
- workbench/core/artifacts/df_store_core.py +114 -0
- workbench/core/artifacts/endpoint_core.py +184 -75
- workbench/core/artifacts/model_core.py +11 -7
- workbench/core/artifacts/parameter_store_core.py +98 -0
- workbench/core/transforms/features_to_model/features_to_model.py +27 -13
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +11 -0
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +11 -2
- workbench/model_scripts/chemprop/chemprop.template +312 -293
- workbench/model_scripts/chemprop/generated_model_script.py +316 -297
- workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +11 -5
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +11 -5
- workbench/model_scripts/custom_models/uq_models/ngboost.template +11 -5
- workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +11 -5
- workbench/model_scripts/pytorch_model/generated_model_script.py +278 -128
- workbench/model_scripts/pytorch_model/pytorch.template +273 -123
- workbench/model_scripts/uq_models/generated_model_script.py +20 -11
- workbench/model_scripts/uq_models/mapie.template +17 -8
- workbench/model_scripts/xgb_model/generated_model_script.py +38 -9
- workbench/model_scripts/xgb_model/xgb_model.template +34 -5
- workbench/resources/open_source_api.key +1 -1
- workbench/utils/chemprop_utils.py +38 -1
- workbench/utils/pytorch_utils.py +38 -8
- workbench/web_interface/components/model_plot.py +7 -1
- {workbench-0.8.201.dist-info → workbench-0.8.204.dist-info}/METADATA +2 -2
- {workbench-0.8.201.dist-info → workbench-0.8.204.dist-info}/RECORD +33 -33
- workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
- workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -296
- {workbench-0.8.201.dist-info → workbench-0.8.204.dist-info}/WHEEL +0 -0
- {workbench-0.8.201.dist-info → workbench-0.8.204.dist-info}/entry_points.txt +0 -0
- {workbench-0.8.201.dist-info → workbench-0.8.204.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.201.dist-info → workbench-0.8.204.dist-info}/top_level.txt +0 -0
|
@@ -5,7 +5,8 @@ from xgboost import XGBRegressor
|
|
|
5
5
|
from sklearn.model_selection import train_test_split
|
|
6
6
|
|
|
7
7
|
# Model Performance Scores
|
|
8
|
-
from sklearn.metrics import mean_absolute_error, r2_score, root_mean_squared_error
|
|
8
|
+
from sklearn.metrics import mean_absolute_error, median_absolute_error, r2_score, root_mean_squared_error
|
|
9
|
+
from scipy.stats import spearmanr
|
|
9
10
|
|
|
10
11
|
from io import StringIO
|
|
11
12
|
import json
|
|
@@ -277,10 +278,15 @@ if __name__ == "__main__":
|
|
|
277
278
|
xgb_mae = mean_absolute_error(y_validate, y_pred_xgb)
|
|
278
279
|
xgb_r2 = r2_score(y_validate, y_pred_xgb)
|
|
279
280
|
|
|
281
|
+
xgb_medae = median_absolute_error(y_validate, y_pred_xgb)
|
|
282
|
+
xgb_spearman = spearmanr(y_validate, y_pred_xgb).correlation
|
|
283
|
+
|
|
280
284
|
print(f"\nXGBoost Point Prediction Performance:")
|
|
281
|
-
print(f"
|
|
282
|
-
print(f"
|
|
283
|
-
print(f"
|
|
285
|
+
print(f"rmse: {xgb_rmse:.3f}")
|
|
286
|
+
print(f"mae: {xgb_mae:.3f}")
|
|
287
|
+
print(f"medae: {xgb_medae:.3f}")
|
|
288
|
+
print(f"r2: {xgb_r2:.3f}")
|
|
289
|
+
print(f"spearmanr: {xgb_spearman:.3f}")
|
|
284
290
|
|
|
285
291
|
# Define confidence levels we want to model
|
|
286
292
|
confidence_levels = [0.50, 0.68, 0.80, 0.90, 0.95] # 50%, 68%, 80%, 90%, 95% confidence intervals
|
|
@@ -336,11 +342,14 @@ if __name__ == "__main__":
|
|
|
336
342
|
coverage = np.mean((y_validate >= y_pis[:, 0, 0]) & (y_validate <= y_pis[:, 1, 0]))
|
|
337
343
|
print(f" Coverage: Target={confidence_level * 100:.0f}%, Empirical={coverage * 100:.1f}%")
|
|
338
344
|
|
|
345
|
+
support = len(df_val)
|
|
339
346
|
print(f"\nOverall Model Performance Summary:")
|
|
340
|
-
print(f"
|
|
341
|
-
print(f"
|
|
342
|
-
print(f"
|
|
343
|
-
print(f"
|
|
347
|
+
print(f"rmse: {xgb_rmse:.3f}")
|
|
348
|
+
print(f"mae: {xgb_mae:.3f}")
|
|
349
|
+
print(f"medae: {xgb_medae:.3f}")
|
|
350
|
+
print(f"r2: {xgb_r2:.3f}")
|
|
351
|
+
print(f"spearmanr: {xgb_spearman:.3f}")
|
|
352
|
+
print(f"support: {support}")
|
|
344
353
|
|
|
345
354
|
# Analyze interval widths across confidence levels
|
|
346
355
|
print(f"\nInterval Width Analysis:")
|
|
@@ -6,11 +6,13 @@ import numpy as np
|
|
|
6
6
|
# Model Performance Scores
|
|
7
7
|
from sklearn.metrics import (
|
|
8
8
|
mean_absolute_error,
|
|
9
|
+
median_absolute_error,
|
|
9
10
|
r2_score,
|
|
10
11
|
root_mean_squared_error,
|
|
11
12
|
precision_recall_fscore_support,
|
|
12
13
|
confusion_matrix,
|
|
13
14
|
)
|
|
15
|
+
from scipy.stats import spearmanr
|
|
14
16
|
|
|
15
17
|
# Classification Encoder
|
|
16
18
|
from sklearn.preprocessing import LabelEncoder
|
|
@@ -26,13 +28,35 @@ import os
|
|
|
26
28
|
import pandas as pd
|
|
27
29
|
from typing import List, Tuple
|
|
28
30
|
|
|
31
|
+
# Default Hyperparameters for XGBoost
|
|
32
|
+
DEFAULT_HYPERPARAMETERS = {
|
|
33
|
+
# Core tree parameters
|
|
34
|
+
"n_estimators": 200, # More trees for better signal capture when we have lots of features
|
|
35
|
+
"max_depth": 6, # Medium depth
|
|
36
|
+
"learning_rate": 0.05, # Lower rate with more estimators for smoother learning
|
|
37
|
+
|
|
38
|
+
# Sampling parameters
|
|
39
|
+
"subsample": 0.7, # Moderate row sampling to reduce overfitting
|
|
40
|
+
"colsample_bytree": 0.6, # More aggressive feature sampling given lots of features
|
|
41
|
+
"colsample_bylevel": 0.8, # Additional feature sampling at each tree level
|
|
42
|
+
|
|
43
|
+
# Regularization
|
|
44
|
+
"min_child_weight": 5, # Higher to prevent overfitting on small groups
|
|
45
|
+
"gamma": 0.2, # Moderate pruning - you have real signal so don't over-prune
|
|
46
|
+
"reg_alpha": 0.5, # L1 for feature selection (useful with many features)
|
|
47
|
+
"reg_lambda": 2.0, # Strong L2 to smooth predictions
|
|
48
|
+
|
|
49
|
+
# Random seed
|
|
50
|
+
"random_state": 42,
|
|
51
|
+
}
|
|
52
|
+
|
|
29
53
|
# Template Parameters
|
|
30
54
|
TEMPLATE_PARAMS = {
|
|
31
|
-
"model_type": "
|
|
32
|
-
"target": "
|
|
33
|
-
"features": ['
|
|
55
|
+
"model_type": "classifier",
|
|
56
|
+
"target": "wine_class",
|
|
57
|
+
"features": ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280_od315_of_diluted_wines', 'proline'],
|
|
34
58
|
"compressed_features": [],
|
|
35
|
-
"model_metrics_s3_path": "s3://sandbox-sageworks-artifacts/models/
|
|
59
|
+
"model_metrics_s3_path": "s3://sandbox-sageworks-artifacts/models/wine-classification/training",
|
|
36
60
|
"train_all_data": False,
|
|
37
61
|
"hyperparameters": {},
|
|
38
62
|
}
|
|
@@ -208,7 +232,7 @@ if __name__ == "__main__":
|
|
|
208
232
|
model_type = TEMPLATE_PARAMS["model_type"]
|
|
209
233
|
model_metrics_s3_path = TEMPLATE_PARAMS["model_metrics_s3_path"]
|
|
210
234
|
train_all_data = TEMPLATE_PARAMS["train_all_data"]
|
|
211
|
-
hyperparameters = TEMPLATE_PARAMS["hyperparameters"]
|
|
235
|
+
hyperparameters = {**DEFAULT_HYPERPARAMETERS, **TEMPLATE_PARAMS["hyperparameters"]}
|
|
212
236
|
validation_split = 0.2
|
|
213
237
|
|
|
214
238
|
# Script arguments for input/output directories
|
|
@@ -348,11 +372,16 @@ if __name__ == "__main__":
|
|
|
348
372
|
# Calculate various model performance metrics (regression)
|
|
349
373
|
rmse = root_mean_squared_error(y_validate, preds)
|
|
350
374
|
mae = mean_absolute_error(y_validate, preds)
|
|
375
|
+
medae = median_absolute_error(y_validate, preds)
|
|
351
376
|
r2 = r2_score(y_validate, preds)
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
print(f"
|
|
355
|
-
print(f"
|
|
377
|
+
spearman_corr = spearmanr(y_validate, preds).correlation
|
|
378
|
+
support = len(df_val)
|
|
379
|
+
print(f"rmse: {rmse:.3f}")
|
|
380
|
+
print(f"mae: {mae:.3f}")
|
|
381
|
+
print(f"medae: {medae:.3f}")
|
|
382
|
+
print(f"r2: {r2:.3f}")
|
|
383
|
+
print(f"spearmanr: {spearman_corr:.3f}")
|
|
384
|
+
print(f"support: {support}")
|
|
356
385
|
|
|
357
386
|
# Now save the model to the standard place/name
|
|
358
387
|
joblib.dump(xgb_model, os.path.join(args.model_dir, "xgb_model.joblib"))
|
|
@@ -6,11 +6,13 @@ import numpy as np
|
|
|
6
6
|
# Model Performance Scores
|
|
7
7
|
from sklearn.metrics import (
|
|
8
8
|
mean_absolute_error,
|
|
9
|
+
median_absolute_error,
|
|
9
10
|
r2_score,
|
|
10
11
|
root_mean_squared_error,
|
|
11
12
|
precision_recall_fscore_support,
|
|
12
13
|
confusion_matrix,
|
|
13
14
|
)
|
|
15
|
+
from scipy.stats import spearmanr
|
|
14
16
|
|
|
15
17
|
# Classification Encoder
|
|
16
18
|
from sklearn.preprocessing import LabelEncoder
|
|
@@ -26,6 +28,28 @@ import os
|
|
|
26
28
|
import pandas as pd
|
|
27
29
|
from typing import List, Tuple
|
|
28
30
|
|
|
31
|
+
# Default Hyperparameters for XGBoost
|
|
32
|
+
DEFAULT_HYPERPARAMETERS = {
|
|
33
|
+
# Core tree parameters
|
|
34
|
+
"n_estimators": 200, # More trees for better signal capture when we have lots of features
|
|
35
|
+
"max_depth": 6, # Medium depth
|
|
36
|
+
"learning_rate": 0.05, # Lower rate with more estimators for smoother learning
|
|
37
|
+
|
|
38
|
+
# Sampling parameters
|
|
39
|
+
"subsample": 0.7, # Moderate row sampling to reduce overfitting
|
|
40
|
+
"colsample_bytree": 0.6, # More aggressive feature sampling given lots of features
|
|
41
|
+
"colsample_bylevel": 0.8, # Additional feature sampling at each tree level
|
|
42
|
+
|
|
43
|
+
# Regularization
|
|
44
|
+
"min_child_weight": 5, # Higher to prevent overfitting on small groups
|
|
45
|
+
"gamma": 0.2, # Moderate pruning - you have real signal so don't over-prune
|
|
46
|
+
"reg_alpha": 0.5, # L1 for feature selection (useful with many features)
|
|
47
|
+
"reg_lambda": 2.0, # Strong L2 to smooth predictions
|
|
48
|
+
|
|
49
|
+
# Random seed
|
|
50
|
+
"random_state": 42,
|
|
51
|
+
}
|
|
52
|
+
|
|
29
53
|
# Template Parameters
|
|
30
54
|
TEMPLATE_PARAMS = {
|
|
31
55
|
"model_type": "{{model_type}}",
|
|
@@ -208,7 +232,7 @@ if __name__ == "__main__":
|
|
|
208
232
|
model_type = TEMPLATE_PARAMS["model_type"]
|
|
209
233
|
model_metrics_s3_path = TEMPLATE_PARAMS["model_metrics_s3_path"]
|
|
210
234
|
train_all_data = TEMPLATE_PARAMS["train_all_data"]
|
|
211
|
-
hyperparameters = TEMPLATE_PARAMS["hyperparameters"]
|
|
235
|
+
hyperparameters = {**DEFAULT_HYPERPARAMETERS, **TEMPLATE_PARAMS["hyperparameters"]}
|
|
212
236
|
validation_split = 0.2
|
|
213
237
|
|
|
214
238
|
# Script arguments for input/output directories
|
|
@@ -348,11 +372,16 @@ if __name__ == "__main__":
|
|
|
348
372
|
# Calculate various model performance metrics (regression)
|
|
349
373
|
rmse = root_mean_squared_error(y_validate, preds)
|
|
350
374
|
mae = mean_absolute_error(y_validate, preds)
|
|
375
|
+
medae = median_absolute_error(y_validate, preds)
|
|
351
376
|
r2 = r2_score(y_validate, preds)
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
print(f"
|
|
355
|
-
print(f"
|
|
377
|
+
spearman_corr = spearmanr(y_validate, preds).correlation
|
|
378
|
+
support = len(df_val)
|
|
379
|
+
print(f"rmse: {rmse:.3f}")
|
|
380
|
+
print(f"mae: {mae:.3f}")
|
|
381
|
+
print(f"medae: {medae:.3f}")
|
|
382
|
+
print(f"r2: {r2:.3f}")
|
|
383
|
+
print(f"spearmanr: {spearman_corr:.3f}")
|
|
384
|
+
print(f"support: {support}")
|
|
356
385
|
|
|
357
386
|
# Now save the model to the standard place/name
|
|
358
387
|
joblib.dump(xgb_model, os.path.join(args.model_dir, "xgb_model.joblib"))
|
|
@@ -1 +1 @@
|
|
|
1
|
-
|
|
1
|
+
eyJsaWNlbnNlX2lkIjogIk9wZW5fU291cmNlX0xpY2Vuc2UiLCAiY29tcGFueSI6ICIiLCAiYXdzX2FjY291bnRfaWQiOiAiIiwgInRpZXIiOiAiRW50ZXJwcmlzZSBQcm8iLCAiZmVhdHVyZXMiOiBbInBsdWdpbnMiLCAicGFnZXMiLCAidGhlbWVzIiwgInBpcGVsaW5lcyIsICJicmFuZGluZyJdLCAiZXhwaXJlcyI6ICIyMDI2LTEyLTA1In1IsmpkuybFALADkRj_RfmkQ0LAIsQeXRE7Uoc3DL1UrDr-rSnwu-PDqsKBUkX6jPRFZV3DLxNjBapxPeEIFhfvxvjzz_sc6CwtxNpZ3bPmxSPs2W-j3xZS4-XyEqIilcwSkWh-NU1u27gCuuivn5eiUmIYJGAp0wdVkeE6_Z9dlg==
|
|
@@ -22,6 +22,7 @@ from sklearn.preprocessing import LabelEncoder
|
|
|
22
22
|
|
|
23
23
|
from workbench.utils.model_utils import safe_extract_tarfile
|
|
24
24
|
from workbench.utils.pandas_utils import expand_proba_column
|
|
25
|
+
from workbench.utils.aws_utils import pull_s3_data
|
|
25
26
|
|
|
26
27
|
log = logging.getLogger("workbench")
|
|
27
28
|
|
|
@@ -160,7 +161,7 @@ def _build_mpnn_model(
|
|
|
160
161
|
# Model hyperparameters with defaults
|
|
161
162
|
hidden_dim = hyperparameters.get("hidden_dim", 300)
|
|
162
163
|
depth = hyperparameters.get("depth", 3)
|
|
163
|
-
dropout = hyperparameters.get("dropout", 0.
|
|
164
|
+
dropout = hyperparameters.get("dropout", 0.1)
|
|
164
165
|
ffn_hidden_dim = hyperparameters.get("ffn_hidden_dim", 300)
|
|
165
166
|
ffn_num_layers = hyperparameters.get("ffn_num_layers", 1)
|
|
166
167
|
|
|
@@ -283,6 +284,42 @@ def _get_n_extra_descriptors(loaded_model: Any) -> int:
|
|
|
283
284
|
return 0
|
|
284
285
|
|
|
285
286
|
|
|
287
|
+
def pull_cv_results(workbench_model: Any) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
|
288
|
+
"""Pull cross-validation results from AWS training artifacts.
|
|
289
|
+
|
|
290
|
+
This retrieves the validation predictions and training metrics that were
|
|
291
|
+
saved during model training.
|
|
292
|
+
|
|
293
|
+
Args:
|
|
294
|
+
workbench_model: Workbench model object
|
|
295
|
+
|
|
296
|
+
Returns:
|
|
297
|
+
Tuple of:
|
|
298
|
+
- DataFrame with training metrics
|
|
299
|
+
- DataFrame with validation predictions
|
|
300
|
+
"""
|
|
301
|
+
# Get the validation predictions from S3
|
|
302
|
+
s3_path = f"{workbench_model.model_training_path}/validation_predictions.csv"
|
|
303
|
+
predictions_df = pull_s3_data(s3_path)
|
|
304
|
+
|
|
305
|
+
if predictions_df is None:
|
|
306
|
+
raise ValueError(f"No validation predictions found at {s3_path}")
|
|
307
|
+
|
|
308
|
+
log.info(f"Pulled {len(predictions_df)} validation predictions from {s3_path}")
|
|
309
|
+
|
|
310
|
+
# Get training metrics from model metadata
|
|
311
|
+
training_metrics = workbench_model.workbench_meta().get("workbench_training_metrics")
|
|
312
|
+
|
|
313
|
+
if training_metrics is None:
|
|
314
|
+
log.warning(f"No training metrics found in model metadata for {workbench_model.model_name}")
|
|
315
|
+
metrics_df = pd.DataFrame({"error": [f"No training metrics found for {workbench_model.model_name}"]})
|
|
316
|
+
else:
|
|
317
|
+
metrics_df = pd.DataFrame.from_dict(training_metrics)
|
|
318
|
+
log.info(f"Metrics summary:\n{metrics_df.to_string(index=False)}")
|
|
319
|
+
|
|
320
|
+
return metrics_df, predictions_df
|
|
321
|
+
|
|
322
|
+
|
|
286
323
|
def cross_fold_inference(
|
|
287
324
|
workbench_model: Any,
|
|
288
325
|
nfolds: int = 5,
|
workbench/utils/pytorch_utils.py
CHANGED
|
@@ -29,6 +29,7 @@ from sklearn.preprocessing import LabelEncoder
|
|
|
29
29
|
|
|
30
30
|
from workbench.utils.model_utils import safe_extract_tarfile
|
|
31
31
|
from workbench.utils.pandas_utils import expand_proba_column
|
|
32
|
+
from workbench.utils.aws_utils import pull_s3_data
|
|
32
33
|
|
|
33
34
|
log = logging.getLogger("workbench")
|
|
34
35
|
|
|
@@ -78,18 +79,11 @@ def load_pytorch_model_artifacts(model_dir: str) -> Tuple[Any, dict]:
|
|
|
78
79
|
if not os.path.exists(model_path):
|
|
79
80
|
raise FileNotFoundError(f"No tabular_model directory found in {model_dir}")
|
|
80
81
|
|
|
81
|
-
# Remove callbacks.sav if it exists - it's not needed for inference and causes
|
|
82
|
-
# GPU->CPU loading issues (joblib.load doesn't support map_location)
|
|
83
|
-
callbacks_path = os.path.join(model_path, "callbacks.sav")
|
|
84
|
-
if os.path.exists(callbacks_path):
|
|
85
|
-
os.remove(callbacks_path)
|
|
86
|
-
|
|
87
82
|
# PyTorch Tabular needs write access, so chdir to /tmp
|
|
88
83
|
original_cwd = os.getcwd()
|
|
89
84
|
try:
|
|
90
85
|
os.chdir("/tmp")
|
|
91
|
-
|
|
92
|
-
model = TabularModel.load_model(model_path, map_location="cpu")
|
|
86
|
+
model = TabularModel.load_model(model_path)
|
|
93
87
|
finally:
|
|
94
88
|
os.chdir(original_cwd)
|
|
95
89
|
|
|
@@ -158,6 +152,42 @@ def _extract_model_configs(loaded_model: Any, n_train: int) -> dict:
|
|
|
158
152
|
return {"trainer": trainer_config, "model": model_config}
|
|
159
153
|
|
|
160
154
|
|
|
155
|
+
def pull_cv_results(workbench_model: Any) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
|
156
|
+
"""Pull cross-validation results from AWS training artifacts.
|
|
157
|
+
|
|
158
|
+
This retrieves the validation predictions and training metrics that were
|
|
159
|
+
saved during model training.
|
|
160
|
+
|
|
161
|
+
Args:
|
|
162
|
+
workbench_model: Workbench model object
|
|
163
|
+
|
|
164
|
+
Returns:
|
|
165
|
+
Tuple of:
|
|
166
|
+
- DataFrame with training metrics
|
|
167
|
+
- DataFrame with validation predictions
|
|
168
|
+
"""
|
|
169
|
+
# Get the validation predictions from S3
|
|
170
|
+
s3_path = f"{workbench_model.model_training_path}/validation_predictions.csv"
|
|
171
|
+
predictions_df = pull_s3_data(s3_path)
|
|
172
|
+
|
|
173
|
+
if predictions_df is None:
|
|
174
|
+
raise ValueError(f"No validation predictions found at {s3_path}")
|
|
175
|
+
|
|
176
|
+
log.info(f"Pulled {len(predictions_df)} validation predictions from {s3_path}")
|
|
177
|
+
|
|
178
|
+
# Get training metrics from model metadata
|
|
179
|
+
training_metrics = workbench_model.workbench_meta().get("workbench_training_metrics")
|
|
180
|
+
|
|
181
|
+
if training_metrics is None:
|
|
182
|
+
log.warning(f"No training metrics found in model metadata for {workbench_model.model_name}")
|
|
183
|
+
metrics_df = pd.DataFrame({"error": [f"No training metrics found for {workbench_model.model_name}"]})
|
|
184
|
+
else:
|
|
185
|
+
metrics_df = pd.DataFrame.from_dict(training_metrics)
|
|
186
|
+
log.info(f"Metrics summary:\n{metrics_df.to_string(index=False)}")
|
|
187
|
+
|
|
188
|
+
return metrics_df, predictions_df
|
|
189
|
+
|
|
190
|
+
|
|
161
191
|
def cross_fold_inference(
|
|
162
192
|
workbench_model: Any,
|
|
163
193
|
nfolds: int = 5,
|
|
@@ -36,8 +36,14 @@ class ModelPlot(ComponentInterface):
|
|
|
36
36
|
if df is None:
|
|
37
37
|
return self.display_text("No Data")
|
|
38
38
|
|
|
39
|
-
#
|
|
39
|
+
# Grab the target(s) for this model
|
|
40
40
|
target = model.target()
|
|
41
|
+
|
|
42
|
+
# For multi-task models, match target to inference_run name or default to first
|
|
43
|
+
if isinstance(target, list):
|
|
44
|
+
target = next((t for t in target if t in inference_run), target[0])
|
|
45
|
+
|
|
46
|
+
# Compute error for coloring
|
|
41
47
|
df["error"] = abs(df["prediction"] - df[target])
|
|
42
48
|
return ScatterPlot().update_properties(
|
|
43
49
|
df,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: workbench
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.204
|
|
4
4
|
Summary: Workbench: A Dashboard and Python API for creating and deploying AWS SageMaker Model Pipelines
|
|
5
5
|
Author-email: SuperCowPowers LLC <support@supercowpowers.com>
|
|
6
6
|
License: MIT License
|
|
@@ -52,7 +52,7 @@ Requires-Dist: joblib>=1.3.2
|
|
|
52
52
|
Requires-Dist: requests>=2.26.0
|
|
53
53
|
Requires-Dist: rdkit>=2024.9.5
|
|
54
54
|
Requires-Dist: mordredcommunity>=2.0.6
|
|
55
|
-
Requires-Dist: workbench-bridges>=0.1.
|
|
55
|
+
Requires-Dist: workbench-bridges>=0.1.15
|
|
56
56
|
Provides-Extra: ui
|
|
57
57
|
Requires-Dist: plotly>=6.0.0; extra == "ui"
|
|
58
58
|
Requires-Dist: dash>3.0.0; extra == "ui"
|
|
@@ -30,14 +30,14 @@ workbench/algorithms/sql/value_counts.py,sha256=F-rZoLTTKv1cHYl2_tDlvWDjczy76uLT
|
|
|
30
30
|
workbench/api/__init__.py,sha256=KDKzFb4SL8AArtd9ucTkFYdCxbsBMbK1ZMkj0G2rACY,1065
|
|
31
31
|
workbench/api/compound.py,sha256=kf5EaM5qjWwsZutcxqj9IC_MPnDV1uVHDMns9OA_GOo,2545
|
|
32
32
|
workbench/api/data_source.py,sha256=Ngz36YZWxFfpJbmURhM1LQPYjh5kdpZNGo6_fCRePbA,8321
|
|
33
|
-
workbench/api/df_store.py,sha256=
|
|
33
|
+
workbench/api/df_store.py,sha256=1qSYM3Xb4MwMMTMaF3CX0hOCEzhIbnra5Deivg4cryk,3014
|
|
34
34
|
workbench/api/endpoint.py,sha256=spLse2UoAsZdu_ZxmAvMJX_aX-zutAsQ5_SPm9Xt-nA,3839
|
|
35
|
-
workbench/api/feature_set.py,sha256=
|
|
35
|
+
workbench/api/feature_set.py,sha256=K0Sl59yAf_qZr8EH4rPjDotezCwP5Q7aG38FGaF4zi0,8062
|
|
36
36
|
workbench/api/graph_store.py,sha256=LremJyPrQFgsHb7hxsctuCsoxx3p7TKtaY5qALHe6pc,4372
|
|
37
37
|
workbench/api/meta.py,sha256=1_9989cPvf3hd3tA-83hLijOGNnhwXAF8aZF45adeDQ,8596
|
|
38
38
|
workbench/api/model.py,sha256=fncUc8MJwXyteKeXOlAy5IMjE48sH_VmDBi3P2MPGG4,4458
|
|
39
39
|
workbench/api/monitor.py,sha256=Cez89Uac7Tzt47FxkjoX-YDGccEhvBcxw3sZFtw4ud8,4506
|
|
40
|
-
workbench/api/parameter_store.py,sha256=
|
|
40
|
+
workbench/api/parameter_store.py,sha256=_3MmPxKiVy7_OIgCSRlUv9xbk8nuiOWiCtZgT-AxN1k,2574
|
|
41
41
|
workbench/api/pipeline.py,sha256=MSYGrDSXrRB_oQELtAlOwBfxSBTw3REAkHy5XBHau0Y,6261
|
|
42
42
|
workbench/cached/__init__.py,sha256=wvTyIFvusv2HjU3yop6OSr3js5_-SZuR8nPmlCuZQJ4,525
|
|
43
43
|
workbench/cached/cached_data_source.py,sha256=A0o4H9g1aEms8HkOHWnb46vJ5fx6ebs1aCYaQcf8gPI,2649
|
|
@@ -48,23 +48,23 @@ workbench/cached/cached_model.py,sha256=iMc_fySUE5qau3feduVXMNb24JY0sBjt1g6WeLLc
|
|
|
48
48
|
workbench/cached/cached_pipeline.py,sha256=QOVnEKu5RbIdlNpJUi-0Ebh0_-C68RigSPwKh4dvZTM,1948
|
|
49
49
|
workbench/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
50
50
|
workbench/core/artifacts/__init__.py,sha256=ukcgbYlI9m99bzwaBNO01K1h0-cQkzsbh_jT_GyQ-LY,1034
|
|
51
|
-
workbench/core/artifacts/artifact.py,sha256=
|
|
51
|
+
workbench/core/artifacts/artifact.py,sha256=scWUbX2Sk1rxT8VEm_Z7YTxbOzkDASNyqqXB56xLZ2w,17721
|
|
52
52
|
workbench/core/artifacts/athena_source.py,sha256=RNmCe7s6uH4gVHpcdJcL84aSbF5Q1ahJBLLGwHYRXEU,26081
|
|
53
53
|
workbench/core/artifacts/cached_artifact_mixin.py,sha256=ngqFLZ4cQx_TFouXZgXZQsv_7W6XCvxVGXXSfzzaft8,3775
|
|
54
54
|
workbench/core/artifacts/data_capture_core.py,sha256=q8f79rRTYiZ7T4IQRWXl8ZvPpcvZyNxYERwvo8o0OQc,14858
|
|
55
55
|
workbench/core/artifacts/data_source_abstract.py,sha256=5IRCzFVK-17cd4NXPMRfx99vQAmQ0WHE5jcm5RfsVTg,10619
|
|
56
56
|
workbench/core/artifacts/data_source_factory.py,sha256=YL_tA5fsgubbB3dPF6T4tO0rGgz-6oo3ge4i_YXVC-M,2380
|
|
57
|
-
workbench/core/artifacts/
|
|
57
|
+
workbench/core/artifacts/df_store_core.py,sha256=AueNr_JvuLLu_ByE7cb3u-isH9u0Q7cMP-UCgCX-Ctg,3536
|
|
58
|
+
workbench/core/artifacts/endpoint_core.py,sha256=8HlZw4ZTsSIqYrCsbawfqrQMQo4Y9paiudq8ihN1Mzo,59317
|
|
58
59
|
workbench/core/artifacts/feature_set_core.py,sha256=wZy-02WXWmSBet5t8mWXFRdv9O4MtW3hWqJuVv7Kok0,39330
|
|
59
|
-
workbench/core/artifacts/model_core.py,sha256=
|
|
60
|
+
workbench/core/artifacts/model_core.py,sha256=QIgV5MJr8aDY63in83thdNc5-bzkWLn5f5vvsS4aNYo,52348
|
|
60
61
|
workbench/core/artifacts/monitor_core.py,sha256=M307yz7tEzOEHgv-LmtVy9jKjSbM98fHW3ckmNYrwlU,27897
|
|
62
|
+
workbench/core/artifacts/parameter_store_core.py,sha256=sHvjJMuybM4qdcKhH-Sx6Ur6Yn5ozA3QHwtidsnhyG8,2867
|
|
61
63
|
workbench/core/cloud_platform/cloud_meta.py,sha256=-g4-LTC3D0PXb3VfaXdLR1ERijKuHdffeMK_zhD-koQ,8809
|
|
62
64
|
workbench/core/cloud_platform/aws/README.md,sha256=QT5IQXoUHbIA0qQ2wO6_2P2lYjYQFVYuezc22mWY4i8,97
|
|
63
65
|
workbench/core/cloud_platform/aws/aws_account_clamp.py,sha256=V5iVsoGvSRilARtTdExnt27QptzAcJaW0s3nm2B8-ow,8286
|
|
64
|
-
workbench/core/cloud_platform/aws/aws_df_store.py,sha256=utRIlTCPwFneHHZ8_Z3Hw3rOJSeryiFA4wBtucxULRQ,15055
|
|
65
66
|
workbench/core/cloud_platform/aws/aws_graph_store.py,sha256=ytYxQTplUmeWbsPmxyZbf6mO9qyTl60ewlJG8MyfyEY,9414
|
|
66
67
|
workbench/core/cloud_platform/aws/aws_meta.py,sha256=eY9Pn6pl2yAyseACFb2nitR-0vLwG4i8CSEXe8Iaswc,34778
|
|
67
|
-
workbench/core/cloud_platform/aws/aws_parameter_store.py,sha256=pOxlorMvtH_QeuvSlMJrQSeALcRaQSnskR4uPu_xStM,11075
|
|
68
68
|
workbench/core/cloud_platform/aws/aws_secrets_manager.py,sha256=TUnddp1gX-OwxJ_oO5ONh7OI4Z2HC_6euGkJ-himCCk,8615
|
|
69
69
|
workbench/core/cloud_platform/aws/aws_session.py,sha256=2Gc_k4Q87BBeQDgXgVR-w-qmsF6ncZR8wvTeNnixM6k,6926
|
|
70
70
|
workbench/core/cloud_platform/aws/cache_dataframe.py,sha256=VnObkVqcjg7v4fegrIkXR1j-K2AHTBpSAoriUXDe12A,2314
|
|
@@ -102,14 +102,14 @@ workbench/core/transforms/features_to_features/__init__.py,sha256=47DEQpj8HBSa-_
|
|
|
102
102
|
workbench/core/transforms/features_to_features/heavy/emr/Readme.md,sha256=YtQgCEQeKe0CQXQkhzMTYq9xOtCsCYb5P5LW2BmRKWQ,68
|
|
103
103
|
workbench/core/transforms/features_to_features/heavy/glue/Readme.md,sha256=TuyCatWfoDr99zUwvOcxf-TqMkQzaMqXlj5nmFcRzfo,48
|
|
104
104
|
workbench/core/transforms/features_to_model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
105
|
-
workbench/core/transforms/features_to_model/features_to_model.py,sha256=
|
|
105
|
+
workbench/core/transforms/features_to_model/features_to_model.py,sha256=JdKKz3eKrKhicA1WxTfmb1IqQNCdHJE0CKDs66bLHYU,21071
|
|
106
106
|
workbench/core/transforms/model_to_endpoint/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
107
|
-
workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=
|
|
107
|
+
workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=QjfUY_Ay2-W8OszWw2vGtsKfnMY7VjiWQmnjuzLBITk,7020
|
|
108
108
|
workbench/core/transforms/pandas_transforms/__init__.py,sha256=xL4MT8-fZ1SFqDbTLc8XyxjupHtB1YR6Ej0AC2nwd7I,894
|
|
109
109
|
workbench/core/transforms/pandas_transforms/data_to_pandas.py,sha256=sJHPeuNF8Q8aQqgRnkdWkyvur5cbggdUVIwR-xF3Dlo,3621
|
|
110
110
|
workbench/core/transforms/pandas_transforms/features_to_pandas.py,sha256=af6xdPt2V4zhh-SzQa_UYxdmNMzMLXbrbsznV5QoIJg,3441
|
|
111
111
|
workbench/core/transforms/pandas_transforms/pandas_to_data.py,sha256=cqo6hQmzUGUFACvNuVLZQdgrlXrQIu4NjqK-ujPmoIc,9181
|
|
112
|
-
workbench/core/transforms/pandas_transforms/pandas_to_features.py,sha256=
|
|
112
|
+
workbench/core/transforms/pandas_transforms/pandas_to_features.py,sha256=AqXS4ZND7lg94enclRP9wGBrYm4AmhL3c--q0o-6_JM,21972
|
|
113
113
|
workbench/core/transforms/pandas_transforms/pandas_to_features_chunked.py,sha256=0R8mQlWfbIlTVmYUmrtu2gsw0AE815k6kqPgpd0bmyQ,4422
|
|
114
114
|
workbench/core/views/__init__.py,sha256=UZJMAJBCMVM3uSYmnFg8c2LWtdu9-479WNAdVMIohAc,962
|
|
115
115
|
workbench/core/views/column_subset_view.py,sha256=vGDKTTGrPIY-IFOeWvudJrhKiq0OjWDp5rTuuj-X40U,4261
|
|
@@ -123,8 +123,8 @@ workbench/core/views/view.py,sha256=DvmEA1xdvL980GET_cnbmHzqSy6IhlNaZcoQnVTtYis,
|
|
|
123
123
|
workbench/core/views/view_utils.py,sha256=CwOlpqXpumCr6REi-ey7Qjz5_tpg-s4oWHmlOVu8POQ,12270
|
|
124
124
|
workbench/core/views/storage/mdq_view.py,sha256=qf_ep1KwaXOIfO930laEwNIiCYP7VNOqjE3VdHfopRE,5195
|
|
125
125
|
workbench/model_scripts/script_generation.py,sha256=_AhzM2qzjBuI7pIaXBRZ1YOOs2lwsKQGVM_ovL6T1bo,8135
|
|
126
|
-
workbench/model_scripts/chemprop/chemprop.template,sha256=
|
|
127
|
-
workbench/model_scripts/chemprop/generated_model_script.py,sha256=
|
|
126
|
+
workbench/model_scripts/chemprop/chemprop.template,sha256=XcRBEz_JYS1Vjv9MI_5BalvrWL9v2vTq1eRlVpLAtPE,38883
|
|
127
|
+
workbench/model_scripts/chemprop/generated_model_script.py,sha256=lSr5qHZljCzttxlq4YwypUYmYbIAl7flo5RT8nXt_vs,39755
|
|
128
128
|
workbench/model_scripts/chemprop/requirements.txt,sha256=PIuUdPAeDUH3I2M_5nIrCnCfs3FL1l9V5kzHqgCcu7s,281
|
|
129
129
|
workbench/model_scripts/custom_models/chem_info/Readme.md,sha256=mH1lxJ4Pb7F5nBnVXaiuxpi8zS_yjUw_LBJepVKXhlA,574
|
|
130
130
|
workbench/model_scripts/custom_models/chem_info/fingerprints.py,sha256=Qvs8jaUwguWUq3Q3j695MY0t0Wk3BvroW-oWBwalMUo,5255
|
|
@@ -141,31 +141,31 @@ workbench/model_scripts/custom_models/proximity/proximity.py,sha256=dPTYD1N-JTIq
|
|
|
141
141
|
workbench/model_scripts/custom_models/proximity/requirements.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
142
142
|
workbench/model_scripts/custom_models/uq_models/Readme.md,sha256=UVpL-lvtTrLqwBeQFinLhd_uNrEw4JUlggIdUSDrd-w,188
|
|
143
143
|
workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template,sha256=ca3CaAk6HVuNv1HnPgABTzRY3oDrRxomjgD4V1ZDwoc,6448
|
|
144
|
-
workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template,sha256=
|
|
144
|
+
workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template,sha256=449Enh4-7RrMrxt1oS_SHJHGV8yYcFlWHsLrCVTFQGI,13778
|
|
145
145
|
workbench/model_scripts/custom_models/uq_models/gaussian_process.template,sha256=3nMlCi8nEbc4N-MQTzjfIcljfDQkUmWeLBfmd18m5fg,6632
|
|
146
|
-
workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=
|
|
147
|
-
workbench/model_scripts/custom_models/uq_models/ngboost.template,sha256=
|
|
146
|
+
workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=RIC90o9iI37ylOOJBUVDVF2FmYs9kJl8AifL-AYIwAI,14282
|
|
147
|
+
workbench/model_scripts/custom_models/uq_models/ngboost.template,sha256=_ukYcsL4pnWvFV1oA89_wfVpxWbvoEx6MGwKxc38kSI,8512
|
|
148
148
|
workbench/model_scripts/custom_models/uq_models/proximity.py,sha256=dPTYD1N-JTIqg6iL7ak_JSouaCdfmBPjG08IRRvTLXU,15836
|
|
149
149
|
workbench/model_scripts/custom_models/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
|
|
150
150
|
workbench/model_scripts/custom_script_example/custom_model_script.py,sha256=T8aydawgRVAdSlDimoWpXxG2YuWWQkbcjBVjAeSG2_0,6408
|
|
151
151
|
workbench/model_scripts/custom_script_example/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
|
|
152
|
-
workbench/model_scripts/ensemble_xgb/ensemble_xgb.template,sha256=
|
|
152
|
+
workbench/model_scripts/ensemble_xgb/ensemble_xgb.template,sha256=lMEx0IkawcpTI52gSjCp1Wr0g2vWd4kIGuIqjXhA2GA,10671
|
|
153
153
|
workbench/model_scripts/ensemble_xgb/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
|
|
154
|
-
workbench/model_scripts/pytorch_model/generated_model_script.py,sha256=
|
|
155
|
-
workbench/model_scripts/pytorch_model/pytorch.template,sha256=
|
|
154
|
+
workbench/model_scripts/pytorch_model/generated_model_script.py,sha256=nst6kRN8T_LmmDANAaFYSC9GdGQtrDYdVBs4mU1RJ-U,32883
|
|
155
|
+
workbench/model_scripts/pytorch_model/pytorch.template,sha256=PFmGO_jP8S6RKvAzAXiuogkVXYTb5MKajJk_57qQDcc,30718
|
|
156
156
|
workbench/model_scripts/pytorch_model/requirements.txt,sha256=ICS5nW0wix44EJO2tJszJSaUrSvhSfdedn6FcRInGx4,181
|
|
157
157
|
workbench/model_scripts/scikit_learn/generated_model_script.py,sha256=xhQIglpAgPRCH9iwI3wI0N0V6p9AgqW0mVOMuSXzUCk,17187
|
|
158
158
|
workbench/model_scripts/scikit_learn/requirements.txt,sha256=aVvwiJ3LgBUhM_PyFlb2gHXu_kpGPho3ANBzlOkfcvs,107
|
|
159
159
|
workbench/model_scripts/scikit_learn/scikit_learn.template,sha256=QQvqx-eX9ZTbYmyupq6R6vIQwosmsmY_MRBPaHyfjdk,12586
|
|
160
|
-
workbench/model_scripts/uq_models/generated_model_script.py,sha256=
|
|
161
|
-
workbench/model_scripts/uq_models/mapie.template,sha256=
|
|
160
|
+
workbench/model_scripts/uq_models/generated_model_script.py,sha256=ivKtB-3MdJVnppxKez4Vz7jLW5i_sb0gLTGOcYJZ_PM,26758
|
|
161
|
+
workbench/model_scripts/uq_models/mapie.template,sha256=on3I40D7zyNfvfqBf5k8VXCFtmepcxKmqVWCH5Q9S84,23432
|
|
162
162
|
workbench/model_scripts/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
|
|
163
|
-
workbench/model_scripts/xgb_model/generated_model_script.py,sha256=
|
|
163
|
+
workbench/model_scripts/xgb_model/generated_model_script.py,sha256=qUGg5R-boaswzXtgKp_J7JPxFzMdRNv51QeF-lMWL-4,19334
|
|
164
164
|
workbench/model_scripts/xgb_model/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
|
|
165
|
-
workbench/model_scripts/xgb_model/xgb_model.template,sha256=
|
|
165
|
+
workbench/model_scripts/xgb_model/xgb_model.template,sha256=gOXHsymCZjde6L2LvrlTtMRprJ-mXczpE4ZB8mhZZ0s,19168
|
|
166
166
|
workbench/repl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
167
167
|
workbench/repl/workbench_shell.py,sha256=__FOnBqe3I6Luzb-N9mAecOUfcPEkctzxBfJSKTqDDA,22504
|
|
168
|
-
workbench/resources/open_source_api.key,sha256=
|
|
168
|
+
workbench/resources/open_source_api.key,sha256=vi9099CjkNnZ1IXB6AQWcG83iFYn2db0iTfTlpGVA1o,432
|
|
169
169
|
workbench/resources/signature_verify_pub.pem,sha256=V3-u-3_z2PH-805ybkKvzDOBwAbvHxcKn0jLBImEtzM,272
|
|
170
170
|
workbench/scripts/check_double_bond_stereo.py,sha256=p5hnL54Weq77ES0HCELq9JeoM-PyUGkvVSeWYF2dKyo,7776
|
|
171
171
|
workbench/scripts/endpoint_test.py,sha256=G4GdQMa7KlKX7WiUSFX_OHAzDdCyf8ZbVYbZBkAPiSo,5339
|
|
@@ -202,7 +202,7 @@ workbench/utils/athena_utils.py,sha256=DDyLhJujzh1PfejtGU7ZzOf5hLPOgoXmi4Lrn-_AJ
|
|
|
202
202
|
workbench/utils/aws_utils.py,sha256=x8c_WxtdSKmBqNg8P_Z6K2m4AsSMEiD_kh2nVaUZ28c,22077
|
|
203
203
|
workbench/utils/bulk_utils.py,sha256=s1lYN2Uk536MNGetekLYL_VL0N34hUjk1FX9BAz3Qu0,1182
|
|
204
204
|
workbench/utils/cache.py,sha256=0R5RXYEz_XHARK3anmQC4VRMawMks_cJ8S4vwC2roAE,5524
|
|
205
|
-
workbench/utils/chemprop_utils.py,sha256=
|
|
205
|
+
workbench/utils/chemprop_utils.py,sha256=0eszF9K2DYB5bOxbWSomr9SuX3QANdF7ROmWa0tikzY,28805
|
|
206
206
|
workbench/utils/cloudwatch_handler.py,sha256=t0L280Qa1nMq95dwnf8lB5g8FHrQAyGY5S4JwP3yIa8,5165
|
|
207
207
|
workbench/utils/cloudwatch_utils.py,sha256=wXSqKcJlSnHyC0D6d4RsH8wwmx_0CsffcetUgXlZ_78,4828
|
|
208
208
|
workbench/utils/color_utils.py,sha256=TmDGLK44t975lkfjt_1O-ee02QxrKfke7vPuXb-V-Uo,11779
|
|
@@ -231,7 +231,7 @@ workbench/utils/pipeline_utils.py,sha256=yzR5tgAzz6zNqvxzZR6YqsbS7r3QDKzBXozaM_A
|
|
|
231
231
|
workbench/utils/plot_utils.py,sha256=yFveic-4aY7lKT-CPhYdbIkBr-mZqjbhaRmCySWG_kE,6537
|
|
232
232
|
workbench/utils/plugin_manager.py,sha256=JWfyFHQih_J_MMtAT1cgjGVnNVPk9bM917LkfH8Z-_A,13873
|
|
233
233
|
workbench/utils/prox_utils.py,sha256=V0YSxI6lboZl8Bed1GUobFqfMhfpehn2FtgqHpkuhDQ,6170
|
|
234
|
-
workbench/utils/pytorch_utils.py,sha256=
|
|
234
|
+
workbench/utils/pytorch_utils.py,sha256=ig91xlAaWaCp06N4Ml2yoteDQGMJkAfysktbFEImNII,20260
|
|
235
235
|
workbench/utils/redis_cache.py,sha256=39LFSWmOlNNcah02D3sBnmibc-DPeKC3SNq71K4HaB4,12893
|
|
236
236
|
workbench/utils/repl_utils.py,sha256=rWOMv2HiEIp8ZL6Ps6DlwiJlGr-pOhv9OZQhm3aR-1A,4668
|
|
237
237
|
workbench/utils/s3_utils.py,sha256=Xme_o_cftC_jWnw6R9YKS6-6C11zaCBAoQDlY3dZb5o,7337
|
|
@@ -262,7 +262,7 @@ workbench/web_interface/components/component_interface.py,sha256=QCPWqiZLkVsAEzQ
|
|
|
262
262
|
workbench/web_interface/components/correlation_matrix.py,sha256=Lv4vRta5-TdxBsu0G8Ea7hyyR3XyPes-k5AfL6qZWEc,6376
|
|
263
263
|
workbench/web_interface/components/data_details_markdown.py,sha256=axDs6eXniglBmvFwIKjpJ5oyT-3D4FO9IcfA_cl-EJ8,9706
|
|
264
264
|
workbench/web_interface/components/endpoint_metric_plots.py,sha256=H0cXuj9UQrrh_2JvRHtq7O8pMXFXKs7o9XpzySENylw,3441
|
|
265
|
-
workbench/web_interface/components/model_plot.py,sha256=
|
|
265
|
+
workbench/web_interface/components/model_plot.py,sha256=9KSILXvq1L_DUZszj5ozWwi43jEtJlpWdqSs3mXBPeQ,2774
|
|
266
266
|
workbench/web_interface/components/plugin_interface.py,sha256=jGRq4igUTVXUT4sDqqsKKI2yjilV0ORNBQq6CjEWE84,9563
|
|
267
267
|
workbench/web_interface/components/plugin_unit_test.py,sha256=Lx3HhIMHzrwDUYs2bADSFYzQq3sFHS9RyA415hyUOdc,7747
|
|
268
268
|
workbench/web_interface/components/regression_plot.py,sha256=k18Bd0fcH7ig6kL5GqC_dINci3_YLle_fSEM32zXtzY,3342
|
|
@@ -291,9 +291,9 @@ workbench/web_interface/page_views/main_page.py,sha256=X4-KyGTKLAdxR-Zk2niuLJB2Y
|
|
|
291
291
|
workbench/web_interface/page_views/models_page_view.py,sha256=M0bdC7bAzLyIaE2jviY12FF4abdMFZmg6sFuOY_LaGI,2650
|
|
292
292
|
workbench/web_interface/page_views/page_view.py,sha256=Gh6YnpOGlUejx-bHZAf5pzqoQ1H1R0OSwOpGhOBO06w,455
|
|
293
293
|
workbench/web_interface/page_views/pipelines_page_view.py,sha256=v2pxrIbsHBcYiblfius3JK766NZ7ciD2yPx0t3E5IJo,2656
|
|
294
|
-
workbench-0.8.
|
|
295
|
-
workbench-0.8.
|
|
296
|
-
workbench-0.8.
|
|
297
|
-
workbench-0.8.
|
|
298
|
-
workbench-0.8.
|
|
299
|
-
workbench-0.8.
|
|
294
|
+
workbench-0.8.204.dist-info/licenses/LICENSE,sha256=RTBoTMeEwTgEhS-n8vgQ-VUo5qig0PWVd8xFPKU6Lck,1080
|
|
295
|
+
workbench-0.8.204.dist-info/METADATA,sha256=M0chxsmVPAHxPCzxcL9fzH_nS3fu2Bc_DCkDGpaPyeU,10500
|
|
296
|
+
workbench-0.8.204.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
297
|
+
workbench-0.8.204.dist-info/entry_points.txt,sha256=j02NCuno2Y_BuE4jEvw-IL73WZ9lkTpLwom29uKcLCw,458
|
|
298
|
+
workbench-0.8.204.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
|
|
299
|
+
workbench-0.8.204.dist-info/RECORD,,
|