workbench 0.8.198__py3-none-any.whl → 0.8.203__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- workbench/algorithms/dataframe/proximity.py +11 -4
- workbench/api/__init__.py +2 -1
- workbench/api/df_store.py +17 -108
- workbench/api/feature_set.py +48 -11
- workbench/api/model.py +1 -1
- workbench/api/parameter_store.py +3 -52
- workbench/core/artifacts/__init__.py +11 -2
- workbench/core/artifacts/artifact.py +5 -5
- workbench/core/artifacts/df_store_core.py +114 -0
- workbench/core/artifacts/endpoint_core.py +261 -78
- workbench/core/artifacts/feature_set_core.py +69 -1
- workbench/core/artifacts/model_core.py +48 -14
- workbench/core/artifacts/parameter_store_core.py +98 -0
- workbench/core/transforms/features_to_model/features_to_model.py +50 -33
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +11 -2
- workbench/core/views/view.py +2 -2
- workbench/model_scripts/chemprop/chemprop.template +933 -0
- workbench/model_scripts/chemprop/generated_model_script.py +933 -0
- workbench/model_scripts/chemprop/requirements.txt +11 -0
- workbench/model_scripts/custom_models/chem_info/fingerprints.py +134 -0
- workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -1
- workbench/model_scripts/custom_models/proximity/proximity.py +11 -4
- workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +11 -5
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +11 -5
- workbench/model_scripts/custom_models/uq_models/ngboost.template +11 -5
- workbench/model_scripts/custom_models/uq_models/proximity.py +11 -4
- workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +11 -5
- workbench/model_scripts/pytorch_model/generated_model_script.py +365 -173
- workbench/model_scripts/pytorch_model/pytorch.template +362 -170
- workbench/model_scripts/scikit_learn/generated_model_script.py +302 -0
- workbench/model_scripts/script_generation.py +10 -7
- workbench/model_scripts/uq_models/generated_model_script.py +43 -27
- workbench/model_scripts/uq_models/mapie.template +40 -24
- workbench/model_scripts/xgb_model/generated_model_script.py +36 -7
- workbench/model_scripts/xgb_model/xgb_model.template +36 -7
- workbench/repl/workbench_shell.py +14 -5
- workbench/resources/open_source_api.key +1 -1
- workbench/scripts/endpoint_test.py +162 -0
- workbench/scripts/{lambda_launcher.py → lambda_test.py} +10 -0
- workbench/utils/chemprop_utils.py +761 -0
- workbench/utils/pytorch_utils.py +527 -0
- workbench/utils/xgboost_model_utils.py +10 -5
- workbench/web_interface/components/model_plot.py +7 -1
- {workbench-0.8.198.dist-info → workbench-0.8.203.dist-info}/METADATA +3 -3
- {workbench-0.8.198.dist-info → workbench-0.8.203.dist-info}/RECORD +49 -43
- {workbench-0.8.198.dist-info → workbench-0.8.203.dist-info}/entry_points.txt +2 -1
- workbench/core/cloud_platform/aws/aws_df_store.py +0 -404
- workbench/core/cloud_platform/aws/aws_parameter_store.py +0 -280
- workbench/model_scripts/__pycache__/script_generation.cpython-312.pyc +0 -0
- workbench/model_scripts/__pycache__/script_generation.cpython-313.pyc +0 -0
- {workbench-0.8.198.dist-info → workbench-0.8.203.dist-info}/WHEEL +0 -0
- {workbench-0.8.198.dist-info → workbench-0.8.203.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.198.dist-info → workbench-0.8.203.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,527 @@
|
|
|
1
|
+
"""PyTorch Tabular utilities for Workbench models."""
|
|
2
|
+
|
|
3
|
+
# flake8: noqa: E402
|
|
4
|
+
import logging
|
|
5
|
+
import os
|
|
6
|
+
import tempfile
|
|
7
|
+
from pprint import pformat
|
|
8
|
+
from typing import Any, Tuple
|
|
9
|
+
|
|
10
|
+
# Disable OpenMP parallelism to avoid segfaults on macOS with conflicting OpenMP runtimes
|
|
11
|
+
# (libomp from LLVM vs libiomp from Intel). Must be set before importing numpy/sklearn/torch.
|
|
12
|
+
# See: https://github.com/scikit-learn/scikit-learn/issues/21302
|
|
13
|
+
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
|
14
|
+
os.environ.setdefault("MKL_NUM_THREADS", "1")
|
|
15
|
+
|
|
16
|
+
import numpy as np
|
|
17
|
+
import pandas as pd
|
|
18
|
+
from scipy.stats import spearmanr
|
|
19
|
+
from sklearn.metrics import (
|
|
20
|
+
mean_absolute_error,
|
|
21
|
+
mean_squared_error,
|
|
22
|
+
median_absolute_error,
|
|
23
|
+
precision_recall_fscore_support,
|
|
24
|
+
r2_score,
|
|
25
|
+
roc_auc_score,
|
|
26
|
+
)
|
|
27
|
+
from sklearn.model_selection import KFold, StratifiedKFold
|
|
28
|
+
from sklearn.preprocessing import LabelEncoder
|
|
29
|
+
|
|
30
|
+
from workbench.utils.model_utils import safe_extract_tarfile
|
|
31
|
+
from workbench.utils.pandas_utils import expand_proba_column
|
|
32
|
+
from workbench.utils.aws_utils import pull_s3_data
|
|
33
|
+
|
|
34
|
+
log = logging.getLogger("workbench")
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def download_and_extract_model(s3_uri: str, model_dir: str) -> None:
|
|
38
|
+
"""Download model artifact from S3 and extract it.
|
|
39
|
+
|
|
40
|
+
Args:
|
|
41
|
+
s3_uri: S3 URI to the model artifact (model.tar.gz)
|
|
42
|
+
model_dir: Directory to extract model artifacts to
|
|
43
|
+
"""
|
|
44
|
+
import awswrangler as wr
|
|
45
|
+
|
|
46
|
+
log.info(f"Downloading model from {s3_uri}...")
|
|
47
|
+
|
|
48
|
+
# Download to temp file
|
|
49
|
+
local_tar_path = os.path.join(model_dir, "model.tar.gz")
|
|
50
|
+
wr.s3.download(path=s3_uri, local_file=local_tar_path)
|
|
51
|
+
|
|
52
|
+
# Extract using safe extraction
|
|
53
|
+
log.info(f"Extracting to {model_dir}...")
|
|
54
|
+
safe_extract_tarfile(local_tar_path, model_dir)
|
|
55
|
+
|
|
56
|
+
# Cleanup tar file
|
|
57
|
+
os.unlink(local_tar_path)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def load_pytorch_model_artifacts(model_dir: str) -> Tuple[Any, dict]:
|
|
61
|
+
"""Load PyTorch Tabular model and artifacts from an extracted model directory.
|
|
62
|
+
|
|
63
|
+
Args:
|
|
64
|
+
model_dir: Directory containing extracted model artifacts
|
|
65
|
+
|
|
66
|
+
Returns:
|
|
67
|
+
Tuple of (TabularModel, artifacts_dict).
|
|
68
|
+
artifacts_dict contains 'label_encoder' and 'category_mappings' if present.
|
|
69
|
+
"""
|
|
70
|
+
import json
|
|
71
|
+
|
|
72
|
+
import joblib
|
|
73
|
+
|
|
74
|
+
# pytorch-tabular saves complex objects, use legacy loading behavior
|
|
75
|
+
os.environ["TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD"] = "1"
|
|
76
|
+
from pytorch_tabular import TabularModel
|
|
77
|
+
|
|
78
|
+
model_path = os.path.join(model_dir, "tabular_model")
|
|
79
|
+
if not os.path.exists(model_path):
|
|
80
|
+
raise FileNotFoundError(f"No tabular_model directory found in {model_dir}")
|
|
81
|
+
|
|
82
|
+
# PyTorch Tabular needs write access, so chdir to /tmp
|
|
83
|
+
original_cwd = os.getcwd()
|
|
84
|
+
try:
|
|
85
|
+
os.chdir("/tmp")
|
|
86
|
+
model = TabularModel.load_model(model_path)
|
|
87
|
+
finally:
|
|
88
|
+
os.chdir(original_cwd)
|
|
89
|
+
|
|
90
|
+
# Load additional artifacts
|
|
91
|
+
artifacts = {}
|
|
92
|
+
|
|
93
|
+
label_encoder_path = os.path.join(model_dir, "label_encoder.joblib")
|
|
94
|
+
if os.path.exists(label_encoder_path):
|
|
95
|
+
artifacts["label_encoder"] = joblib.load(label_encoder_path)
|
|
96
|
+
|
|
97
|
+
category_mappings_path = os.path.join(model_dir, "category_mappings.json")
|
|
98
|
+
if os.path.exists(category_mappings_path):
|
|
99
|
+
with open(category_mappings_path) as f:
|
|
100
|
+
artifacts["category_mappings"] = json.load(f)
|
|
101
|
+
|
|
102
|
+
return model, artifacts
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def _extract_model_configs(loaded_model: Any, n_train: int) -> dict:
|
|
106
|
+
"""Extract trainer and model configs from a loaded PyTorch Tabular model.
|
|
107
|
+
|
|
108
|
+
Args:
|
|
109
|
+
loaded_model: Loaded TabularModel instance
|
|
110
|
+
n_train: Number of training samples (used for batch_size calculation)
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
Dictionary with 'trainer' and 'model' config dictionaries
|
|
114
|
+
"""
|
|
115
|
+
config = loaded_model.config
|
|
116
|
+
|
|
117
|
+
# Trainer config - extract from loaded model, matching template defaults
|
|
118
|
+
trainer_defaults = {
|
|
119
|
+
"auto_lr_find": False,
|
|
120
|
+
"batch_size": min(128, max(32, n_train // 16)),
|
|
121
|
+
"max_epochs": 100,
|
|
122
|
+
"min_epochs": 10,
|
|
123
|
+
"early_stopping": "valid_loss",
|
|
124
|
+
"early_stopping_patience": 10,
|
|
125
|
+
"gradient_clip_val": 1.0,
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
trainer_config = {}
|
|
129
|
+
for key, default in trainer_defaults.items():
|
|
130
|
+
value = getattr(config, key, default)
|
|
131
|
+
if value == default and not hasattr(config, key):
|
|
132
|
+
log.warning(f"Trainer config '{key}' not found in loaded model, using default: {default}")
|
|
133
|
+
trainer_config[key] = value
|
|
134
|
+
|
|
135
|
+
# Model config - extract from loaded model, matching template defaults
|
|
136
|
+
model_defaults = {
|
|
137
|
+
"layers": "256-128-64",
|
|
138
|
+
"activation": "LeakyReLU",
|
|
139
|
+
"learning_rate": 1e-3,
|
|
140
|
+
"dropout": 0.3,
|
|
141
|
+
"use_batch_norm": True,
|
|
142
|
+
"initialization": "kaiming",
|
|
143
|
+
}
|
|
144
|
+
|
|
145
|
+
model_config = {}
|
|
146
|
+
for key, default in model_defaults.items():
|
|
147
|
+
value = getattr(config, key, default)
|
|
148
|
+
if value == default and not hasattr(config, key):
|
|
149
|
+
log.warning(f"Model config '{key}' not found in loaded model, using default: {default}")
|
|
150
|
+
model_config[key] = value
|
|
151
|
+
|
|
152
|
+
return {"trainer": trainer_config, "model": model_config}
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def pull_cv_results(workbench_model: Any) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
|
156
|
+
"""Pull cross-validation results from AWS training artifacts.
|
|
157
|
+
|
|
158
|
+
This retrieves the validation predictions and training metrics that were
|
|
159
|
+
saved during model training.
|
|
160
|
+
|
|
161
|
+
Args:
|
|
162
|
+
workbench_model: Workbench model object
|
|
163
|
+
|
|
164
|
+
Returns:
|
|
165
|
+
Tuple of:
|
|
166
|
+
- DataFrame with training metrics
|
|
167
|
+
- DataFrame with validation predictions
|
|
168
|
+
"""
|
|
169
|
+
# Get the validation predictions from S3
|
|
170
|
+
s3_path = f"{workbench_model.model_training_path}/validation_predictions.csv"
|
|
171
|
+
predictions_df = pull_s3_data(s3_path)
|
|
172
|
+
|
|
173
|
+
if predictions_df is None:
|
|
174
|
+
raise ValueError(f"No validation predictions found at {s3_path}")
|
|
175
|
+
|
|
176
|
+
log.info(f"Pulled {len(predictions_df)} validation predictions from {s3_path}")
|
|
177
|
+
|
|
178
|
+
# Get training metrics from model metadata
|
|
179
|
+
training_metrics = workbench_model.workbench_meta().get("workbench_training_metrics")
|
|
180
|
+
|
|
181
|
+
if training_metrics is None:
|
|
182
|
+
log.warning(f"No training metrics found in model metadata for {workbench_model.model_name}")
|
|
183
|
+
metrics_df = pd.DataFrame({"error": [f"No training metrics found for {workbench_model.model_name}"]})
|
|
184
|
+
else:
|
|
185
|
+
metrics_df = pd.DataFrame.from_dict(training_metrics)
|
|
186
|
+
log.info(f"Metrics summary:\n{metrics_df.to_string(index=False)}")
|
|
187
|
+
|
|
188
|
+
return metrics_df, predictions_df
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def cross_fold_inference(
|
|
192
|
+
workbench_model: Any,
|
|
193
|
+
nfolds: int = 5,
|
|
194
|
+
) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
|
195
|
+
"""Performs K-fold cross-validation for PyTorch Tabular models.
|
|
196
|
+
|
|
197
|
+
Replicates the training setup from the original model to ensure
|
|
198
|
+
cross-validation results are comparable to the deployed model.
|
|
199
|
+
|
|
200
|
+
Args:
|
|
201
|
+
workbench_model: Workbench model object
|
|
202
|
+
nfolds: Number of folds for cross-validation (default is 5)
|
|
203
|
+
|
|
204
|
+
Returns:
|
|
205
|
+
Tuple of:
|
|
206
|
+
- DataFrame with per-class metrics (and 'all' row for overall metrics)
|
|
207
|
+
- DataFrame with columns: id, target, prediction, and *_proba columns (for classifiers)
|
|
208
|
+
"""
|
|
209
|
+
import shutil
|
|
210
|
+
|
|
211
|
+
from pytorch_tabular import TabularModel
|
|
212
|
+
from pytorch_tabular.config import DataConfig, OptimizerConfig, TrainerConfig
|
|
213
|
+
from pytorch_tabular.models import CategoryEmbeddingModelConfig
|
|
214
|
+
|
|
215
|
+
from workbench.api import FeatureSet
|
|
216
|
+
|
|
217
|
+
# Create a temporary model directory
|
|
218
|
+
model_dir = tempfile.mkdtemp(prefix="pytorch_cv_")
|
|
219
|
+
log.info(f"Using model directory: {model_dir}")
|
|
220
|
+
|
|
221
|
+
try:
|
|
222
|
+
# Download and extract model artifacts to get config and artifacts
|
|
223
|
+
model_artifact_uri = workbench_model.model_data_url()
|
|
224
|
+
download_and_extract_model(model_artifact_uri, model_dir)
|
|
225
|
+
|
|
226
|
+
# Load model and artifacts
|
|
227
|
+
loaded_model, artifacts = load_pytorch_model_artifacts(model_dir)
|
|
228
|
+
category_mappings = artifacts.get("category_mappings", {})
|
|
229
|
+
|
|
230
|
+
# Determine if classifier from the loaded model's config
|
|
231
|
+
is_classifier = loaded_model.config.task == "classification"
|
|
232
|
+
|
|
233
|
+
# Use saved label encoder if available, otherwise create fresh one
|
|
234
|
+
if is_classifier:
|
|
235
|
+
label_encoder = artifacts.get("label_encoder")
|
|
236
|
+
if label_encoder is None:
|
|
237
|
+
log.warning("No saved label encoder found, creating fresh one")
|
|
238
|
+
label_encoder = LabelEncoder()
|
|
239
|
+
else:
|
|
240
|
+
label_encoder = None
|
|
241
|
+
|
|
242
|
+
# Prepare data
|
|
243
|
+
fs = FeatureSet(workbench_model.get_input())
|
|
244
|
+
df = workbench_model.training_view().pull_dataframe()
|
|
245
|
+
|
|
246
|
+
# Get columns
|
|
247
|
+
id_col = fs.id_column
|
|
248
|
+
target_col = workbench_model.target()
|
|
249
|
+
feature_cols = workbench_model.features()
|
|
250
|
+
print(f"Target column: {target_col}")
|
|
251
|
+
print(f"Feature columns: {len(feature_cols)} features")
|
|
252
|
+
|
|
253
|
+
# Convert string columns to category for PyTorch Tabular compatibility
|
|
254
|
+
for col in feature_cols:
|
|
255
|
+
if pd.api.types.is_string_dtype(df[col]):
|
|
256
|
+
if col in category_mappings:
|
|
257
|
+
df[col] = pd.Categorical(df[col], categories=category_mappings[col])
|
|
258
|
+
else:
|
|
259
|
+
df[col] = df[col].astype("category")
|
|
260
|
+
|
|
261
|
+
# Determine categorical and continuous columns
|
|
262
|
+
categorical_cols = [col for col in feature_cols if df[col].dtype.name == "category"]
|
|
263
|
+
continuous_cols = [col for col in feature_cols if col not in categorical_cols]
|
|
264
|
+
|
|
265
|
+
# Cast continuous columns to float
|
|
266
|
+
if continuous_cols:
|
|
267
|
+
df[continuous_cols] = df[continuous_cols].astype("float64")
|
|
268
|
+
|
|
269
|
+
# Drop rows with NaN features or target (PyTorch Tabular cannot handle NaN values)
|
|
270
|
+
nan_mask = df[feature_cols].isna().any(axis=1) | df[target_col].isna()
|
|
271
|
+
if nan_mask.any():
|
|
272
|
+
n_nan_rows = nan_mask.sum()
|
|
273
|
+
log.warning(
|
|
274
|
+
f"Dropping {n_nan_rows} rows ({100*n_nan_rows/len(df):.1f}%) with NaN values for cross-validation"
|
|
275
|
+
)
|
|
276
|
+
df = df[~nan_mask].reset_index(drop=True)
|
|
277
|
+
|
|
278
|
+
X = df[feature_cols]
|
|
279
|
+
y = df[target_col]
|
|
280
|
+
ids = df[id_col]
|
|
281
|
+
|
|
282
|
+
# Encode target if classifier
|
|
283
|
+
if label_encoder is not None:
|
|
284
|
+
if not hasattr(label_encoder, "classes_"):
|
|
285
|
+
label_encoder.fit(y)
|
|
286
|
+
y_encoded = label_encoder.transform(y)
|
|
287
|
+
y_for_cv = pd.Series(y_encoded, index=y.index, name=target_col)
|
|
288
|
+
else:
|
|
289
|
+
y_for_cv = y
|
|
290
|
+
|
|
291
|
+
# Extract configs from loaded model (pass approx train size for batch_size calculation)
|
|
292
|
+
n_train_approx = int(len(df) * (1 - 1 / nfolds))
|
|
293
|
+
configs = _extract_model_configs(loaded_model, n_train_approx)
|
|
294
|
+
trainer_params = configs["trainer"]
|
|
295
|
+
model_params = configs["model"]
|
|
296
|
+
|
|
297
|
+
log.info(f"Trainer config:\n{pformat(trainer_params)}")
|
|
298
|
+
log.info(f"Model config:\n{pformat(model_params)}")
|
|
299
|
+
|
|
300
|
+
# Prepare KFold
|
|
301
|
+
kfold = (StratifiedKFold if is_classifier else KFold)(n_splits=nfolds, shuffle=True, random_state=42)
|
|
302
|
+
|
|
303
|
+
# Initialize results collection
|
|
304
|
+
fold_metrics = []
|
|
305
|
+
predictions_df = pd.DataFrame({id_col: ids, target_col: y})
|
|
306
|
+
if is_classifier:
|
|
307
|
+
predictions_df["pred_proba"] = [None] * len(predictions_df)
|
|
308
|
+
|
|
309
|
+
# Perform cross-validation
|
|
310
|
+
for fold_idx, (train_idx, val_idx) in enumerate(kfold.split(X, y_for_cv), 1):
|
|
311
|
+
print(f"\n{'='*50}")
|
|
312
|
+
print(f"Fold {fold_idx}/{nfolds}")
|
|
313
|
+
print(f"{'='*50}")
|
|
314
|
+
|
|
315
|
+
# Split data
|
|
316
|
+
df_train = df.iloc[train_idx].copy()
|
|
317
|
+
df_val = df.iloc[val_idx].copy()
|
|
318
|
+
|
|
319
|
+
# Encode target for this fold
|
|
320
|
+
if is_classifier:
|
|
321
|
+
df_train[target_col] = label_encoder.transform(df_train[target_col])
|
|
322
|
+
df_val[target_col] = label_encoder.transform(df_val[target_col])
|
|
323
|
+
|
|
324
|
+
# Create configs for this fold - matching the training template exactly
|
|
325
|
+
data_config = DataConfig(
|
|
326
|
+
target=[target_col],
|
|
327
|
+
continuous_cols=continuous_cols,
|
|
328
|
+
categorical_cols=categorical_cols,
|
|
329
|
+
)
|
|
330
|
+
|
|
331
|
+
trainer_config = TrainerConfig(
|
|
332
|
+
auto_lr_find=trainer_params["auto_lr_find"],
|
|
333
|
+
batch_size=trainer_params["batch_size"],
|
|
334
|
+
max_epochs=trainer_params["max_epochs"],
|
|
335
|
+
min_epochs=trainer_params["min_epochs"],
|
|
336
|
+
early_stopping=trainer_params["early_stopping"],
|
|
337
|
+
early_stopping_patience=trainer_params["early_stopping_patience"],
|
|
338
|
+
gradient_clip_val=trainer_params["gradient_clip_val"],
|
|
339
|
+
checkpoints="valid_loss", # Save best model based on validation loss
|
|
340
|
+
accelerator="cpu",
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
optimizer_config = OptimizerConfig()
|
|
344
|
+
|
|
345
|
+
model_config = CategoryEmbeddingModelConfig(
|
|
346
|
+
task="classification" if is_classifier else "regression",
|
|
347
|
+
layers=model_params["layers"],
|
|
348
|
+
activation=model_params["activation"],
|
|
349
|
+
learning_rate=model_params["learning_rate"],
|
|
350
|
+
dropout=model_params["dropout"],
|
|
351
|
+
use_batch_norm=model_params["use_batch_norm"],
|
|
352
|
+
initialization=model_params["initialization"],
|
|
353
|
+
)
|
|
354
|
+
|
|
355
|
+
# Create and train fresh model
|
|
356
|
+
tabular_model = TabularModel(
|
|
357
|
+
data_config=data_config,
|
|
358
|
+
model_config=model_config,
|
|
359
|
+
optimizer_config=optimizer_config,
|
|
360
|
+
trainer_config=trainer_config,
|
|
361
|
+
)
|
|
362
|
+
|
|
363
|
+
# Change to /tmp for training (PyTorch Tabular needs write access)
|
|
364
|
+
original_cwd = os.getcwd()
|
|
365
|
+
try:
|
|
366
|
+
os.chdir("/tmp")
|
|
367
|
+
# Clean up checkpoint directory from previous fold
|
|
368
|
+
checkpoint_dir = "/tmp/saved_models"
|
|
369
|
+
if os.path.exists(checkpoint_dir):
|
|
370
|
+
shutil.rmtree(checkpoint_dir)
|
|
371
|
+
tabular_model.fit(train=df_train, validation=df_val)
|
|
372
|
+
finally:
|
|
373
|
+
os.chdir(original_cwd)
|
|
374
|
+
|
|
375
|
+
# Make predictions
|
|
376
|
+
result = tabular_model.predict(df_val[feature_cols])
|
|
377
|
+
|
|
378
|
+
# Extract predictions
|
|
379
|
+
prediction_col = f"{target_col}_prediction"
|
|
380
|
+
preds = result[prediction_col].values
|
|
381
|
+
|
|
382
|
+
# Store predictions at the correct indices
|
|
383
|
+
val_indices = df.iloc[val_idx].index
|
|
384
|
+
if is_classifier:
|
|
385
|
+
preds_decoded = label_encoder.inverse_transform(preds.astype(int))
|
|
386
|
+
predictions_df.loc[val_indices, "prediction"] = preds_decoded
|
|
387
|
+
|
|
388
|
+
# Get probabilities and store at validation indices only
|
|
389
|
+
prob_cols = sorted([col for col in result.columns if col.endswith("_probability")])
|
|
390
|
+
if prob_cols:
|
|
391
|
+
probs = result[prob_cols].values
|
|
392
|
+
for i, idx in enumerate(val_indices):
|
|
393
|
+
predictions_df.at[idx, "pred_proba"] = probs[i].tolist()
|
|
394
|
+
else:
|
|
395
|
+
predictions_df.loc[val_indices, "prediction"] = preds
|
|
396
|
+
|
|
397
|
+
# Calculate fold metrics
|
|
398
|
+
if is_classifier:
|
|
399
|
+
y_val_orig = label_encoder.inverse_transform(df_val[target_col])
|
|
400
|
+
preds_orig = preds_decoded
|
|
401
|
+
|
|
402
|
+
prec, rec, f1, _ = precision_recall_fscore_support(
|
|
403
|
+
y_val_orig, preds_orig, average="weighted", zero_division=0
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
prec_per_class, rec_per_class, f1_per_class, _ = precision_recall_fscore_support(
|
|
407
|
+
y_val_orig, preds_orig, average=None, zero_division=0, labels=label_encoder.classes_
|
|
408
|
+
)
|
|
409
|
+
|
|
410
|
+
y_val_encoded = df_val[target_col].values
|
|
411
|
+
roc_auc_overall = roc_auc_score(y_val_encoded, probs, multi_class="ovr", average="macro")
|
|
412
|
+
roc_auc_per_class = roc_auc_score(y_val_encoded, probs, multi_class="ovr", average=None)
|
|
413
|
+
|
|
414
|
+
fold_metrics.append(
|
|
415
|
+
{
|
|
416
|
+
"fold": fold_idx,
|
|
417
|
+
"precision": prec,
|
|
418
|
+
"recall": rec,
|
|
419
|
+
"f1": f1,
|
|
420
|
+
"roc_auc": roc_auc_overall,
|
|
421
|
+
"precision_per_class": prec_per_class,
|
|
422
|
+
"recall_per_class": rec_per_class,
|
|
423
|
+
"f1_per_class": f1_per_class,
|
|
424
|
+
"roc_auc_per_class": roc_auc_per_class,
|
|
425
|
+
}
|
|
426
|
+
)
|
|
427
|
+
|
|
428
|
+
print(f"Fold {fold_idx} - F1: {f1:.4f}, ROC-AUC: {roc_auc_overall:.4f}")
|
|
429
|
+
else:
|
|
430
|
+
y_val = df_val[target_col].values
|
|
431
|
+
spearman_corr, _ = spearmanr(y_val, preds)
|
|
432
|
+
rmse = np.sqrt(mean_squared_error(y_val, preds))
|
|
433
|
+
|
|
434
|
+
fold_metrics.append(
|
|
435
|
+
{
|
|
436
|
+
"fold": fold_idx,
|
|
437
|
+
"rmse": rmse,
|
|
438
|
+
"mae": mean_absolute_error(y_val, preds),
|
|
439
|
+
"medae": median_absolute_error(y_val, preds),
|
|
440
|
+
"r2": r2_score(y_val, preds),
|
|
441
|
+
"spearmanr": spearman_corr,
|
|
442
|
+
}
|
|
443
|
+
)
|
|
444
|
+
|
|
445
|
+
print(f"Fold {fold_idx} - RMSE: {rmse:.4f}, R2: {fold_metrics[-1]['r2']:.4f}")
|
|
446
|
+
|
|
447
|
+
# Calculate summary metrics
|
|
448
|
+
fold_df = pd.DataFrame(fold_metrics)
|
|
449
|
+
|
|
450
|
+
if is_classifier:
|
|
451
|
+
if "pred_proba" in predictions_df.columns:
|
|
452
|
+
predictions_df = expand_proba_column(predictions_df, label_encoder.classes_)
|
|
453
|
+
|
|
454
|
+
metric_rows = []
|
|
455
|
+
for idx, class_name in enumerate(label_encoder.classes_):
|
|
456
|
+
prec_scores = np.array([fold["precision_per_class"][idx] for fold in fold_metrics])
|
|
457
|
+
rec_scores = np.array([fold["recall_per_class"][idx] for fold in fold_metrics])
|
|
458
|
+
f1_scores = np.array([fold["f1_per_class"][idx] for fold in fold_metrics])
|
|
459
|
+
roc_auc_scores = np.array([fold["roc_auc_per_class"][idx] for fold in fold_metrics])
|
|
460
|
+
|
|
461
|
+
y_orig = label_encoder.inverse_transform(y_for_cv)
|
|
462
|
+
support = int((y_orig == class_name).sum())
|
|
463
|
+
|
|
464
|
+
metric_rows.append(
|
|
465
|
+
{
|
|
466
|
+
"class": class_name,
|
|
467
|
+
"precision": prec_scores.mean(),
|
|
468
|
+
"recall": rec_scores.mean(),
|
|
469
|
+
"f1": f1_scores.mean(),
|
|
470
|
+
"roc_auc": roc_auc_scores.mean(),
|
|
471
|
+
"support": support,
|
|
472
|
+
}
|
|
473
|
+
)
|
|
474
|
+
|
|
475
|
+
metric_rows.append(
|
|
476
|
+
{
|
|
477
|
+
"class": "all",
|
|
478
|
+
"precision": fold_df["precision"].mean(),
|
|
479
|
+
"recall": fold_df["recall"].mean(),
|
|
480
|
+
"f1": fold_df["f1"].mean(),
|
|
481
|
+
"roc_auc": fold_df["roc_auc"].mean(),
|
|
482
|
+
"support": len(y_for_cv),
|
|
483
|
+
}
|
|
484
|
+
)
|
|
485
|
+
|
|
486
|
+
metrics_df = pd.DataFrame(metric_rows)
|
|
487
|
+
else:
|
|
488
|
+
metrics_df = pd.DataFrame(
|
|
489
|
+
[
|
|
490
|
+
{
|
|
491
|
+
"rmse": fold_df["rmse"].mean(),
|
|
492
|
+
"mae": fold_df["mae"].mean(),
|
|
493
|
+
"medae": fold_df["medae"].mean(),
|
|
494
|
+
"r2": fold_df["r2"].mean(),
|
|
495
|
+
"spearmanr": fold_df["spearmanr"].mean(),
|
|
496
|
+
"support": len(y_for_cv),
|
|
497
|
+
}
|
|
498
|
+
]
|
|
499
|
+
)
|
|
500
|
+
|
|
501
|
+
print(f"\n{'='*50}")
|
|
502
|
+
print("Cross-Validation Summary")
|
|
503
|
+
print(f"{'='*50}")
|
|
504
|
+
print(metrics_df.to_string(index=False))
|
|
505
|
+
|
|
506
|
+
return metrics_df, predictions_df
|
|
507
|
+
|
|
508
|
+
finally:
|
|
509
|
+
log.info(f"Cleaning up model directory: {model_dir}")
|
|
510
|
+
shutil.rmtree(model_dir, ignore_errors=True)
|
|
511
|
+
|
|
512
|
+
|
|
513
|
+
if __name__ == "__main__":
|
|
514
|
+
|
|
515
|
+
# Tests for the PyTorch utilities
|
|
516
|
+
from workbench.api import Model, Endpoint
|
|
517
|
+
|
|
518
|
+
# Initialize Workbench model
|
|
519
|
+
model_name = "caco2-er-reg-pytorch-test"
|
|
520
|
+
# model_name = "aqsol-pytorch-reg"
|
|
521
|
+
print(f"Loading Workbench model: {model_name}")
|
|
522
|
+
model = Model(model_name)
|
|
523
|
+
print(f"Model Framework: {model.model_framework}")
|
|
524
|
+
|
|
525
|
+
# Perform cross-fold inference
|
|
526
|
+
end = Endpoint(model.endpoints()[0])
|
|
527
|
+
end.cross_fold_inference()
|
|
@@ -308,7 +308,12 @@ def cross_fold_inference(workbench_model: Any, nfolds: int = 5) -> Tuple[pd.Data
|
|
|
308
308
|
fs = FeatureSet(workbench_model.get_input())
|
|
309
309
|
df = workbench_model.training_view().pull_dataframe()
|
|
310
310
|
|
|
311
|
-
#
|
|
311
|
+
# Extract sample weights if present
|
|
312
|
+
sample_weights = df.get("sample_weight")
|
|
313
|
+
if sample_weights is not None:
|
|
314
|
+
log.info(f"Using sample weights: min={sample_weights.min():.2f}, max={sample_weights.max():.2f}")
|
|
315
|
+
|
|
316
|
+
# Get columns
|
|
312
317
|
id_col = fs.id_column
|
|
313
318
|
target_col = workbench_model.target()
|
|
314
319
|
feature_cols = workbench_model.features()
|
|
@@ -316,10 +321,8 @@ def cross_fold_inference(workbench_model: Any, nfolds: int = 5) -> Tuple[pd.Data
|
|
|
316
321
|
print(f"Feature columns: {len(feature_cols)} features")
|
|
317
322
|
|
|
318
323
|
# Convert string[python] to object, then to category for XGBoost compatibility
|
|
319
|
-
# This avoids XGBoost's issue with pandas 2.x string[python] dtype in categorical categories
|
|
320
324
|
for col in feature_cols:
|
|
321
325
|
if pd.api.types.is_string_dtype(df[col]):
|
|
322
|
-
# Double conversion: string[python] -> object -> category
|
|
323
326
|
df[col] = df[col].astype("object").astype("category")
|
|
324
327
|
|
|
325
328
|
X = df[feature_cols]
|
|
@@ -335,7 +338,6 @@ def cross_fold_inference(workbench_model: Any, nfolds: int = 5) -> Tuple[pd.Data
|
|
|
335
338
|
y_for_cv = y
|
|
336
339
|
|
|
337
340
|
# Prepare KFold
|
|
338
|
-
# Note: random_state=42 seems to not actually give us reproducible results
|
|
339
341
|
kfold = (StratifiedKFold if is_classifier else KFold)(n_splits=nfolds, shuffle=True, random_state=42)
|
|
340
342
|
|
|
341
343
|
# Initialize results collection
|
|
@@ -347,8 +349,11 @@ def cross_fold_inference(workbench_model: Any, nfolds: int = 5) -> Tuple[pd.Data
|
|
|
347
349
|
X_train, X_val = X.iloc[train_idx], X.iloc[val_idx]
|
|
348
350
|
y_train, y_val = y_for_cv.iloc[train_idx], y_for_cv.iloc[val_idx]
|
|
349
351
|
|
|
352
|
+
# Get sample weights for training fold
|
|
353
|
+
weights_train = sample_weights.iloc[train_idx] if sample_weights is not None else None
|
|
354
|
+
|
|
350
355
|
# Train and predict
|
|
351
|
-
xgb_model.fit(X_train, y_train)
|
|
356
|
+
xgb_model.fit(X_train, y_train, sample_weight=weights_train)
|
|
352
357
|
preds = xgb_model.predict(X_val)
|
|
353
358
|
|
|
354
359
|
# Store predictions (decode if classifier)
|
|
@@ -36,8 +36,14 @@ class ModelPlot(ComponentInterface):
|
|
|
36
36
|
if df is None:
|
|
37
37
|
return self.display_text("No Data")
|
|
38
38
|
|
|
39
|
-
#
|
|
39
|
+
# Grab the target(s) for this model
|
|
40
40
|
target = model.target()
|
|
41
|
+
|
|
42
|
+
# For multi-task models, match target to inference_run name or default to first
|
|
43
|
+
if isinstance(target, list):
|
|
44
|
+
target = next((t for t in target if t in inference_run), target[0])
|
|
45
|
+
|
|
46
|
+
# Compute error for coloring
|
|
41
47
|
df["error"] = abs(df["prediction"] - df[target])
|
|
42
48
|
return ScatterPlot().update_properties(
|
|
43
49
|
df,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: workbench
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.203
|
|
4
4
|
Summary: Workbench: A Dashboard and Python API for creating and deploying AWS SageMaker Model Pipelines
|
|
5
5
|
Author-email: SuperCowPowers LLC <support@supercowpowers.com>
|
|
6
6
|
License: MIT License
|
|
@@ -42,7 +42,7 @@ Requires-Dist: redis>=5.0.1
|
|
|
42
42
|
Requires-Dist: numpy>=1.26.4
|
|
43
43
|
Requires-Dist: pandas>=2.2.1
|
|
44
44
|
Requires-Dist: awswrangler>=3.4.0
|
|
45
|
-
Requires-Dist: sagemaker
|
|
45
|
+
Requires-Dist: sagemaker<3.0,>=2.143
|
|
46
46
|
Requires-Dist: cryptography>=44.0.2
|
|
47
47
|
Requires-Dist: ipython>=8.37.0
|
|
48
48
|
Requires-Dist: pyreadline3; sys_platform == "win32"
|
|
@@ -52,7 +52,7 @@ Requires-Dist: joblib>=1.3.2
|
|
|
52
52
|
Requires-Dist: requests>=2.26.0
|
|
53
53
|
Requires-Dist: rdkit>=2024.9.5
|
|
54
54
|
Requires-Dist: mordredcommunity>=2.0.6
|
|
55
|
-
Requires-Dist: workbench-bridges>=0.1.
|
|
55
|
+
Requires-Dist: workbench-bridges>=0.1.15
|
|
56
56
|
Provides-Extra: ui
|
|
57
57
|
Requires-Dist: plotly>=6.0.0; extra == "ui"
|
|
58
58
|
Requires-Dist: dash>3.0.0; extra == "ui"
|