workbench 0.8.197__py3-none-any.whl → 0.8.198__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- workbench/algorithms/dataframe/proximity.py +8 -8
- workbench/model_scripts/__pycache__/script_generation.cpython-312.pyc +0 -0
- workbench/model_scripts/__pycache__/script_generation.cpython-313.pyc +0 -0
- workbench/model_scripts/custom_models/proximity/proximity.py +8 -8
- workbench/model_scripts/custom_models/uq_models/proximity.py +8 -8
- workbench/model_scripts/uq_models/generated_model_script.py +1 -1
- workbench/utils/xgboost_model_utils.py +2 -0
- {workbench-0.8.197.dist-info → workbench-0.8.198.dist-info}/METADATA +1 -1
- {workbench-0.8.197.dist-info → workbench-0.8.198.dist-info}/RECORD +13 -11
- {workbench-0.8.197.dist-info → workbench-0.8.198.dist-info}/WHEEL +0 -0
- {workbench-0.8.197.dist-info → workbench-0.8.198.dist-info}/entry_points.txt +0 -0
- {workbench-0.8.197.dist-info → workbench-0.8.198.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.197.dist-info → workbench-0.8.198.dist-info}/top_level.txt +0 -0
|
@@ -68,7 +68,7 @@ class Proximity:
|
|
|
68
68
|
self,
|
|
69
69
|
top_percent: float = 1.0,
|
|
70
70
|
min_delta: Optional[float] = None,
|
|
71
|
-
k_neighbors: int =
|
|
71
|
+
k_neighbors: int = 4,
|
|
72
72
|
) -> pd.DataFrame:
|
|
73
73
|
"""
|
|
74
74
|
Find compounds with steep target gradients (data quality issues and activity cliffs).
|
|
@@ -80,7 +80,7 @@ class Proximity:
|
|
|
80
80
|
Args:
|
|
81
81
|
top_percent: Percentage of compounds with steepest gradients to return (e.g., 1.0 = top 1%)
|
|
82
82
|
min_delta: Minimum absolute target difference to consider. If None, defaults to target_range/100
|
|
83
|
-
k_neighbors: Number of neighbors to use for median calculation (default:
|
|
83
|
+
k_neighbors: Number of neighbors to use for median calculation (default: 4)
|
|
84
84
|
|
|
85
85
|
Returns:
|
|
86
86
|
DataFrame of compounds with steepest gradients, sorted by gradient (descending)
|
|
@@ -113,23 +113,23 @@ class Proximity:
|
|
|
113
113
|
# Get k nearest neighbors (excluding self)
|
|
114
114
|
nbrs = self.neighbors(cmpd_id, n_neighbors=k_neighbors, include_self=False)
|
|
115
115
|
|
|
116
|
-
# Calculate median target of k nearest
|
|
117
|
-
neighbor_median = nbrs.
|
|
116
|
+
# Calculate median target of k neighbors, excluding the nearest neighbor (index 0)
|
|
117
|
+
neighbor_median = nbrs.iloc[1:k_neighbors][self.target].median()
|
|
118
118
|
median_diff = abs(cmpd_target - neighbor_median)
|
|
119
119
|
|
|
120
120
|
# Only keep if compound differs from neighborhood median
|
|
121
121
|
# This filters out cases where the nearest neighbor is the outlier
|
|
122
122
|
if median_diff >= min_delta:
|
|
123
|
-
mean_distance = nbrs.head(k_neighbors)["distance"].mean()
|
|
124
|
-
|
|
125
123
|
results.append(
|
|
126
124
|
{
|
|
127
125
|
self.id_column: cmpd_id,
|
|
128
126
|
self.target: cmpd_target,
|
|
127
|
+
"nn_target": row["nn_target"],
|
|
128
|
+
"nn_target_diff": row["nn_target_diff"],
|
|
129
|
+
"nn_distance": row["nn_distance"],
|
|
130
|
+
"gradient": row["gradient"], # Keep Phase 1 gradient
|
|
129
131
|
"neighbor_median": neighbor_median,
|
|
130
132
|
"neighbor_median_diff": median_diff,
|
|
131
|
-
"mean_distance": mean_distance,
|
|
132
|
-
"gradient": median_diff / (mean_distance + epsilon),
|
|
133
133
|
}
|
|
134
134
|
)
|
|
135
135
|
|
|
Binary file
|
|
Binary file
|
|
@@ -68,7 +68,7 @@ class Proximity:
|
|
|
68
68
|
self,
|
|
69
69
|
top_percent: float = 1.0,
|
|
70
70
|
min_delta: Optional[float] = None,
|
|
71
|
-
k_neighbors: int =
|
|
71
|
+
k_neighbors: int = 4,
|
|
72
72
|
) -> pd.DataFrame:
|
|
73
73
|
"""
|
|
74
74
|
Find compounds with steep target gradients (data quality issues and activity cliffs).
|
|
@@ -80,7 +80,7 @@ class Proximity:
|
|
|
80
80
|
Args:
|
|
81
81
|
top_percent: Percentage of compounds with steepest gradients to return (e.g., 1.0 = top 1%)
|
|
82
82
|
min_delta: Minimum absolute target difference to consider. If None, defaults to target_range/100
|
|
83
|
-
k_neighbors: Number of neighbors to use for median calculation (default:
|
|
83
|
+
k_neighbors: Number of neighbors to use for median calculation (default: 4)
|
|
84
84
|
|
|
85
85
|
Returns:
|
|
86
86
|
DataFrame of compounds with steepest gradients, sorted by gradient (descending)
|
|
@@ -113,23 +113,23 @@ class Proximity:
|
|
|
113
113
|
# Get k nearest neighbors (excluding self)
|
|
114
114
|
nbrs = self.neighbors(cmpd_id, n_neighbors=k_neighbors, include_self=False)
|
|
115
115
|
|
|
116
|
-
# Calculate median target of k nearest
|
|
117
|
-
neighbor_median = nbrs.
|
|
116
|
+
# Calculate median target of k neighbors, excluding the nearest neighbor (index 0)
|
|
117
|
+
neighbor_median = nbrs.iloc[1:k_neighbors][self.target].median()
|
|
118
118
|
median_diff = abs(cmpd_target - neighbor_median)
|
|
119
119
|
|
|
120
120
|
# Only keep if compound differs from neighborhood median
|
|
121
121
|
# This filters out cases where the nearest neighbor is the outlier
|
|
122
122
|
if median_diff >= min_delta:
|
|
123
|
-
mean_distance = nbrs.head(k_neighbors)["distance"].mean()
|
|
124
|
-
|
|
125
123
|
results.append(
|
|
126
124
|
{
|
|
127
125
|
self.id_column: cmpd_id,
|
|
128
126
|
self.target: cmpd_target,
|
|
127
|
+
"nn_target": row["nn_target"],
|
|
128
|
+
"nn_target_diff": row["nn_target_diff"],
|
|
129
|
+
"nn_distance": row["nn_distance"],
|
|
130
|
+
"gradient": row["gradient"], # Keep Phase 1 gradient
|
|
129
131
|
"neighbor_median": neighbor_median,
|
|
130
132
|
"neighbor_median_diff": median_diff,
|
|
131
|
-
"mean_distance": mean_distance,
|
|
132
|
-
"gradient": median_diff / (mean_distance + epsilon),
|
|
133
133
|
}
|
|
134
134
|
)
|
|
135
135
|
|
|
@@ -68,7 +68,7 @@ class Proximity:
|
|
|
68
68
|
self,
|
|
69
69
|
top_percent: float = 1.0,
|
|
70
70
|
min_delta: Optional[float] = None,
|
|
71
|
-
k_neighbors: int =
|
|
71
|
+
k_neighbors: int = 4,
|
|
72
72
|
) -> pd.DataFrame:
|
|
73
73
|
"""
|
|
74
74
|
Find compounds with steep target gradients (data quality issues and activity cliffs).
|
|
@@ -80,7 +80,7 @@ class Proximity:
|
|
|
80
80
|
Args:
|
|
81
81
|
top_percent: Percentage of compounds with steepest gradients to return (e.g., 1.0 = top 1%)
|
|
82
82
|
min_delta: Minimum absolute target difference to consider. If None, defaults to target_range/100
|
|
83
|
-
k_neighbors: Number of neighbors to use for median calculation (default:
|
|
83
|
+
k_neighbors: Number of neighbors to use for median calculation (default: 4)
|
|
84
84
|
|
|
85
85
|
Returns:
|
|
86
86
|
DataFrame of compounds with steepest gradients, sorted by gradient (descending)
|
|
@@ -113,23 +113,23 @@ class Proximity:
|
|
|
113
113
|
# Get k nearest neighbors (excluding self)
|
|
114
114
|
nbrs = self.neighbors(cmpd_id, n_neighbors=k_neighbors, include_self=False)
|
|
115
115
|
|
|
116
|
-
# Calculate median target of k nearest
|
|
117
|
-
neighbor_median = nbrs.
|
|
116
|
+
# Calculate median target of k neighbors, excluding the nearest neighbor (index 0)
|
|
117
|
+
neighbor_median = nbrs.iloc[1:k_neighbors][self.target].median()
|
|
118
118
|
median_diff = abs(cmpd_target - neighbor_median)
|
|
119
119
|
|
|
120
120
|
# Only keep if compound differs from neighborhood median
|
|
121
121
|
# This filters out cases where the nearest neighbor is the outlier
|
|
122
122
|
if median_diff >= min_delta:
|
|
123
|
-
mean_distance = nbrs.head(k_neighbors)["distance"].mean()
|
|
124
|
-
|
|
125
123
|
results.append(
|
|
126
124
|
{
|
|
127
125
|
self.id_column: cmpd_id,
|
|
128
126
|
self.target: cmpd_target,
|
|
127
|
+
"nn_target": row["nn_target"],
|
|
128
|
+
"nn_target_diff": row["nn_target_diff"],
|
|
129
|
+
"nn_distance": row["nn_distance"],
|
|
130
|
+
"gradient": row["gradient"], # Keep Phase 1 gradient
|
|
129
131
|
"neighbor_median": neighbor_median,
|
|
130
132
|
"neighbor_median_diff": median_diff,
|
|
131
|
-
"mean_distance": mean_distance,
|
|
132
|
-
"gradient": median_diff / (mean_distance + epsilon),
|
|
133
133
|
}
|
|
134
134
|
)
|
|
135
135
|
|
|
@@ -19,7 +19,7 @@ from typing import List, Tuple, Optional, Dict
|
|
|
19
19
|
# Template Placeholders
|
|
20
20
|
TEMPLATE_PARAMS = {
|
|
21
21
|
"target": "udm_asy_res_efflux_ratio",
|
|
22
|
-
"features": ['
|
|
22
|
+
"features": ['smr_vsa4', 'tpsa', 'numhdonors', 'nhohcount', 'peoe_vsa1', 'mollogp', 'peoe_vsa8', 'nitrogen_span', 'smr_vsa3', 'vsa_estate2', 'chi1v', 'molmr', 'estate_vsa4', 'xc_4dv', 'vsa_estate3', 'vsa_estate6', 'qed', 'estate_vsa8', 'chi2v', 'molecular_asymmetry', 'asphericity', 'vsa_estate4', 'minpartialcharge', 'axp_1d', 'num_s_centers', 'charge_centroid_distance', 'xpc_4dv', 'axp_0dv', 'estate_vsa2', 'peoe_vsa3', 'molecular_axis_length', 'mi', 'aromatic_interaction_score', 'vsa_estate8', 'bcut2d_logphi', 'molecular_volume_3d', 'balabanj', 'fr_al_oh', 'minabsestateindex', 'axp_7dv', 'axp_7d', 'bcut2d_chglo', 'vsa_estate9', 'xch_6d', 'kappa3', 'bcut2d_mrlow', 'estate_vsa3', 'c3sp3', 'chi3n', 'type_ii_pattern_count', 'xp_3d', 'bcut2d_logplow', 'fr_nhpyrrole', 'peoe_vsa9', 'slogp_vsa3', 'peoe_vsa2', 'maxabspartialcharge', 'fpdensitymorgan1', 'xch_7d', 'peoe_vsa11', 'axp_3d', 'bcut2d_mwlow', 'maxestateindex', 'minestateindex', 'radius_of_gyration', 'avgipc', 'smr_vsa6', 'vsa_estate7', 'fpdensitymorgan3', 'estate_vsa6', 'xp_7dv', 'xp_6dv', 'chi4n', 'vsa_estate5', 'fr_imidazole', 'xc_3dv', 'slogp_vsa2', 'num_r_centers', 'xch_5dv', 'bcut2d_mrhi', 'xp_4dv', 'xp_6d', 'mm', 'xpc_6d', 'numsaturatedcarbocycles', 'axp_3dv', 'chi3v', 'numvalenceelectrons', 'mare', 'c1sp2', 'smr_vsa9', 'xp_3dv', 'axp_1dv', 'fpdensitymorgan2', 'slogp_vsa5', 'sps', 'xc_3d', 'bertzct', 'estate_vsa10', 'axp_4d', 'smr_vsa1', 'peoe_vsa10', 'hallkieralpha', 'axp_5dv', 'chi0v', 'xch_7dv', 'mv', 'estate_vsa9', 'fr_ketone_topliss', 'estate_vsa5', 'molwt', 'estate_vsa7', 'type_i_pattern_count', 'xp_5d', 'heavyatommolwt', 'smr_vsa10', 'xc_4d', 'estate_vsa1', 'vsa_estate10', 'axp_6dv', 'axp_2d', 'mp', 'xc_5d', 'xch_6dv', 'xp_7d', 'peoe_vsa7', 'axp_0d', 'xp_2dv', 'axp_6d', 'xc_5dv', 'chi4v', 'xch_4dv', 'mz', 'tertiary_amine_count', 'xpc_6dv', 'peoe_vsa13', 'xpc_4d', 'hybratio', 'axp_5d', 'kappa2', 'slogp_vsa6', 'xpc_5dv', 'phi', 'xch_4d', 'smr_vsa5', 'kappa1', 'xp_5dv', 'bcut2d_chghi', 'numrotatablebonds', 'fr_ar_n', 'maxpartialcharge', 'bcut2d_mwhi', 'peoe_vsa4', 'c3sp2', 'smr_vsa7', 'slogp_vsa4', 'fr_nh0', 'xch_5d', 'slogp_vsa1', 'slogp_vsa10', 'axp_2dv', 'xc_6dv', 'numaliphaticrings', 'axp_4dv', 'chi0', 'labuteasa', 'c1sp3', 'numaliphaticcarbocycles', 'xp_0dv', 'fr_hoccn', 'fr_piperdine', 'fractioncsp3', 'si', 'slogp_vsa8', 'sv', 'fr_thiazole', 'fr_guanido', 'spe', 'peoe_vsa6', 'fr_pyridine', 'nocount', 'fr_piperzine', 'chi2n', 'chi0n', 'mse', 'fr_aniline', 'xpc_5d', 'peoe_vsa12', 'fr_ndealkylation1', 'fr_al_oh_notert', 'fr_methoxy', 'numheteroatoms', 'c2sp3', 'fr_nh1', 'sp', 'chi1', 'peoe_vsa14', 'numatomstereocenters', 'ringcount', 'mpe', 'slogp_vsa7', 'frac_defined_stereo', 'fr_morpholine', 'c2sp2', 'xp_2d', 'vsa_estate1', 'slogp_vsa11', 'fr_benzene', 'nbase', 'xp_4d', 'num_stereocenters', 'fr_arn', 'minabspartialcharge', 'chi1n', 'sare', 'numspiroatoms', 'xp_0d', 'fr_aryl_methyl', 'fr_imine', 'fr_priamide', 'num_defined_stereocenters', 'numunspecifiedatomstereocenters', 'fr_oxazole'],
|
|
23
23
|
"compressed_features": [],
|
|
24
24
|
"train_all_data": True,
|
|
25
25
|
"hyperparameters": {},
|
|
@@ -312,6 +312,8 @@ def cross_fold_inference(workbench_model: Any, nfolds: int = 5) -> Tuple[pd.Data
|
|
|
312
312
|
id_col = fs.id_column
|
|
313
313
|
target_col = workbench_model.target()
|
|
314
314
|
feature_cols = workbench_model.features()
|
|
315
|
+
print(f"Target column: {target_col}")
|
|
316
|
+
print(f"Feature columns: {len(feature_cols)} features")
|
|
315
317
|
|
|
316
318
|
# Convert string[python] to object, then to category for XGBoost compatibility
|
|
317
319
|
# This avoids XGBoost's issue with pandas 2.x string[python] dtype in categorical categories
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: workbench
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.198
|
|
4
4
|
Summary: Workbench: A Dashboard and Python API for creating and deploying AWS SageMaker Model Pipelines
|
|
5
5
|
Author-email: SuperCowPowers LLC <support@supercowpowers.com>
|
|
6
6
|
License: MIT License
|
|
@@ -6,7 +6,7 @@ workbench/algorithms/dataframe/data_source_eda.py,sha256=WgVL6tzBCw1tznQr8RQ6daQ
|
|
|
6
6
|
workbench/algorithms/dataframe/feature_space_proximity.py,sha256=6RxzvbpLdDkHMm1D49Nv59SFcyYUj8bisd6_5EpBEGI,3515
|
|
7
7
|
workbench/algorithms/dataframe/fingerprint_proximity.py,sha256=nGxfmYQ3bfMtvs90s4p7gaY9DN4gijdDU7R6B2lRHgo,5825
|
|
8
8
|
workbench/algorithms/dataframe/projection_2d.py,sha256=zK4hc0OQrySmfcfFg8y0GxEL34uDNqvZL4OgttB9vRs,7834
|
|
9
|
-
workbench/algorithms/dataframe/proximity.py,sha256=
|
|
9
|
+
workbench/algorithms/dataframe/proximity.py,sha256=MYVkQfn-pqXCm25dwiXaBDQngtBaN8lM8yeILJAstjY,15468
|
|
10
10
|
workbench/algorithms/dataframe/storage/aggregation.py,sha256=VuTb7A6Vh6IS5djZeItvOLnnEOlf7tzMQ8OaYIuftvU,2852
|
|
11
11
|
workbench/algorithms/dataframe/storage/feature_resolution.py,sha256=w_iLf8EFTg7Jc5laH-bsq8MEtZVqcg05W-GihCqR-r4,9450
|
|
12
12
|
workbench/algorithms/dataframe/storage/feature_spider.py,sha256=uIZ4JHIKuhpy08wBFReSrohb5DGxx8vGroHUbjPm1jE,14353
|
|
@@ -123,6 +123,8 @@ workbench/core/views/view.py,sha256=8pZSVDhOFMnAh49ccvnvjQs0dWpiA5IeHaYrztRcqkM,
|
|
|
123
123
|
workbench/core/views/view_utils.py,sha256=CwOlpqXpumCr6REi-ey7Qjz5_tpg-s4oWHmlOVu8POQ,12270
|
|
124
124
|
workbench/core/views/storage/mdq_view.py,sha256=qf_ep1KwaXOIfO930laEwNIiCYP7VNOqjE3VdHfopRE,5195
|
|
125
125
|
workbench/model_scripts/script_generation.py,sha256=dLxVRrvrrI_HQatJRAXta6UEbFFbkgITNvDJllQZyCM,7905
|
|
126
|
+
workbench/model_scripts/__pycache__/script_generation.cpython-312.pyc,sha256=p3q4RDNMkLKpt4UMrdY94rZcZGgvNcTstS2r5ZIvrSg,7570
|
|
127
|
+
workbench/model_scripts/__pycache__/script_generation.cpython-313.pyc,sha256=eodln_BQ1mvfLxE6n1_6WFtMBTKqepwWmXubBk7pL1s,7559
|
|
126
128
|
workbench/model_scripts/custom_models/chem_info/Readme.md,sha256=mH1lxJ4Pb7F5nBnVXaiuxpi8zS_yjUw_LBJepVKXhlA,574
|
|
127
129
|
workbench/model_scripts/custom_models/chem_info/mol_descriptors.py,sha256=c8gkHZ-8s3HJaW9zN9pnYGK7YVW8Y0xFqQ1G_ysrF2Y,18789
|
|
128
130
|
workbench/model_scripts/custom_models/chem_info/mol_standardize.py,sha256=qPLCdVMSXMOWN-01O1isg2zq7eQyFAI0SNatHkRq1uw,17524
|
|
@@ -133,7 +135,7 @@ workbench/model_scripts/custom_models/meta_endpoints/example.py,sha256=hzOAuLhIG
|
|
|
133
135
|
workbench/model_scripts/custom_models/network_security/Readme.md,sha256=Z2gtiu0hLHvEJ1x-_oFq3qJZcsK81sceBAGAGltpqQ8,222
|
|
134
136
|
workbench/model_scripts/custom_models/proximity/Readme.md,sha256=RlMFAJZgAT2mCgDk-UwR_R0Y_NbCqeI5-8DUsxsbpWQ,289
|
|
135
137
|
workbench/model_scripts/custom_models/proximity/feature_space_proximity.template,sha256=eOllmqB20BWtTiV53dgpIqXKtgSbPFDW_zf8PvM3oF0,4813
|
|
136
|
-
workbench/model_scripts/custom_models/proximity/proximity.py,sha256=
|
|
138
|
+
workbench/model_scripts/custom_models/proximity/proximity.py,sha256=MYVkQfn-pqXCm25dwiXaBDQngtBaN8lM8yeILJAstjY,15468
|
|
137
139
|
workbench/model_scripts/custom_models/proximity/requirements.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
138
140
|
workbench/model_scripts/custom_models/uq_models/Readme.md,sha256=UVpL-lvtTrLqwBeQFinLhd_uNrEw4JUlggIdUSDrd-w,188
|
|
139
141
|
workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template,sha256=ca3CaAk6HVuNv1HnPgABTzRY3oDrRxomjgD4V1ZDwoc,6448
|
|
@@ -141,7 +143,7 @@ workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template,sha256=xlK
|
|
|
141
143
|
workbench/model_scripts/custom_models/uq_models/gaussian_process.template,sha256=3nMlCi8nEbc4N-MQTzjfIcljfDQkUmWeLBfmd18m5fg,6632
|
|
142
144
|
workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=XTfhODRaHlI1jZGo9pSe-TqNsk2_nuSw0xMO2fKzDv8,14011
|
|
143
145
|
workbench/model_scripts/custom_models/uq_models/ngboost.template,sha256=v1rviYTJGJnQRGgAyveXhOQlS-WFCTlc2vdnWq6HIXk,8241
|
|
144
|
-
workbench/model_scripts/custom_models/uq_models/proximity.py,sha256=
|
|
146
|
+
workbench/model_scripts/custom_models/uq_models/proximity.py,sha256=MYVkQfn-pqXCm25dwiXaBDQngtBaN8lM8yeILJAstjY,15468
|
|
145
147
|
workbench/model_scripts/custom_models/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
|
|
146
148
|
workbench/model_scripts/custom_script_example/custom_model_script.py,sha256=T8aydawgRVAdSlDimoWpXxG2YuWWQkbcjBVjAeSG2_0,6408
|
|
147
149
|
workbench/model_scripts/custom_script_example/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
|
|
@@ -152,7 +154,7 @@ workbench/model_scripts/pytorch_model/pytorch.template,sha256=_gRp6DH294FLxF21Up
|
|
|
152
154
|
workbench/model_scripts/pytorch_model/requirements.txt,sha256=ICS5nW0wix44EJO2tJszJSaUrSvhSfdedn6FcRInGx4,181
|
|
153
155
|
workbench/model_scripts/scikit_learn/requirements.txt,sha256=aVvwiJ3LgBUhM_PyFlb2gHXu_kpGPho3ANBzlOkfcvs,107
|
|
154
156
|
workbench/model_scripts/scikit_learn/scikit_learn.template,sha256=QQvqx-eX9ZTbYmyupq6R6vIQwosmsmY_MRBPaHyfjdk,12586
|
|
155
|
-
workbench/model_scripts/uq_models/generated_model_script.py,sha256=
|
|
157
|
+
workbench/model_scripts/uq_models/generated_model_script.py,sha256=JiPo_lVUSZ66rF6152nZtZ8h6_bzT9rPkKsmRsf6nCU,25707
|
|
156
158
|
workbench/model_scripts/uq_models/mapie.template,sha256=lq_kG9aRE_7_Or_jVfM4M5zkn9A1fEatneKI7_2zLQs,22784
|
|
157
159
|
workbench/model_scripts/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
|
|
158
160
|
workbench/model_scripts/xgb_model/generated_model_script.py,sha256=jp4OCWdH_j5dc2ZxUMdlxSumZohbV02w9HWrCRt-8kc,18083
|
|
@@ -238,7 +240,7 @@ workbench/utils/workbench_cache.py,sha256=IQchxB81iR4eVggHBxUJdXxUCRkqWz1jKe5gxN
|
|
|
238
240
|
workbench/utils/workbench_event_bridge.py,sha256=z1GmXOB-Qs7VOgC6Hjnp2DI9nSEWepaSXejACxTIR7o,4150
|
|
239
241
|
workbench/utils/workbench_logging.py,sha256=WCuMWhQwibrvcGAyj96h2wowh6dH7zNlDJ7sWUzdCeI,10263
|
|
240
242
|
workbench/utils/workbench_sqs.py,sha256=RwM80z7YWwdtMaCKh7KWF8v38f7eBRU7kyC7ZhTRuI0,2072
|
|
241
|
-
workbench/utils/xgboost_model_utils.py,sha256=
|
|
243
|
+
workbench/utils/xgboost_model_utils.py,sha256=IF2d4dwwGMnRhvXheq82PZgAWRviac0DdnHDzTwa9_I,24955
|
|
242
244
|
workbench/utils/chem_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
243
245
|
workbench/utils/chem_utils/fingerprints.py,sha256=Qvs8jaUwguWUq3Q3j695MY0t0Wk3BvroW-oWBwalMUo,5255
|
|
244
246
|
workbench/utils/chem_utils/misc.py,sha256=Nevf8_opu-uIPrv_1_0ubuFVVo2_fGUkMoLAHB3XAeo,7372
|
|
@@ -283,9 +285,9 @@ workbench/web_interface/page_views/main_page.py,sha256=X4-KyGTKLAdxR-Zk2niuLJB2Y
|
|
|
283
285
|
workbench/web_interface/page_views/models_page_view.py,sha256=M0bdC7bAzLyIaE2jviY12FF4abdMFZmg6sFuOY_LaGI,2650
|
|
284
286
|
workbench/web_interface/page_views/page_view.py,sha256=Gh6YnpOGlUejx-bHZAf5pzqoQ1H1R0OSwOpGhOBO06w,455
|
|
285
287
|
workbench/web_interface/page_views/pipelines_page_view.py,sha256=v2pxrIbsHBcYiblfius3JK766NZ7ciD2yPx0t3E5IJo,2656
|
|
286
|
-
workbench-0.8.
|
|
287
|
-
workbench-0.8.
|
|
288
|
-
workbench-0.8.
|
|
289
|
-
workbench-0.8.
|
|
290
|
-
workbench-0.8.
|
|
291
|
-
workbench-0.8.
|
|
288
|
+
workbench-0.8.198.dist-info/licenses/LICENSE,sha256=RTBoTMeEwTgEhS-n8vgQ-VUo5qig0PWVd8xFPKU6Lck,1080
|
|
289
|
+
workbench-0.8.198.dist-info/METADATA,sha256=jzKIsckClbcN7Xcf0CUk3EWYXqR_hsVE7r4lPGaCj3c,10495
|
|
290
|
+
workbench-0.8.198.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
291
|
+
workbench-0.8.198.dist-info/entry_points.txt,sha256=o7ohD4D2oygnHp7i9-C0LfcHDuPW5Tv0JXGAg97DpGk,413
|
|
292
|
+
workbench-0.8.198.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
|
|
293
|
+
workbench-0.8.198.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|