workbench 0.8.171__py3-none-any.whl → 0.8.173__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- workbench/algorithms/graph/light/proximity_graph.py +2 -1
- workbench/api/compound.py +1 -1
- workbench/api/feature_set.py +4 -4
- workbench/api/monitor.py +1 -16
- workbench/core/artifacts/artifact.py +11 -3
- workbench/core/artifacts/data_capture_core.py +315 -0
- workbench/core/artifacts/endpoint_core.py +9 -3
- workbench/core/artifacts/model_core.py +37 -14
- workbench/core/artifacts/monitor_core.py +33 -249
- workbench/core/cloud_platform/aws/aws_account_clamp.py +4 -1
- workbench/core/transforms/data_to_features/light/molecular_descriptors.py +4 -4
- workbench/core/transforms/features_to_model/features_to_model.py +4 -4
- workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +471 -0
- workbench/model_scripts/custom_models/chem_info/mol_standardize.py +428 -0
- workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +7 -9
- workbench/model_scripts/custom_models/uq_models/generated_model_script.py +19 -9
- workbench/model_scripts/custom_models/uq_models/mapie.template +502 -0
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +8 -5
- workbench/model_scripts/custom_models/uq_models/requirements.txt +1 -3
- workbench/model_scripts/script_generation.py +5 -0
- workbench/model_scripts/xgb_model/generated_model_script.py +5 -5
- workbench/repl/workbench_shell.py +3 -3
- workbench/utils/chem_utils/__init__.py +0 -0
- workbench/utils/chem_utils/fingerprints.py +134 -0
- workbench/utils/chem_utils/misc.py +194 -0
- workbench/utils/chem_utils/mol_descriptors.py +471 -0
- workbench/utils/chem_utils/mol_standardize.py +428 -0
- workbench/utils/chem_utils/mol_tagging.py +348 -0
- workbench/utils/chem_utils/projections.py +209 -0
- workbench/utils/chem_utils/salts.py +256 -0
- workbench/utils/chem_utils/sdf.py +292 -0
- workbench/utils/chem_utils/toxicity.py +250 -0
- workbench/utils/chem_utils/vis.py +253 -0
- workbench/utils/model_utils.py +1 -1
- workbench/utils/monitor_utils.py +49 -56
- workbench/utils/pandas_utils.py +3 -3
- workbench/utils/workbench_sqs.py +1 -1
- workbench/utils/xgboost_model_utils.py +1 -0
- workbench/web_interface/components/plugins/generated_compounds.py +1 -1
- {workbench-0.8.171.dist-info → workbench-0.8.173.dist-info}/METADATA +1 -1
- {workbench-0.8.171.dist-info → workbench-0.8.173.dist-info}/RECORD +45 -34
- workbench/model_scripts/custom_models/chem_info/local_utils.py +0 -769
- workbench/model_scripts/custom_models/chem_info/tautomerize.py +0 -83
- workbench/model_scripts/custom_models/uq_models/mapie_xgb.template +0 -203
- workbench/utils/chem_utils.py +0 -1556
- {workbench-0.8.171.dist-info → workbench-0.8.173.dist-info}/WHEEL +0 -0
- {workbench-0.8.171.dist-info → workbench-0.8.173.dist-info}/entry_points.txt +0 -0
- {workbench-0.8.171.dist-info → workbench-0.8.173.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.171.dist-info → workbench-0.8.173.dist-info}/top_level.txt +0 -0
|
@@ -1,83 +0,0 @@
|
|
|
1
|
-
# Model: tautomerization_processor
|
|
2
|
-
#
|
|
3
|
-
# Description: The tautomerization_processor model uses RDKit to perform tautomer enumeration
|
|
4
|
-
# and canonicalization of chemical compounds. Tautomerization is the chemical process where
|
|
5
|
-
# compounds can interconvert between structurally distinct forms, often affecting their
|
|
6
|
-
# chemical properties and reactivity. This model provides a robust approach to identifying
|
|
7
|
-
# and processing tautomers, crucial for improving molecular modeling and cheminformatics tasks
|
|
8
|
-
# like virtual screening, QSAR modeling, and property prediction.
|
|
9
|
-
#
|
|
10
|
-
import argparse
|
|
11
|
-
import os
|
|
12
|
-
import joblib
|
|
13
|
-
from io import StringIO
|
|
14
|
-
import pandas as pd
|
|
15
|
-
import json
|
|
16
|
-
|
|
17
|
-
# Local imports
|
|
18
|
-
from local_utils import tautomerize_smiles
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
# TRAINING SECTION
|
|
22
|
-
#
|
|
23
|
-
# This section (__main__) is where SageMaker will execute the job and save the model artifacts.
|
|
24
|
-
#
|
|
25
|
-
if __name__ == "__main__":
|
|
26
|
-
# Script arguments for input/output directories
|
|
27
|
-
parser = argparse.ArgumentParser()
|
|
28
|
-
parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
|
|
29
|
-
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
|
|
30
|
-
parser.add_argument(
|
|
31
|
-
"--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
|
|
32
|
-
)
|
|
33
|
-
args = parser.parse_args()
|
|
34
|
-
|
|
35
|
-
# This model doesn't get trained; it's a feature processing 'model'
|
|
36
|
-
|
|
37
|
-
# Sagemaker expects a model artifact, so we'll save a placeholder
|
|
38
|
-
placeholder_model = {}
|
|
39
|
-
joblib.dump(placeholder_model, os.path.join(args.model_dir, "model.joblib"))
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
# Model loading and prediction functions
|
|
43
|
-
def model_fn(model_dir):
|
|
44
|
-
return joblib.load(os.path.join(model_dir, "model.joblib"))
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
def input_fn(input_data, content_type):
|
|
48
|
-
"""Parse input data and return a DataFrame."""
|
|
49
|
-
if not input_data:
|
|
50
|
-
raise ValueError("Empty input data is not supported!")
|
|
51
|
-
|
|
52
|
-
# Decode bytes to string if necessary
|
|
53
|
-
if isinstance(input_data, bytes):
|
|
54
|
-
input_data = input_data.decode("utf-8")
|
|
55
|
-
|
|
56
|
-
if "text/csv" in content_type:
|
|
57
|
-
return pd.read_csv(StringIO(input_data))
|
|
58
|
-
elif "application/json" in content_type:
|
|
59
|
-
return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
|
|
60
|
-
else:
|
|
61
|
-
raise ValueError(f"{content_type} not supported!")
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
def output_fn(output_df, accept_type):
|
|
65
|
-
"""Supports both CSV and JSON output formats."""
|
|
66
|
-
use_explicit_na = False
|
|
67
|
-
if "text/csv" in accept_type:
|
|
68
|
-
if use_explicit_na:
|
|
69
|
-
csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
|
|
70
|
-
else:
|
|
71
|
-
csv_output = output_df.to_csv(index=False)
|
|
72
|
-
return csv_output, "text/csv"
|
|
73
|
-
elif "application/json" in accept_type:
|
|
74
|
-
return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
|
|
75
|
-
else:
|
|
76
|
-
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
# Prediction function
|
|
80
|
-
def predict_fn(df, model):
|
|
81
|
-
# Perform Tautomerization
|
|
82
|
-
df = tautomerize_smiles(df)
|
|
83
|
-
return df
|
|
@@ -1,203 +0,0 @@
|
|
|
1
|
-
# Model: HistGradientBoosting with MAPIE Conformalized Quantile Regression
|
|
2
|
-
from mapie.regression import MapieQuantileRegressor
|
|
3
|
-
from sklearn.ensemble import HistGradientBoostingRegressor
|
|
4
|
-
from sklearn.model_selection import train_test_split
|
|
5
|
-
import numpy as np
|
|
6
|
-
|
|
7
|
-
# Template Placeholders
|
|
8
|
-
TEMPLATE_PARAMS = {
|
|
9
|
-
"features": "{{feature_list}}",
|
|
10
|
-
"target": "{{target_column}}",
|
|
11
|
-
"train_all_data": "{{train_all_data}}"
|
|
12
|
-
}
|
|
13
|
-
|
|
14
|
-
from io import StringIO
|
|
15
|
-
import json
|
|
16
|
-
import argparse
|
|
17
|
-
import joblib
|
|
18
|
-
import os
|
|
19
|
-
import pandas as pd
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
# Function to check if dataframe is empty
|
|
23
|
-
def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
|
|
24
|
-
"""Check if the DataFrame is empty and raise an error if so."""
|
|
25
|
-
if df.empty:
|
|
26
|
-
msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
|
|
27
|
-
print(msg)
|
|
28
|
-
raise ValueError(msg)
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
|
|
32
|
-
"""
|
|
33
|
-
Matches and renames DataFrame columns to match model feature names (case-insensitive).
|
|
34
|
-
Prioritizes exact matches, then case-insensitive matches.
|
|
35
|
-
|
|
36
|
-
Raises ValueError if any model features cannot be matched.
|
|
37
|
-
"""
|
|
38
|
-
df_columns_lower = {col.lower(): col for col in df.columns}
|
|
39
|
-
rename_dict = {}
|
|
40
|
-
missing = []
|
|
41
|
-
for feature in model_features:
|
|
42
|
-
if feature in df.columns:
|
|
43
|
-
continue # Exact match
|
|
44
|
-
elif feature.lower() in df_columns_lower:
|
|
45
|
-
rename_dict[df_columns_lower[feature.lower()]] = feature
|
|
46
|
-
else:
|
|
47
|
-
missing.append(feature)
|
|
48
|
-
|
|
49
|
-
if missing:
|
|
50
|
-
raise ValueError(f"Features not found: {missing}")
|
|
51
|
-
|
|
52
|
-
# Rename the DataFrame columns to match the model features
|
|
53
|
-
return df.rename(columns=rename_dict)
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
# TRAINING SECTION
|
|
57
|
-
#
|
|
58
|
-
# This section (__main__) is where SageMaker will execute the training job
|
|
59
|
-
# and save the model artifacts to the model directory.
|
|
60
|
-
#
|
|
61
|
-
if __name__ == "__main__":
|
|
62
|
-
# Template Parameters
|
|
63
|
-
features = TEMPLATE_PARAMS["features"]
|
|
64
|
-
target = TEMPLATE_PARAMS["target"]
|
|
65
|
-
train_all_data = TEMPLATE_PARAMS["train_all_data"]
|
|
66
|
-
validation_split = 0.2
|
|
67
|
-
|
|
68
|
-
# Script arguments for input/output directories
|
|
69
|
-
parser = argparse.ArgumentParser()
|
|
70
|
-
parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
|
|
71
|
-
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
|
|
72
|
-
parser.add_argument(
|
|
73
|
-
"--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
|
|
74
|
-
)
|
|
75
|
-
args = parser.parse_args()
|
|
76
|
-
|
|
77
|
-
# Load training data from the specified directory
|
|
78
|
-
training_files = [
|
|
79
|
-
os.path.join(args.train, file)
|
|
80
|
-
for file in os.listdir(args.train) if file.endswith(".csv")
|
|
81
|
-
]
|
|
82
|
-
df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
|
|
83
|
-
|
|
84
|
-
# Check if the DataFrame is empty
|
|
85
|
-
check_dataframe(df, "training_df")
|
|
86
|
-
|
|
87
|
-
# Training data split logic
|
|
88
|
-
if train_all_data:
|
|
89
|
-
# Use all data for both training and validation
|
|
90
|
-
print("Training on all data...")
|
|
91
|
-
df_train = df.copy()
|
|
92
|
-
df_val = df.copy()
|
|
93
|
-
elif "training" in df.columns:
|
|
94
|
-
# Split data based on a 'training' column if it exists
|
|
95
|
-
print("Splitting data based on 'training' column...")
|
|
96
|
-
df_train = df[df["training"]].copy()
|
|
97
|
-
df_val = df[~df["training"]].copy()
|
|
98
|
-
else:
|
|
99
|
-
# Perform a random split if no 'training' column is found
|
|
100
|
-
print("Splitting data randomly...")
|
|
101
|
-
df_train, df_val = train_test_split(df, test_size=validation_split, random_state=42)
|
|
102
|
-
|
|
103
|
-
# Create HistGradientBoosting base model configured for quantile regression
|
|
104
|
-
base_estimator = HistGradientBoostingRegressor(
|
|
105
|
-
loss='quantile', # Required for MAPIE CQR
|
|
106
|
-
quantile=0.5, # Will be overridden by MAPIE for different quantiles
|
|
107
|
-
max_iter=1000,
|
|
108
|
-
max_depth=6,
|
|
109
|
-
learning_rate=0.01,
|
|
110
|
-
random_state=42
|
|
111
|
-
)
|
|
112
|
-
|
|
113
|
-
# Create MAPIE CQR predictor - it will create quantile versions internally
|
|
114
|
-
model = MapieQuantileRegressor(
|
|
115
|
-
estimator=base_estimator,
|
|
116
|
-
method="quantile",
|
|
117
|
-
cv="split",
|
|
118
|
-
alpha=0.05 # For 95% coverage
|
|
119
|
-
)
|
|
120
|
-
|
|
121
|
-
# Prepare features and targets for training
|
|
122
|
-
X_train = df_train[features]
|
|
123
|
-
X_val = df_val[features]
|
|
124
|
-
y_train = df_train[target]
|
|
125
|
-
y_val = df_val[target]
|
|
126
|
-
|
|
127
|
-
# Fit the MAPIE CQR model (train/calibration is handled internally)
|
|
128
|
-
model.fit(X_train, y_train)
|
|
129
|
-
|
|
130
|
-
# Save the trained model and any necessary assets
|
|
131
|
-
joblib.dump(model, os.path.join(args.model_dir, "model.joblib"))
|
|
132
|
-
|
|
133
|
-
# Save the feature list to validate input during predictions
|
|
134
|
-
with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as fp:
|
|
135
|
-
json.dump(features, fp)
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
#
|
|
139
|
-
# Inference Section
|
|
140
|
-
#
|
|
141
|
-
def model_fn(model_dir):
|
|
142
|
-
"""Load and return the model from the specified directory."""
|
|
143
|
-
return joblib.load(os.path.join(model_dir, "model.joblib"))
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
def input_fn(input_data, content_type):
|
|
147
|
-
"""Parse input data and return a DataFrame."""
|
|
148
|
-
if not input_data:
|
|
149
|
-
raise ValueError("Empty input data is not supported!")
|
|
150
|
-
|
|
151
|
-
# Decode bytes to string if necessary
|
|
152
|
-
if isinstance(input_data, bytes):
|
|
153
|
-
input_data = input_data.decode("utf-8")
|
|
154
|
-
|
|
155
|
-
if "text/csv" in content_type:
|
|
156
|
-
return pd.read_csv(StringIO(input_data))
|
|
157
|
-
elif "application/json" in content_type:
|
|
158
|
-
return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
|
|
159
|
-
else:
|
|
160
|
-
raise ValueError(f"{content_type} not supported!")
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
def output_fn(output_df, accept_type):
|
|
164
|
-
"""Supports both CSV and JSON output formats."""
|
|
165
|
-
if "text/csv" in accept_type:
|
|
166
|
-
csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
|
|
167
|
-
return csv_output, "text/csv"
|
|
168
|
-
elif "application/json" in accept_type:
|
|
169
|
-
return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
|
|
170
|
-
else:
|
|
171
|
-
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
def predict_fn(df, model):
|
|
175
|
-
"""Make predictions using MAPIE CQR and return the DataFrame with results."""
|
|
176
|
-
model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
|
|
177
|
-
|
|
178
|
-
# Load feature columns from the saved file
|
|
179
|
-
with open(os.path.join(model_dir, "feature_columns.json")) as fp:
|
|
180
|
-
model_features = json.load(fp)
|
|
181
|
-
|
|
182
|
-
# Match features in a case-insensitive manner
|
|
183
|
-
matched_df = match_features_case_insensitive(df, model_features)
|
|
184
|
-
|
|
185
|
-
# Get CQR predictions - returns point prediction and intervals
|
|
186
|
-
X_pred = matched_df[model_features]
|
|
187
|
-
y_pred, y_pis = model.predict(X_pred)
|
|
188
|
-
|
|
189
|
-
# Add predictions to dataframe with 95% intervals
|
|
190
|
-
df["prediction"] = y_pred
|
|
191
|
-
df["q_025"] = y_pis[:, 0, 0] # Lower bound (2.5th percentile)
|
|
192
|
-
df["q_975"] = y_pis[:, 1, 0] # Upper bound (97.5th percentile)
|
|
193
|
-
|
|
194
|
-
# Calculate std estimate from 95% interval
|
|
195
|
-
interval_width_95 = df["q_975"] - df["q_025"]
|
|
196
|
-
df["prediction_std"] = interval_width_95 / 3.92 # 95% CI = ±1.96σ, so width = 3.92σ
|
|
197
|
-
|
|
198
|
-
# Calculate 50% intervals using normal approximation
|
|
199
|
-
df["q_25"] = df["prediction"] - 0.674 * df["prediction_std"]
|
|
200
|
-
df["q_75"] = df["prediction"] + 0.674 * df["prediction_std"]
|
|
201
|
-
|
|
202
|
-
# Return the modified DataFrame
|
|
203
|
-
return df
|