workbench 0.8.189__py3-none-any.whl → 0.8.190__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of workbench might be problematic. Click here for more details.
- workbench/scripts/lambda_launcher.py +15 -2
- workbench/scripts/ml_pipeline_sqs.py +33 -3
- {workbench-0.8.189.dist-info → workbench-0.8.190.dist-info}/METADATA +1 -1
- {workbench-0.8.189.dist-info → workbench-0.8.190.dist-info}/RECORD +8 -15
- workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -136
- workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -492
- workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
- workbench/model_scripts/pytorch_model/generated_model_script.py +0 -576
- workbench/model_scripts/scikit_learn/generated_model_script.py +0 -307
- workbench/model_scripts/uq_models/generated_model_script.py +0 -492
- workbench/model_scripts/xgb_model/generated_model_script.py +0 -468
- {workbench-0.8.189.dist-info → workbench-0.8.190.dist-info}/WHEEL +0 -0
- {workbench-0.8.189.dist-info → workbench-0.8.190.dist-info}/entry_points.txt +0 -0
- {workbench-0.8.189.dist-info → workbench-0.8.190.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.189.dist-info → workbench-0.8.190.dist-info}/top_level.txt +0 -0
|
@@ -1,468 +0,0 @@
|
|
|
1
|
-
# Imports for XGB Model
|
|
2
|
-
import xgboost as xgb
|
|
3
|
-
import awswrangler as wr
|
|
4
|
-
import numpy as np
|
|
5
|
-
|
|
6
|
-
# Model Performance Scores
|
|
7
|
-
from sklearn.metrics import (
|
|
8
|
-
mean_absolute_error,
|
|
9
|
-
r2_score,
|
|
10
|
-
root_mean_squared_error,
|
|
11
|
-
precision_recall_fscore_support,
|
|
12
|
-
confusion_matrix,
|
|
13
|
-
)
|
|
14
|
-
|
|
15
|
-
# Classification Encoder
|
|
16
|
-
from sklearn.preprocessing import LabelEncoder
|
|
17
|
-
|
|
18
|
-
# Scikit Learn Imports
|
|
19
|
-
from sklearn.model_selection import train_test_split
|
|
20
|
-
|
|
21
|
-
from io import StringIO
|
|
22
|
-
import json
|
|
23
|
-
import argparse
|
|
24
|
-
import joblib
|
|
25
|
-
import os
|
|
26
|
-
import pandas as pd
|
|
27
|
-
from typing import List, Tuple
|
|
28
|
-
|
|
29
|
-
# Template Parameters
|
|
30
|
-
TEMPLATE_PARAMS = {
|
|
31
|
-
"model_type": "regressor",
|
|
32
|
-
"target": "class_number_of_rings",
|
|
33
|
-
"features": ['length', 'diameter', 'height', 'whole_weight', 'shucked_weight', 'viscera_weight', 'shell_weight', 'sex'],
|
|
34
|
-
"compressed_features": [],
|
|
35
|
-
"model_metrics_s3_path": "s3://sandbox-sageworks-artifacts/models/abalone-regression/training",
|
|
36
|
-
"train_all_data": False,
|
|
37
|
-
"hyperparameters": {},
|
|
38
|
-
}
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
# Function to check if dataframe is empty
|
|
42
|
-
def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
|
|
43
|
-
"""
|
|
44
|
-
Check if the provided dataframe is empty and raise an exception if it is.
|
|
45
|
-
|
|
46
|
-
Args:
|
|
47
|
-
df (pd.DataFrame): DataFrame to check
|
|
48
|
-
df_name (str): Name of the DataFrame
|
|
49
|
-
"""
|
|
50
|
-
if df.empty:
|
|
51
|
-
msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
|
|
52
|
-
print(msg)
|
|
53
|
-
raise ValueError(msg)
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
def expand_proba_column(df: pd.DataFrame, class_labels: List[str]) -> pd.DataFrame:
|
|
57
|
-
"""
|
|
58
|
-
Expands a column in a DataFrame containing a list of probabilities into separate columns.
|
|
59
|
-
|
|
60
|
-
Args:
|
|
61
|
-
df (pd.DataFrame): DataFrame containing a "pred_proba" column
|
|
62
|
-
class_labels (List[str]): List of class labels
|
|
63
|
-
|
|
64
|
-
Returns:
|
|
65
|
-
pd.DataFrame: DataFrame with the "pred_proba" expanded into separate columns
|
|
66
|
-
"""
|
|
67
|
-
|
|
68
|
-
# Sanity check
|
|
69
|
-
proba_column = "pred_proba"
|
|
70
|
-
if proba_column not in df.columns:
|
|
71
|
-
raise ValueError('DataFrame does not contain a "pred_proba" column')
|
|
72
|
-
|
|
73
|
-
# Construct new column names with '_proba' suffix
|
|
74
|
-
proba_splits = [f"{label}_proba" for label in class_labels]
|
|
75
|
-
|
|
76
|
-
# Expand the proba_column into separate columns for each probability
|
|
77
|
-
proba_df = pd.DataFrame(df[proba_column].tolist(), columns=proba_splits)
|
|
78
|
-
|
|
79
|
-
# Drop any proba columns and reset the index in prep for the concat
|
|
80
|
-
df = df.drop(columns=[proba_column] + proba_splits, errors="ignore")
|
|
81
|
-
df = df.reset_index(drop=True)
|
|
82
|
-
|
|
83
|
-
# Concatenate the new columns with the original DataFrame
|
|
84
|
-
df = pd.concat([df, proba_df], axis=1)
|
|
85
|
-
print(df)
|
|
86
|
-
return df
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
|
|
90
|
-
"""
|
|
91
|
-
Matches and renames DataFrame columns to match model feature names (case-insensitive).
|
|
92
|
-
Prioritizes exact matches, then case-insensitive matches.
|
|
93
|
-
|
|
94
|
-
Raises ValueError if any model features cannot be matched.
|
|
95
|
-
"""
|
|
96
|
-
df_columns_lower = {col.lower(): col for col in df.columns}
|
|
97
|
-
rename_dict = {}
|
|
98
|
-
missing = []
|
|
99
|
-
for feature in model_features:
|
|
100
|
-
if feature in df.columns:
|
|
101
|
-
continue # Exact match
|
|
102
|
-
elif feature.lower() in df_columns_lower:
|
|
103
|
-
rename_dict[df_columns_lower[feature.lower()]] = feature
|
|
104
|
-
else:
|
|
105
|
-
missing.append(feature)
|
|
106
|
-
|
|
107
|
-
if missing:
|
|
108
|
-
raise ValueError(f"Features not found: {missing}")
|
|
109
|
-
|
|
110
|
-
# Rename the DataFrame columns to match the model features
|
|
111
|
-
return df.rename(columns=rename_dict)
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
def convert_categorical_types(df: pd.DataFrame, features: list, category_mappings={}) -> tuple:
|
|
115
|
-
"""
|
|
116
|
-
Converts appropriate columns to categorical type with consistent mappings.
|
|
117
|
-
|
|
118
|
-
Args:
|
|
119
|
-
df (pd.DataFrame): The DataFrame to process.
|
|
120
|
-
features (list): List of feature names to consider for conversion.
|
|
121
|
-
category_mappings (dict, optional): Existing category mappings. If empty dict, we're in
|
|
122
|
-
training mode. If populated, we're in inference mode.
|
|
123
|
-
|
|
124
|
-
Returns:
|
|
125
|
-
tuple: (processed DataFrame, category mappings dictionary)
|
|
126
|
-
"""
|
|
127
|
-
# Training mode
|
|
128
|
-
if category_mappings == {}:
|
|
129
|
-
for col in df.select_dtypes(include=["object", "string"]):
|
|
130
|
-
if col in features and df[col].nunique() < 20:
|
|
131
|
-
print(f"Training mode: Converting {col} to category")
|
|
132
|
-
df[col] = df[col].astype("category")
|
|
133
|
-
category_mappings[col] = df[col].cat.categories.tolist() # Store category mappings
|
|
134
|
-
|
|
135
|
-
# Inference mode
|
|
136
|
-
else:
|
|
137
|
-
for col, categories in category_mappings.items():
|
|
138
|
-
if col in df.columns:
|
|
139
|
-
print(f"Inference mode: Applying categorical mapping for {col}")
|
|
140
|
-
df[col] = pd.Categorical(df[col], categories=categories) # Apply consistent categorical mapping
|
|
141
|
-
|
|
142
|
-
return df, category_mappings
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
def decompress_features(
|
|
146
|
-
df: pd.DataFrame, features: List[str], compressed_features: List[str]
|
|
147
|
-
) -> Tuple[pd.DataFrame, List[str]]:
|
|
148
|
-
"""Prepare features for the model by decompressing bitstring features
|
|
149
|
-
|
|
150
|
-
Args:
|
|
151
|
-
df (pd.DataFrame): The features DataFrame
|
|
152
|
-
features (List[str]): Full list of feature names
|
|
153
|
-
compressed_features (List[str]): List of feature names to decompress (bitstrings)
|
|
154
|
-
|
|
155
|
-
Returns:
|
|
156
|
-
pd.DataFrame: DataFrame with the decompressed features
|
|
157
|
-
List[str]: Updated list of feature names after decompression
|
|
158
|
-
|
|
159
|
-
Raises:
|
|
160
|
-
ValueError: If any missing values are found in the specified features
|
|
161
|
-
"""
|
|
162
|
-
|
|
163
|
-
# Check for any missing values in the required features
|
|
164
|
-
missing_counts = df[features].isna().sum()
|
|
165
|
-
if missing_counts.any():
|
|
166
|
-
missing_features = missing_counts[missing_counts > 0]
|
|
167
|
-
print(
|
|
168
|
-
f"WARNING: Found missing values in features: {missing_features.to_dict()}. "
|
|
169
|
-
"WARNING: You might want to remove/replace all NaN values before processing."
|
|
170
|
-
)
|
|
171
|
-
|
|
172
|
-
# Decompress the specified compressed features
|
|
173
|
-
decompressed_features = features.copy()
|
|
174
|
-
for feature in compressed_features:
|
|
175
|
-
if (feature not in df.columns) or (feature not in features):
|
|
176
|
-
print(f"Feature '{feature}' not in the features list, skipping decompression.")
|
|
177
|
-
continue
|
|
178
|
-
|
|
179
|
-
# Remove the feature from the list of features to avoid duplication
|
|
180
|
-
decompressed_features.remove(feature)
|
|
181
|
-
|
|
182
|
-
# Handle all compressed features as bitstrings
|
|
183
|
-
bit_matrix = np.array([list(bitstring) for bitstring in df[feature]], dtype=np.uint8)
|
|
184
|
-
prefix = feature[:3]
|
|
185
|
-
|
|
186
|
-
# Create all new columns at once - avoids fragmentation
|
|
187
|
-
new_col_names = [f"{prefix}_{i}" for i in range(bit_matrix.shape[1])]
|
|
188
|
-
new_df = pd.DataFrame(bit_matrix, columns=new_col_names, index=df.index)
|
|
189
|
-
|
|
190
|
-
# Add to features list
|
|
191
|
-
decompressed_features.extend(new_col_names)
|
|
192
|
-
|
|
193
|
-
# Drop original column and concatenate new ones
|
|
194
|
-
df = df.drop(columns=[feature])
|
|
195
|
-
df = pd.concat([df, new_df], axis=1)
|
|
196
|
-
|
|
197
|
-
return df, decompressed_features
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
if __name__ == "__main__":
|
|
201
|
-
"""The main function is for training the XGBoost model"""
|
|
202
|
-
|
|
203
|
-
# Harness Template Parameters
|
|
204
|
-
target = TEMPLATE_PARAMS["target"]
|
|
205
|
-
features = TEMPLATE_PARAMS["features"]
|
|
206
|
-
orig_features = features.copy()
|
|
207
|
-
compressed_features = TEMPLATE_PARAMS["compressed_features"]
|
|
208
|
-
model_type = TEMPLATE_PARAMS["model_type"]
|
|
209
|
-
model_metrics_s3_path = TEMPLATE_PARAMS["model_metrics_s3_path"]
|
|
210
|
-
train_all_data = TEMPLATE_PARAMS["train_all_data"]
|
|
211
|
-
hyperparameters = TEMPLATE_PARAMS["hyperparameters"]
|
|
212
|
-
validation_split = 0.2
|
|
213
|
-
|
|
214
|
-
# Script arguments for input/output directories
|
|
215
|
-
parser = argparse.ArgumentParser()
|
|
216
|
-
parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
|
|
217
|
-
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
|
|
218
|
-
parser.add_argument(
|
|
219
|
-
"--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
|
|
220
|
-
)
|
|
221
|
-
args = parser.parse_args()
|
|
222
|
-
|
|
223
|
-
# Read the training data into DataFrames
|
|
224
|
-
training_files = [os.path.join(args.train, file) for file in os.listdir(args.train) if file.endswith(".csv")]
|
|
225
|
-
print(f"Training Files: {training_files}")
|
|
226
|
-
|
|
227
|
-
# Combine files and read them all into a single pandas dataframe
|
|
228
|
-
all_df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
|
|
229
|
-
|
|
230
|
-
# Check if the dataframe is empty
|
|
231
|
-
check_dataframe(all_df, "training_df")
|
|
232
|
-
|
|
233
|
-
# Features/Target output
|
|
234
|
-
print(f"Target: {target}")
|
|
235
|
-
print(f"Features: {str(features)}")
|
|
236
|
-
|
|
237
|
-
# Convert any features that might be categorical to 'category' type
|
|
238
|
-
all_df, category_mappings = convert_categorical_types(all_df, features)
|
|
239
|
-
|
|
240
|
-
# If we have compressed features, decompress them
|
|
241
|
-
if compressed_features:
|
|
242
|
-
print(f"Decompressing features {compressed_features}...")
|
|
243
|
-
all_df, features = decompress_features(all_df, features, compressed_features)
|
|
244
|
-
|
|
245
|
-
# Do we want to train on all the data?
|
|
246
|
-
if train_all_data:
|
|
247
|
-
print("Training on ALL of the data")
|
|
248
|
-
df_train = all_df.copy()
|
|
249
|
-
df_val = all_df.copy()
|
|
250
|
-
|
|
251
|
-
# Does the dataframe have a training column?
|
|
252
|
-
elif "training" in all_df.columns:
|
|
253
|
-
print("Found training column, splitting data based on training column")
|
|
254
|
-
df_train = all_df[all_df["training"]]
|
|
255
|
-
df_val = all_df[~all_df["training"]]
|
|
256
|
-
else:
|
|
257
|
-
# Just do a random training Split
|
|
258
|
-
print("WARNING: No training column found, splitting data with random state=42")
|
|
259
|
-
df_train, df_val = train_test_split(all_df, test_size=validation_split, random_state=42)
|
|
260
|
-
print(f"FIT/TRAIN: {df_train.shape}")
|
|
261
|
-
print(f"VALIDATION: {df_val.shape}")
|
|
262
|
-
|
|
263
|
-
# Use any hyperparameters to set up both the trainer and model configurations
|
|
264
|
-
print(f"Hyperparameters: {hyperparameters}")
|
|
265
|
-
|
|
266
|
-
# Now spin up our XGB Model
|
|
267
|
-
if model_type == "classifier":
|
|
268
|
-
xgb_model = xgb.XGBClassifier(enable_categorical=True, **hyperparameters)
|
|
269
|
-
|
|
270
|
-
# Encode the target column
|
|
271
|
-
label_encoder = LabelEncoder()
|
|
272
|
-
df_train[target] = label_encoder.fit_transform(df_train[target])
|
|
273
|
-
df_val[target] = label_encoder.transform(df_val[target])
|
|
274
|
-
|
|
275
|
-
else:
|
|
276
|
-
xgb_model = xgb.XGBRegressor(enable_categorical=True, **hyperparameters)
|
|
277
|
-
label_encoder = None # We don't need this for regression
|
|
278
|
-
|
|
279
|
-
# Grab our Features, Target and Train the Model
|
|
280
|
-
y_train = df_train[target]
|
|
281
|
-
X_train = df_train[features]
|
|
282
|
-
xgb_model.fit(X_train, y_train)
|
|
283
|
-
|
|
284
|
-
# Make Predictions on the Validation Set
|
|
285
|
-
print(f"Making Predictions on Validation Set...")
|
|
286
|
-
y_validate = df_val[target]
|
|
287
|
-
X_validate = df_val[features]
|
|
288
|
-
preds = xgb_model.predict(X_validate)
|
|
289
|
-
if model_type == "classifier":
|
|
290
|
-
# Also get the probabilities for each class
|
|
291
|
-
print("Processing Probabilities...")
|
|
292
|
-
probs = xgb_model.predict_proba(X_validate)
|
|
293
|
-
df_val["pred_proba"] = [p.tolist() for p in probs]
|
|
294
|
-
|
|
295
|
-
# Expand the pred_proba column into separate columns for each class
|
|
296
|
-
print(df_val.columns)
|
|
297
|
-
df_val = expand_proba_column(df_val, label_encoder.classes_)
|
|
298
|
-
print(df_val.columns)
|
|
299
|
-
|
|
300
|
-
# Decode the target and prediction labels
|
|
301
|
-
y_validate = label_encoder.inverse_transform(y_validate)
|
|
302
|
-
preds = label_encoder.inverse_transform(preds)
|
|
303
|
-
|
|
304
|
-
# Save predictions to S3 (just the target, prediction, and '_proba' columns)
|
|
305
|
-
df_val["prediction"] = preds
|
|
306
|
-
output_columns = [target, "prediction"]
|
|
307
|
-
output_columns += [col for col in df_val.columns if col.endswith("_proba")]
|
|
308
|
-
wr.s3.to_csv(
|
|
309
|
-
df_val[output_columns],
|
|
310
|
-
path=f"{model_metrics_s3_path}/validation_predictions.csv",
|
|
311
|
-
index=False,
|
|
312
|
-
)
|
|
313
|
-
|
|
314
|
-
# Report Performance Metrics
|
|
315
|
-
if model_type == "classifier":
|
|
316
|
-
# Get the label names and their integer mapping
|
|
317
|
-
label_names = label_encoder.classes_
|
|
318
|
-
|
|
319
|
-
# Calculate various model performance metrics
|
|
320
|
-
scores = precision_recall_fscore_support(y_validate, preds, average=None, labels=label_names)
|
|
321
|
-
|
|
322
|
-
# Put the scores into a dataframe
|
|
323
|
-
score_df = pd.DataFrame(
|
|
324
|
-
{
|
|
325
|
-
target: label_names,
|
|
326
|
-
"precision": scores[0],
|
|
327
|
-
"recall": scores[1],
|
|
328
|
-
"fscore": scores[2],
|
|
329
|
-
"support": scores[3],
|
|
330
|
-
}
|
|
331
|
-
)
|
|
332
|
-
|
|
333
|
-
# We need to get creative with the Classification Metrics
|
|
334
|
-
metrics = ["precision", "recall", "fscore", "support"]
|
|
335
|
-
for t in label_names:
|
|
336
|
-
for m in metrics:
|
|
337
|
-
value = score_df.loc[score_df[target] == t, m].iloc[0]
|
|
338
|
-
print(f"Metrics:{t}:{m} {value}")
|
|
339
|
-
|
|
340
|
-
# Compute and output the confusion matrix
|
|
341
|
-
conf_mtx = confusion_matrix(y_validate, preds, labels=label_names)
|
|
342
|
-
for i, row_name in enumerate(label_names):
|
|
343
|
-
for j, col_name in enumerate(label_names):
|
|
344
|
-
value = conf_mtx[i, j]
|
|
345
|
-
print(f"ConfusionMatrix:{row_name}:{col_name} {value}")
|
|
346
|
-
|
|
347
|
-
else:
|
|
348
|
-
# Calculate various model performance metrics (regression)
|
|
349
|
-
rmse = root_mean_squared_error(y_validate, preds)
|
|
350
|
-
mae = mean_absolute_error(y_validate, preds)
|
|
351
|
-
r2 = r2_score(y_validate, preds)
|
|
352
|
-
print(f"RMSE: {rmse:.3f}")
|
|
353
|
-
print(f"MAE: {mae:.3f}")
|
|
354
|
-
print(f"R2: {r2:.3f}")
|
|
355
|
-
print(f"NumRows: {len(df_val)}")
|
|
356
|
-
|
|
357
|
-
# Now save the model to the standard place/name
|
|
358
|
-
joblib.dump(xgb_model, os.path.join(args.model_dir, "xgb_model.joblib"))
|
|
359
|
-
|
|
360
|
-
# Save the label encoder if we have one
|
|
361
|
-
if label_encoder:
|
|
362
|
-
joblib.dump(label_encoder, os.path.join(args.model_dir, "label_encoder.joblib"))
|
|
363
|
-
|
|
364
|
-
# Save the features (this will validate input during predictions)
|
|
365
|
-
with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as fp:
|
|
366
|
-
json.dump(orig_features, fp) # We save the original features, not the decompressed ones
|
|
367
|
-
|
|
368
|
-
# Save the category mappings
|
|
369
|
-
with open(os.path.join(args.model_dir, "category_mappings.json"), "w") as fp:
|
|
370
|
-
json.dump(category_mappings, fp)
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
def model_fn(model_dir):
|
|
374
|
-
"""Deserialize and return fitted XGBoost model"""
|
|
375
|
-
model_path = os.path.join(model_dir, "xgb_model.joblib")
|
|
376
|
-
model = joblib.load(model_path)
|
|
377
|
-
return model
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
def input_fn(input_data, content_type):
|
|
381
|
-
"""Parse input data and return a DataFrame."""
|
|
382
|
-
if not input_data:
|
|
383
|
-
raise ValueError("Empty input data is not supported!")
|
|
384
|
-
|
|
385
|
-
# Decode bytes to string if necessary
|
|
386
|
-
if isinstance(input_data, bytes):
|
|
387
|
-
input_data = input_data.decode("utf-8")
|
|
388
|
-
|
|
389
|
-
if "text/csv" in content_type:
|
|
390
|
-
return pd.read_csv(StringIO(input_data))
|
|
391
|
-
elif "application/json" in content_type:
|
|
392
|
-
return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
|
|
393
|
-
else:
|
|
394
|
-
raise ValueError(f"{content_type} not supported!")
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
def output_fn(output_df, accept_type):
|
|
398
|
-
"""Supports both CSV and JSON output formats."""
|
|
399
|
-
if "text/csv" in accept_type:
|
|
400
|
-
csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
|
|
401
|
-
return csv_output, "text/csv"
|
|
402
|
-
elif "application/json" in accept_type:
|
|
403
|
-
return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
|
|
404
|
-
else:
|
|
405
|
-
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
def predict_fn(df, model) -> pd.DataFrame:
|
|
409
|
-
"""Make Predictions with our XGB Model
|
|
410
|
-
|
|
411
|
-
Args:
|
|
412
|
-
df (pd.DataFrame): The input DataFrame
|
|
413
|
-
model: The model use for predictions
|
|
414
|
-
|
|
415
|
-
Returns:
|
|
416
|
-
pd.DataFrame: The DataFrame with the predictions added
|
|
417
|
-
"""
|
|
418
|
-
compressed_features = TEMPLATE_PARAMS["compressed_features"]
|
|
419
|
-
|
|
420
|
-
# Grab our feature columns (from training)
|
|
421
|
-
model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
|
|
422
|
-
with open(os.path.join(model_dir, "feature_columns.json")) as fp:
|
|
423
|
-
features = json.load(fp)
|
|
424
|
-
print(f"Model Features: {features}")
|
|
425
|
-
|
|
426
|
-
# Load the category mappings (from training)
|
|
427
|
-
with open(os.path.join(model_dir, "category_mappings.json")) as fp:
|
|
428
|
-
category_mappings = json.load(fp)
|
|
429
|
-
|
|
430
|
-
# Load our Label Encoder if we have one
|
|
431
|
-
label_encoder = None
|
|
432
|
-
if os.path.exists(os.path.join(model_dir, "label_encoder.joblib")):
|
|
433
|
-
label_encoder = joblib.load(os.path.join(model_dir, "label_encoder.joblib"))
|
|
434
|
-
|
|
435
|
-
# We're going match features in a case-insensitive manner, accounting for all the permutations
|
|
436
|
-
# - Model has a feature list that's any case ("Id", "taCos", "cOunT", "likes_tacos")
|
|
437
|
-
# - Incoming data has columns that are mixed case ("ID", "Tacos", "Count", "Likes_Tacos")
|
|
438
|
-
matched_df = match_features_case_insensitive(df, features)
|
|
439
|
-
|
|
440
|
-
# Detect categorical types in the incoming DataFrame
|
|
441
|
-
matched_df, _ = convert_categorical_types(matched_df, features, category_mappings)
|
|
442
|
-
|
|
443
|
-
# If we have compressed features, decompress them
|
|
444
|
-
if compressed_features:
|
|
445
|
-
print("Decompressing features for prediction...")
|
|
446
|
-
matched_df, features = decompress_features(matched_df, features, compressed_features)
|
|
447
|
-
|
|
448
|
-
# Predict the features against our XGB Model
|
|
449
|
-
X = matched_df[features]
|
|
450
|
-
predictions = model.predict(X)
|
|
451
|
-
|
|
452
|
-
# If we have a label encoder, decode the predictions
|
|
453
|
-
if label_encoder:
|
|
454
|
-
predictions = label_encoder.inverse_transform(predictions)
|
|
455
|
-
|
|
456
|
-
# Set the predictions on the DataFrame
|
|
457
|
-
df["prediction"] = predictions
|
|
458
|
-
|
|
459
|
-
# Does our model have a 'predict_proba' method? If so we will call it and add the results to the DataFrame
|
|
460
|
-
if getattr(model, "predict_proba", None):
|
|
461
|
-
probs = model.predict_proba(matched_df[features])
|
|
462
|
-
df["pred_proba"] = [p.tolist() for p in probs]
|
|
463
|
-
|
|
464
|
-
# Expand the pred_proba column into separate columns for each class
|
|
465
|
-
df = expand_proba_column(df, label_encoder.classes_)
|
|
466
|
-
|
|
467
|
-
# All done, return the DataFrame with new columns for the predictions
|
|
468
|
-
return df
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|