workbench 0.8.185__py3-none-any.whl → 0.8.186__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of workbench might be problematic. Click here for more details.

@@ -993,9 +993,9 @@ class EndpointCore(Artifact):
993
993
  self.upsert_workbench_meta({"workbench_input": input})
994
994
 
995
995
  def delete(self):
996
- """ "Delete an existing Endpoint: Underlying Models, Configuration, and Endpoint"""
996
+ """Delete an existing Endpoint: Underlying Models, Configuration, and Endpoint"""
997
997
  if not self.exists():
998
- self.log.warning(f"Trying to delete an Model that doesn't exist: {self.name}")
998
+ self.log.warning(f"Trying to delete an Endpoint that doesn't exist: {self.name}")
999
999
 
1000
1000
  # Remove this endpoint from the list of registered endpoints
1001
1001
  self.log.info(f"Removing {self.name} from the list of registered endpoints...")
@@ -899,7 +899,7 @@ class ModelCore(Artifact):
899
899
  def delete(self):
900
900
  """Delete the Model Packages and the Model Group"""
901
901
  if not self.exists():
902
- self.log.warning(f"Trying to delete an Model that doesn't exist: {self.name}")
902
+ self.log.warning(f"Trying to delete a Model that doesn't exist: {self.name}")
903
903
 
904
904
  # Call the Class Method to delete the Model Group
905
905
  ModelCore.managed_delete(model_group_name=self.name)
@@ -19,7 +19,7 @@ from typing import List, Tuple
19
19
  # Template Placeholders
20
20
  TEMPLATE_PARAMS = {
21
21
  "target": "udm_asy_res_free_percent",
22
- "features": ['naromatom', 'minabspartialcharge', 'bcut2d_mrhi', 'smr_vsa10', 'vsa_estate2', 'minpartialcharge', 'xpc_5d', 'sps', 'xc_3dv', 'smr_vsa7', 'bcut2d_logplow', 'mollogp', 'vsa_estate1', 'num_s_centers', 'vsa_estate4', 'peoe_vsa13', 'fr_nh2', 'bertzct', 'estate_vsa4', 'vsa_estate9', 'smr_vsa3', 'fr_nh1', 'molwt', 'estate_vsa5', 'slogp_vsa5', 'maxpartialcharge', 'estate_vsa1', 'fr_hoccn', 'xc_5d', 'nbase', 'chi1v', 'peoe_vsa10', 'tpsa', 'vsa_estate3', 'chi2v', 'estate_vsa8', 'numheteroatoms', 'estate_vsa2', 'peoe_vsa1', 'labuteasa', 'axp_4d', 'xch_7dv', 'chi0n', 'num_r_centers', 'vsa_estate8', 'minabsestateindex', 'bcut2d_chglo', 'bcut2d_mwhi', 'fr_nh0', 'chi4n', 'estate_vsa9', 'smr_vsa5', 'peoe_vsa2', 'peoe_vsa7', 'peoe_vsa9', 'kappa3', 'slogp_vsa3', 'fr_arn', 'estate_vsa3', 'avgipc', 'axp_5d', 'xpc_6d', 'c2sp2', 'peoe_vsa5', 'vsa_estate5', 'balabanj', 'maxabspartialcharge', 'fr_aniline', 'fr_piperdine', 'vsa_estate6', 'bcut2d_mwlow', 'numsaturatedheterocycles', 'vsa_estate10', 'smr_vsa1', 'estate_vsa6', 'smr_vsa6', 'fpdensitymorgan1', 'peoe_vsa3', 'peoe_vsa8', 'smr_vsa9', 'slogp_vsa2', 'nocount', 'fpdensitymorgan3', 'axp_6d', 'bcut2d_mrlow', 'bcut2d_logphi', 'axp_4dv', 'fpdensitymorgan2', 'mp', 'xp_5d', 'fr_nhpyrrole', 'mz', 'mv', 'vsa_estate7', 'axp_7dv', 'mi', 'c1sp2', 'xpc_6dv', 'slogp_vsa10', 'xp_7d', 'axp_3dv', 'peoe_vsa4', 'peoe_vsa6', 'axp_2dv', 'xch_5dv', 'qed', 'estate_vsa7', 'numaromaticrings', 'chi1n', 'axp_0d', 'axp_6dv', 'numrotatablebonds', 'hallkieralpha', 'c1sp3', 'xc_4dv', 'kappa2', 'bcut2d_chghi', 'xch_7d', 'axp_0dv', 'slogp_vsa7', 'axp_7d', 'minestateindex', 'axp_2d', 'axp_1d', 'chi0', 'fractioncsp3', 'slogp_vsa6', 'axp_1dv', 'chi2n', 'xp_6dv', 'maxestateindex', 'xpc_4d', 'numaliphaticheterocycles', 'chi1', 'phi', 'chi3n', 'xc_4d', 'xc_3d', 'peoe_vsa12', 'xp_6d', 'chi3v', 'axp_3d', 'axp_5dv', 'fr_benzene', 'slogp_vsa4', 'fr_pyridine', 'fr_aryl_methyl', 'xp_5dv', 'c3sp3', 'xp_7dv', 'slogp_vsa1', 'peoe_vsa11', 'mse', 'xc_5dv', 'xpc_5dv', 'xc_6dv', 'xp_0dv', 'xch_5d', 'c3sp2', 'numatomstereocenters', 'numhacceptors', 'fr_imidazole', 'numsaturatedrings', 'xpc_4dv', 'chi0v', 'numheterocycles', 'xch_6dv', 'estate_vsa10', 'chi4v', 'mare', 'numhdonors', 'xch_6d', 'xp_4d', 'fr_ar_n', 'numunspecifiedatomstereocenters', 'numspiroatoms', 'xch_4dv', 'fr_morpholine', 'fr_methoxy', 'mm', 'fr_piperzine'],
22
+ "features": ['naromatom', 'fr_nh2', 'mollogp', 'numheterocycles', 'bcut2d_mrhi', 'numaromaticrings', 'smr_vsa7', 'peoe_vsa4', 'slogp_vsa6', 'peoe_vsa8', 'vsa_estate3', 'maxabspartialcharge', 'fr_arn', 'bcut2d_logplow', 'chi1v', 'axp_6d', 'bcut2d_chglo', 'balabanj', 'slogp_vsa10', 'hallkieralpha', 'vsa_estate6', 'fpdensitymorgan1', 'sps', 'qed', 'peoe_vsa7', 'maxestateindex', 'estate_vsa8', 'vsa_estate9', 'fr_nhpyrrole', 'mz', 'mp', 'bcut2d_mwhi', 'peoe_vsa13', 'c2sp2', 'numrotatablebonds', 'kappa3', 'peoe_vsa1', 'slogp_vsa2', 'xc_5dv', 'bertzct', 'estate_vsa10', 'axp_0d', 'estate_vsa2', 'xc_4d', 'smr_vsa1', 'phi', 'estate_vsa3', 'vsa_estate2', 'mv', 'estate_vsa4', 'mm', 'fr_nh1', 'slogp_vsa7', 'chi4n', 'estate_vsa6', 'fpdensitymorgan2', 'molmr', 'mse', 'bcut2d_mwlow', 'bcut2d_mrlow', 'chi2v', 'minestateindex', 'xpc_4dv', 'fr_nh0', 'axp_2d', 'vsa_estate8', 'nhohcount', 'smr_vsa6', 'peoe_vsa9', 'smr_vsa5', 'num_r_centers', 'xpc_6dv', 'xc_3d', 'slogp_vsa5', 'axp_7dv', 'minabsestateindex', 'xc_5d', 'vsa_estate10', 'fr_hoccn', 'smr_vsa3', 'vsa_estate1', 'axp_5d', 'num_s_centers', 'axp_1d', 'estate_vsa1', 'fpdensitymorgan3', 'axp_5dv', 'chi3n', 'peoe_vsa6', 'labuteasa', 'chi2n', 'xc_6d', 'xp_7d', 'tpsa', 'xpc_4d', 'avgipc', 'xp_5d', 'vsa_estate5', 'xch_7d', 'xch_5d', 'axp_4dv', 'nbase', 'xc_3dv', 'kappa2', 'axp_3d', 'c1sp3', 'numhacceptors', 'bcut2d_logphi', 'smr_vsa10', 'fr_piperzine', 'peoe_vsa11', 'axp_6dv', 'peoe_vsa10', 'estate_vsa9', 'bcut2d_chghi', 'xp_6d', 'xch_6dv', 'chi0', 'vsa_estate7', 'mi', 'xpc_5d', 'fractioncsp3', 'xp_0dv', 'kappa1', 'minpartialcharge', 'xp_6dv', 'peoe_vsa2', 'chi3v', 'axp_0dv', 'mare', 'xch_5dv', 'vsa_estate4', 'xp_4dv', 'estate_vsa7', 'xp_3d', 'numaliphaticheterocycles', 'chi1', 'xp_3dv', 'fr_ether', 'xch_6d', 'peoe_vsa12', 'xch_7dv', 'axp_1dv', 'axp_7d', 'fr_ndealkylation2', 'smr_vsa9', 'axp_2dv', 'estate_vsa5', 'mpe', 'molwt', 'xch_4d', 'axp_3dv', 'xp_5dv', 'chi4v', 'heavyatommolwt', 'fr_al_oh', 'xpc_5dv', 'xpc_6d', 'maxpartialcharge', 'numatomstereocenters', 'peoe_vsa3', 'fr_aniline', 'minabspartialcharge', 'c3sp3', 'slogp_vsa1', 'exactmolwt', 'chi1n', 'xp_7dv', 'chi0n', 'xp_2d', 'xch_4dv', 'fr_bicyclic', 'xc_4dv', 'axp_4d', 'slogp_vsa4', 'fr_benzene', 'numaromaticheterocycles', 'fr_aryl_methyl', 'fr_pyridine', 'fr_imine', 'chi0v', 'slogp_vsa12'],
23
23
  "compressed_features": [],
24
24
  "train_all_data": True,
25
25
  "hyperparameters": {},
@@ -466,7 +466,7 @@ def predict_fn(df, models) -> pd.DataFrame:
466
466
  df["q_50"] = df["prediction"]
467
467
 
468
468
  # Calculate a pseudo-standard deviation from the 68% interval width
469
- df["prediction_std"] = (df["q_84"] - df["q_16"]) / 2.0
469
+ df["prediction_std"] = (df["q_84"] - df["q_16"]).abs() / 2.0
470
470
 
471
471
  # Reorder the quantile columns for easier reading
472
472
  quantile_cols = ["q_025", "q_05", "q_10", "q_16", "q_25", "q_75", "q_84", "q_90", "q_95", "q_975"]
@@ -466,7 +466,7 @@ def predict_fn(df, models) -> pd.DataFrame:
466
466
  df["q_50"] = df["prediction"]
467
467
 
468
468
  # Calculate a pseudo-standard deviation from the 68% interval width
469
- df["prediction_std"] = (df["q_84"] - df["q_16"]) / 2.0
469
+ df["prediction_std"] = (df["q_84"] - df["q_16"]).abs() / 2.0
470
470
 
471
471
  # Reorder the quantile columns for easier reading
472
472
  quantile_cols = ["q_025", "q_05", "q_10", "q_16", "q_25", "q_75", "q_84", "q_90", "q_95", "q_975"]
@@ -13,14 +13,21 @@ cm = ConfigManager()
13
13
  workbench_bucket = cm.get_config("WORKBENCH_BUCKET")
14
14
 
15
15
 
16
- def submit_to_sqs(script_path: str, size: str = "small", realtime: bool = False, recreate: bool = False) -> None:
16
+ def submit_to_sqs(
17
+ script_path: str, size: str = "small", realtime: bool = False, dt: bool = False, promote: bool = False
18
+ ) -> None:
17
19
  """
18
20
  Upload script to S3 and submit message to SQS queue for processing.
21
+
19
22
  Args:
20
23
  script_path: Local path to the ML pipeline script
21
24
  size: Job size tier - "small" (default), "medium", or "large"
22
- realtime: If True, sets serverless=False for real-time processing (default: False, meaning serverless=True)
23
- recreate: If True, sets RECREATE=True in environment (default: False)
25
+ realtime: If True, sets serverless=False for real-time processing (default: False)
26
+ dt: If True, sets DT=True in environment (default: False)
27
+ promote: If True, sets PROMOTE=True in environment (default: False)
28
+
29
+ Raises:
30
+ ValueError: If size is invalid or script file not found
24
31
  """
25
32
  print(f"\n{'=' * 60}")
26
33
  print("🚀 SUBMITTING ML PIPELINE JOB")
@@ -36,7 +43,8 @@ def submit_to_sqs(script_path: str, size: str = "small", realtime: bool = False,
36
43
  print(f"📄 Script: {script_file.name}")
37
44
  print(f"📏 Size tier: {size}")
38
45
  print(f"⚡ Mode: {'Real-time' if realtime else 'Serverless'} (serverless={'False' if realtime else 'True'})")
39
- print(f"🔄 Recreate: {recreate}")
46
+ print(f"🔄 DynamicTraining: {dt}")
47
+ print(f"🆕 Promote: {promote}")
40
48
  print(f"🪣 Bucket: {workbench_bucket}")
41
49
  sqs = AWSAccountClamp().boto3_session.client("sqs")
42
50
  script_name = script_file.name
@@ -94,14 +102,15 @@ def submit_to_sqs(script_path: str, size: str = "small", realtime: bool = False,
94
102
  message = {"script_path": s3_path, "size": size}
95
103
 
96
104
  # Set environment variables
97
- message["environment"] = {"SERVERLESS": "False" if realtime else "True"}
98
- if recreate:
99
- message["environment"]["RECREATE"] = "True"
100
-
101
- print("\n📨 Sending message to SQS...")
105
+ message["environment"] = {
106
+ "SERVERLESS": "False" if realtime else "True",
107
+ "DT": str(dt),
108
+ "PROMOTE": str(promote),
109
+ }
102
110
 
103
111
  # Send the message to SQS
104
112
  try:
113
+ print("\n📨 Sending message to SQS...")
105
114
  response = sqs.send_message(
106
115
  QueueUrl=queue_url,
107
116
  MessageBody=json.dumps(message, indent=2),
@@ -121,7 +130,8 @@ def submit_to_sqs(script_path: str, size: str = "small", realtime: bool = False,
121
130
  print(f"📄 Script: {script_name}")
122
131
  print(f"📏 Size: {size}")
123
132
  print(f"⚡ Mode: {'Real-time' if realtime else 'Serverless'} (SERVERLESS={'False' if realtime else 'True'})")
124
- print(f"🔄 Recreate: {recreate}")
133
+ print(f"🔄 DynamicTraining: {dt}")
134
+ print(f"🆕 Promote: {promote}")
125
135
  print(f"🆔 Message ID: {message_id}")
126
136
  print("\n🔍 MONITORING LOCATIONS:")
127
137
  print(f" • SQS Queue: AWS Console → SQS → {queue_name}")
@@ -144,13 +154,13 @@ def main():
144
154
  help="Create realtime endpoints (default is serverless)",
145
155
  )
146
156
  parser.add_argument(
147
- "--recreate",
157
+ "--dt",
148
158
  action="store_true",
149
- help="Set RECREATE=True (will force recreation of resources)",
159
+ help="Set DT=True (models and endpoints will have '-dt' suffix)",
150
160
  )
151
161
  args = parser.parse_args()
152
162
  try:
153
- submit_to_sqs(args.script_file, args.size, realtime=args.realtime, recreate=args.recreate)
163
+ submit_to_sqs(args.script_file, args.size, realtime=args.realtime, dt=args.dt)
154
164
  except Exception as e:
155
165
  print(f"\n❌ ERROR: {e}")
156
166
  log.error(f"Error: {e}")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: workbench
3
- Version: 0.8.185
3
+ Version: 0.8.186
4
4
  Summary: Workbench: A Dashboard and Python API for creating and deploying AWS SageMaker Model Pipelines
5
5
  Author-email: SuperCowPowers LLC <support@supercowpowers.com>
6
6
  License-Expression: MIT
@@ -54,9 +54,9 @@ workbench/core/artifacts/cached_artifact_mixin.py,sha256=ngqFLZ4cQx_TFouXZgXZQsv
54
54
  workbench/core/artifacts/data_capture_core.py,sha256=q8f79rRTYiZ7T4IQRWXl8ZvPpcvZyNxYERwvo8o0OQc,14858
55
55
  workbench/core/artifacts/data_source_abstract.py,sha256=5IRCzFVK-17cd4NXPMRfx99vQAmQ0WHE5jcm5RfsVTg,10619
56
56
  workbench/core/artifacts/data_source_factory.py,sha256=YL_tA5fsgubbB3dPF6T4tO0rGgz-6oo3ge4i_YXVC-M,2380
57
- workbench/core/artifacts/endpoint_core.py,sha256=gQdOHtjEeC1WCHbKZNaDQ0eeOka1sCO-zcABDO4_Egk,51965
57
+ workbench/core/artifacts/endpoint_core.py,sha256=FUBs8z5l0D3UsVqmQzjlzkVDzN0fhMcqKXTLAAG1gmc,51966
58
58
  workbench/core/artifacts/feature_set_core.py,sha256=7b1o_PzxtwaYC-W2zxlkltiO0fYULA8CVGWwHNmqgtI,31457
59
- workbench/core/artifacts/model_core.py,sha256=wjoa2GQnzrrTM-E2VgYZHT9Ixebl3LaKbJL0YvEdrJY,51546
59
+ workbench/core/artifacts/model_core.py,sha256=x_FloG9bMUTqUBDYdfl68AaakwNMBCl-BcP-1E9ZpuQ,51545
60
60
  workbench/core/artifacts/monitor_core.py,sha256=M307yz7tEzOEHgv-LmtVy9jKjSbM98fHW3ckmNYrwlU,27897
61
61
  workbench/core/cloud_platform/cloud_meta.py,sha256=-g4-LTC3D0PXb3VfaXdLR1ERijKuHdffeMK_zhD-koQ,8809
62
62
  workbench/core/cloud_platform/aws/README.md,sha256=QT5IQXoUHbIA0qQ2wO6_2P2lYjYQFVYuezc22mWY4i8,97
@@ -156,8 +156,8 @@ workbench/model_scripts/pytorch_model/requirements.txt,sha256=ICS5nW0wix44EJO2tJ
156
156
  workbench/model_scripts/scikit_learn/generated_model_script.py,sha256=c73ZpJBlU5k13Nx-ZDkLXu7da40CYyhwjwwmuPq6uLg,12870
157
157
  workbench/model_scripts/scikit_learn/requirements.txt,sha256=aVvwiJ3LgBUhM_PyFlb2gHXu_kpGPho3ANBzlOkfcvs,107
158
158
  workbench/model_scripts/scikit_learn/scikit_learn.template,sha256=QQvqx-eX9ZTbYmyupq6R6vIQwosmsmY_MRBPaHyfjdk,12586
159
- workbench/model_scripts/uq_models/generated_model_script.py,sha256=gJb_5jBb4mcf41jb6578H9uYYH6Y-uFtPp1MNKXNFQQ,21231
160
- workbench/model_scripts/uq_models/mapie.template,sha256=8VzoP-Wp3ECVIDqXVkiTS6bwmn3cd3dDZ2WjYPzXTi8,18955
159
+ workbench/model_scripts/uq_models/generated_model_script.py,sha256=U4_41APyNISnJ3EHnXiaSIEdb3E1M1JT7ECNjsoX4fI,21197
160
+ workbench/model_scripts/uq_models/mapie.template,sha256=2HIwB_658IsZiLIV1RViIZBIGgXxDsJPZinDUu8SchU,18961
161
161
  workbench/model_scripts/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
162
162
  workbench/model_scripts/xgb_model/generated_model_script.py,sha256=Tbn7EMXxZZO8rDdKQ5fYCbpltACsMXNvuusLL9p-U5c,22319
163
163
  workbench/model_scripts/xgb_model/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
@@ -169,7 +169,7 @@ workbench/resources/signature_verify_pub.pem,sha256=V3-u-3_z2PH-805ybkKvzDOBwAbv
169
169
  workbench/scripts/check_double_bond_stereo.py,sha256=p5hnL54Weq77ES0HCELq9JeoM-PyUGkvVSeWYF2dKyo,7776
170
170
  workbench/scripts/glue_launcher.py,sha256=bIKQvfGxpAhzbeNvTnHfRW_5kQhY-169_868ZnCejJk,10692
171
171
  workbench/scripts/ml_pipeline_batch.py,sha256=1T5JnLlUJR7bwAGBLHmLPOuj1xFRqVIQX8PsuDhHy8o,4907
172
- workbench/scripts/ml_pipeline_sqs.py,sha256=s1861q4zuvV-aSOhwy8xW1xid9yDVNGioDHxba80Qpg,6185
172
+ workbench/scripts/ml_pipeline_sqs.py,sha256=LxZyaNKmwt3L7SURyO3lwO64FQ0Y0s4HwKPkkahlhUU,6395
173
173
  workbench/scripts/monitor_cloud_watch.py,sha256=s7MY4bsHts0nup9G0lWESCvgJZ9Mw1Eo-c8aKRgLjMw,9235
174
174
  workbench/scripts/redis_expire.py,sha256=DxI_RKSNlrW2BsJZXcsSbaWGBgPZdPhtzHjV9SUtElE,1120
175
175
  workbench/scripts/redis_report.py,sha256=iaJSuGPyLCs6e0TMcZDoT0YyJ43xJ1u74YD8FLnnUg4,990
@@ -287,9 +287,9 @@ workbench/web_interface/page_views/main_page.py,sha256=X4-KyGTKLAdxR-Zk2niuLJB2Y
287
287
  workbench/web_interface/page_views/models_page_view.py,sha256=M0bdC7bAzLyIaE2jviY12FF4abdMFZmg6sFuOY_LaGI,2650
288
288
  workbench/web_interface/page_views/page_view.py,sha256=Gh6YnpOGlUejx-bHZAf5pzqoQ1H1R0OSwOpGhOBO06w,455
289
289
  workbench/web_interface/page_views/pipelines_page_view.py,sha256=v2pxrIbsHBcYiblfius3JK766NZ7ciD2yPx0t3E5IJo,2656
290
- workbench-0.8.185.dist-info/licenses/LICENSE,sha256=z4QMMPlLJkZjU8VOKqJkZiQZCEZ--saIU2Z8-p3aVc0,1080
291
- workbench-0.8.185.dist-info/METADATA,sha256=4S2A5vuZPlJZpRqFGQFe7nL4DzQjTsKIo-V2x0WzDF0,9210
292
- workbench-0.8.185.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
293
- workbench-0.8.185.dist-info/entry_points.txt,sha256=zPFPruY9uayk8-wsKrhfnIyIB6jvZOW_ibyllEIsLWo,356
294
- workbench-0.8.185.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
295
- workbench-0.8.185.dist-info/RECORD,,
290
+ workbench-0.8.186.dist-info/licenses/LICENSE,sha256=z4QMMPlLJkZjU8VOKqJkZiQZCEZ--saIU2Z8-p3aVc0,1080
291
+ workbench-0.8.186.dist-info/METADATA,sha256=r5n70ah6hgyfQfE3oM0gseinKWI4n6DCpvB7ZJXFLNM,9210
292
+ workbench-0.8.186.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
293
+ workbench-0.8.186.dist-info/entry_points.txt,sha256=zPFPruY9uayk8-wsKrhfnIyIB6jvZOW_ibyllEIsLWo,356
294
+ workbench-0.8.186.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
295
+ workbench-0.8.186.dist-info/RECORD,,