workbench 0.8.171__py3-none-any.whl → 0.8.172__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -32,7 +32,7 @@ workbench/api/compound.py,sha256=BHd3Qu4Ra45FEuwiowhFfGMI_HKRRB10XMmoS6ljKrM,254
32
32
  workbench/api/data_source.py,sha256=Ngz36YZWxFfpJbmURhM1LQPYjh5kdpZNGo6_fCRePbA,8321
33
33
  workbench/api/df_store.py,sha256=Wybb3zO-jPpAi2Ns8Ks1-lagvXAaBlRpBZHhnnl3Lms,6131
34
34
  workbench/api/endpoint.py,sha256=RWGqxsCW_pMiENMb_XZlm2ZCldMS4suEBM3F5gT3hYI,3814
35
- workbench/api/feature_set.py,sha256=wzNxNjN0K2FaIC7QUIogMnoHqw2vo0iAHYlGk6fWLCw,6649
35
+ workbench/api/feature_set.py,sha256=Yxei3tvWR4gSLcdJnNndux07dNeKNu1HKgsChJtHxEM,6633
36
36
  workbench/api/graph_store.py,sha256=LremJyPrQFgsHb7hxsctuCsoxx3p7TKtaY5qALHe6pc,4372
37
37
  workbench/api/meta.py,sha256=1_9989cPvf3hd3tA-83hLijOGNnhwXAF8aZF45adeDQ,8596
38
38
  workbench/api/model.py,sha256=RkFVXnlLcMlzNKRUFr_GCmZ7IQJMyhB2lwMwd22HBBo,4691
@@ -48,18 +48,18 @@ workbench/cached/cached_model.py,sha256=iMc_fySUE5qau3feduVXMNb24JY0sBjt1g6WeLLc
48
48
  workbench/cached/cached_pipeline.py,sha256=QOVnEKu5RbIdlNpJUi-0Ebh0_-C68RigSPwKh4dvZTM,1948
49
49
  workbench/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
50
  workbench/core/artifacts/__init__.py,sha256=ps7rA_rbWnDbvWbg4kvu--IKMY8WmbPRyv4Si0xub1Q,965
51
- workbench/core/artifacts/artifact.py,sha256=mF1lqQ8EP43zMRSxqPYuWoHRwQTjyWdpW9LewU7utEE,17517
51
+ workbench/core/artifacts/artifact.py,sha256=AtTw8wfMd-fi7cHJHsBAXHUk53kRW_6lyBwwsIbHw54,17750
52
52
  workbench/core/artifacts/athena_source.py,sha256=RNmCe7s6uH4gVHpcdJcL84aSbF5Q1ahJBLLGwHYRXEU,26081
53
53
  workbench/core/artifacts/cached_artifact_mixin.py,sha256=ngqFLZ4cQx_TFouXZgXZQsv_7W6XCvxVGXXSfzzaft8,3775
54
54
  workbench/core/artifacts/data_source_abstract.py,sha256=5IRCzFVK-17cd4NXPMRfx99vQAmQ0WHE5jcm5RfsVTg,10619
55
55
  workbench/core/artifacts/data_source_factory.py,sha256=YL_tA5fsgubbB3dPF6T4tO0rGgz-6oo3ge4i_YXVC-M,2380
56
56
  workbench/core/artifacts/endpoint_core.py,sha256=CtLo_eqONpDvyyYtjRkrrujVVv6cJV-vRQxHef6MYdk,48841
57
57
  workbench/core/artifacts/feature_set_core.py,sha256=055VdSYR09HP4ygAuYvIYtHQ7Ec4XxsZygpgEl5H5jQ,29136
58
- workbench/core/artifacts/model_core.py,sha256=U0dSkpZMrsIgbUglVkPwAgN0gji7Oa7glOjqMQJDAzE,50927
58
+ workbench/core/artifacts/model_core.py,sha256=6d5dV4DGUBgD9E_Gpk0F5x7OEc4oiDKokvA8m42vnK4,51724
59
59
  workbench/core/artifacts/monitor_core.py,sha256=BvJ8gMxZXYZeMzAC25PVTXWiyXKtxD1qK6LqDcIByzs,37657
60
60
  workbench/core/cloud_platform/cloud_meta.py,sha256=-g4-LTC3D0PXb3VfaXdLR1ERijKuHdffeMK_zhD-koQ,8809
61
61
  workbench/core/cloud_platform/aws/README.md,sha256=QT5IQXoUHbIA0qQ2wO6_2P2lYjYQFVYuezc22mWY4i8,97
62
- workbench/core/cloud_platform/aws/aws_account_clamp.py,sha256=OzFknZXKW7VTvnDGGX4BXKoh0i1gQ7yaEBhkLCyHFSs,6310
62
+ workbench/core/cloud_platform/aws/aws_account_clamp.py,sha256=vAVC_HEk1YGSlo5F2bhQlWUxPN2QgRe3ht73O42faWQ,6452
63
63
  workbench/core/cloud_platform/aws/aws_df_store.py,sha256=utRIlTCPwFneHHZ8_Z3Hw3rOJSeryiFA4wBtucxULRQ,15055
64
64
  workbench/core/cloud_platform/aws/aws_graph_store.py,sha256=ytYxQTplUmeWbsPmxyZbf6mO9qyTl60ewlJG8MyfyEY,9414
65
65
  workbench/core/cloud_platform/aws/aws_meta.py,sha256=eY9Pn6pl2yAyseACFb2nitR-0vLwG4i8CSEXe8Iaswc,34778
@@ -101,7 +101,7 @@ workbench/core/transforms/features_to_features/__init__.py,sha256=47DEQpj8HBSa-_
101
101
  workbench/core/transforms/features_to_features/heavy/emr/Readme.md,sha256=YtQgCEQeKe0CQXQkhzMTYq9xOtCsCYb5P5LW2BmRKWQ,68
102
102
  workbench/core/transforms/features_to_features/heavy/glue/Readme.md,sha256=TuyCatWfoDr99zUwvOcxf-TqMkQzaMqXlj5nmFcRzfo,48
103
103
  workbench/core/transforms/features_to_model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
- workbench/core/transforms/features_to_model/features_to_model.py,sha256=gwqdQZJUIfZv1M7uGhzzBxUwRS0thJE_o_H2IUsBT40,19789
104
+ workbench/core/transforms/features_to_model/features_to_model.py,sha256=ALGH5UmCdMYv4Fs2ebh6qMlwzt34xYkVSMpn4YfPbaA,19773
105
105
  workbench/core/transforms/model_to_endpoint/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
106
  workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=TIYXvuK0s383PwJ4iS6fCRhuif6oIxsoWb4CpMGJjY4,6358
107
107
  workbench/core/transforms/pandas_transforms/__init__.py,sha256=xL4MT8-fZ1SFqDbTLc8XyxjupHtB1YR6Ej0AC2nwd7I,894
@@ -121,7 +121,7 @@ workbench/core/views/training_view.py,sha256=mUkv1oVhDG-896RdLNKxCg0j0yvudEcPnvL
121
121
  workbench/core/views/view.py,sha256=Ujzw6zLROP9oKfKm3zJwaOyfpyjh5uM9fAu1i3kUOig,11764
122
122
  workbench/core/views/view_utils.py,sha256=y0YuPW-90nAfgAD1UW_49-j7Mvncfm7-5rV8I_97CK8,12274
123
123
  workbench/core/views/storage/mdq_view.py,sha256=qf_ep1KwaXOIfO930laEwNIiCYP7VNOqjE3VdHfopRE,5195
124
- workbench/model_scripts/script_generation.py,sha256=VVgRxvJsbpn6Uw6KpDAZe8oMtmg0l_fTImxDiUFJEes,7722
124
+ workbench/model_scripts/script_generation.py,sha256=dL23XYwEsHIStc7i53DtF_47FqOrI9gq0kQAT6sNpZ8,7923
125
125
  workbench/model_scripts/custom_models/chem_info/Readme.md,sha256=mH1lxJ4Pb7F5nBnVXaiuxpi8zS_yjUw_LBJepVKXhlA,574
126
126
  workbench/model_scripts/custom_models/chem_info/local_utils.py,sha256=Rsz_VRoA3O3-VoitmN8o5OymstsF433QgdSRHc-iZ24,29071
127
127
  workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py,sha256=E8SK4oOHaYnYx4ycQJ6R7yg799kjtbipM3KEc8SPArQ,3011
@@ -139,12 +139,12 @@ workbench/model_scripts/custom_models/uq_models/Readme.md,sha256=UVpL-lvtTrLqwBe
139
139
  workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template,sha256=U4LIlpp8Rbu3apyzPR7-55lvlutpTsCro_PUvQ5pklY,6457
140
140
  workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template,sha256=0IJnSBACQ556ldEiPqR7yPCOOLJs1hQhHmPBvB2d9tY,13491
141
141
  workbench/model_scripts/custom_models/uq_models/gaussian_process.template,sha256=QbDUfkiPCwJ-c-4Twgu4utZuYZaAyeW_3T1IP-_tutw,6683
142
- workbench/model_scripts/custom_models/uq_models/generated_model_script.py,sha256=QsMivNf77m4XfrV9aYTB7K3vI-InwegD7gyLZFNQmF4,17170
143
- workbench/model_scripts/custom_models/uq_models/mapie_xgb.template,sha256=ZTmerwkmXtewJwx3GGJSdLRyzJV5SJ86PvCu3dV_GHw,7330
144
- workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=FqLLbuKMijd4DjmxuBBQN3_vZcbl8WF0BZU8HRK48_0,13977
142
+ workbench/model_scripts/custom_models/uq_models/generated_model_script.py,sha256=Xu-bzX-8_uiV6USRQOmS2G-D_33XTSM9Gixt8wzOY40,21535
143
+ workbench/model_scripts/custom_models/uq_models/mapie.template,sha256=D94Y3U7IruGQlu9m6gXyLRjm502qZafYrwhEM9GP6oE,18337
144
+ workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=eawh0Fp3DhbdCXzWN6KloczT5ZS_ou4ayW65yUTTE4o,14109
145
145
  workbench/model_scripts/custom_models/uq_models/ngboost.template,sha256=9-O6P-SW50ul5Wl6es2DMWXSbrwOg7HWsdc8Qdln0MM,8278
146
146
  workbench/model_scripts/custom_models/uq_models/proximity.py,sha256=zqmNlX70LnWXr5fdtFFQppSNTLjlOciQVrjGr-g9jRE,13716
147
- workbench/model_scripts/custom_models/uq_models/requirements.txt,sha256=jfwV5b1t6BFtdaRGrSz8LnuQzJm-4V5OlhhP-4CGxhs,107
147
+ workbench/model_scripts/custom_models/uq_models/requirements.txt,sha256=fw7T7t_YJAXK3T6Ysbesxh_Agx_tv0oYx72cEBTqRDY,98
148
148
  workbench/model_scripts/custom_script_example/custom_model_script.py,sha256=T8aydawgRVAdSlDimoWpXxG2YuWWQkbcjBVjAeSG2_0,6408
149
149
  workbench/model_scripts/custom_script_example/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
150
150
  workbench/model_scripts/ensemble_xgb/ensemble_xgb.template,sha256=s8tPPk_q6UqA2nAzknD8viA-kN7f62Rim2XwMKcqHKc,10399
@@ -220,7 +220,7 @@ workbench/utils/lambda_utils.py,sha256=7GhGRPyXn9o-toWb9HBGSnI8-DhK9YRkwhCSk_mNK
220
220
  workbench/utils/license_manager.py,sha256=sDuhk1mZZqUbFmnuFXehyGnui_ALxrmYBg7gYwoo7ho,6975
221
221
  workbench/utils/log_utils.py,sha256=7n1NJXO_jUX82e6LWAQug6oPo3wiPDBYsqk9gsYab_A,3167
222
222
  workbench/utils/markdown_utils.py,sha256=4lEqzgG4EVmLcvvKKNUwNxVCySLQKJTJmWDiaDroI1w,8306
223
- workbench/utils/model_utils.py,sha256=S_fGnYucuOH5YfNviH-K85hUjSh1zFRCIjuduax7rvU,11940
223
+ workbench/utils/model_utils.py,sha256=JeEztmFyDJ7yqRozDX0L6apuhLgKx1sgNlO5duB73qc,11938
224
224
  workbench/utils/monitor_utils.py,sha256=ywoEdqoHY9t5PYRstjitS_halEWO6veCL_06BekmMVo,9153
225
225
  workbench/utils/pandas_utils.py,sha256=LQTfZ3WJkg3rIahNJhsz1YV2y_0DBG94lO-KMmEY1g0,39325
226
226
  workbench/utils/performance_utils.py,sha256=WDNvz-bOdC99cDuXl0urAV4DJ7alk_V3yzKPwvqgST4,1329
@@ -242,8 +242,8 @@ workbench/utils/type_abbrev.py,sha256=3ai7ZbE8BgvdotOSb48w_BmgrEGVYvLoyzoNYH8ZuO
242
242
  workbench/utils/workbench_cache.py,sha256=IQchxB81iR4eVggHBxUJdXxUCRkqWz1jKe5gxN3z6yc,5657
243
243
  workbench/utils/workbench_event_bridge.py,sha256=z1GmXOB-Qs7VOgC6Hjnp2DI9nSEWepaSXejACxTIR7o,4150
244
244
  workbench/utils/workbench_logging.py,sha256=WCuMWhQwibrvcGAyj96h2wowh6dH7zNlDJ7sWUzdCeI,10263
245
- workbench/utils/workbench_sqs.py,sha256=WFQTqOxoEdOzPEMmTVZcdPzylmkynZ5aKtvRrOAO06w,2127
246
- workbench/utils/xgboost_model_utils.py,sha256=AEBSyIXYFk6vI3u89w7J4VdI1dgNJOgQe6XZv4pUhOM,15501
245
+ workbench/utils/workbench_sqs.py,sha256=RwM80z7YWwdtMaCKh7KWF8v38f7eBRU7kyC7ZhTRuI0,2072
246
+ workbench/utils/xgboost_model_utils.py,sha256=iiDJH0O81aO6aOTwgssqQygvTgjE7lRDRzLJ_fI3RVs,15554
247
247
  workbench/web_interface/components/component_interface.py,sha256=QCPWqiZLkVsAEzQFEQxFelk7H0UF5uI2dVvJNf0lRV4,7980
248
248
  workbench/web_interface/components/correlation_matrix.py,sha256=Lv4vRta5-TdxBsu0G8Ea7hyyR3XyPes-k5AfL6qZWEc,6376
249
249
  workbench/web_interface/components/data_details_markdown.py,sha256=axDs6eXniglBmvFwIKjpJ5oyT-3D4FO9IcfA_cl-EJ8,9706
@@ -277,9 +277,9 @@ workbench/web_interface/page_views/main_page.py,sha256=X4-KyGTKLAdxR-Zk2niuLJB2Y
277
277
  workbench/web_interface/page_views/models_page_view.py,sha256=M0bdC7bAzLyIaE2jviY12FF4abdMFZmg6sFuOY_LaGI,2650
278
278
  workbench/web_interface/page_views/page_view.py,sha256=Gh6YnpOGlUejx-bHZAf5pzqoQ1H1R0OSwOpGhOBO06w,455
279
279
  workbench/web_interface/page_views/pipelines_page_view.py,sha256=v2pxrIbsHBcYiblfius3JK766NZ7ciD2yPx0t3E5IJo,2656
280
- workbench-0.8.171.dist-info/licenses/LICENSE,sha256=z4QMMPlLJkZjU8VOKqJkZiQZCEZ--saIU2Z8-p3aVc0,1080
281
- workbench-0.8.171.dist-info/METADATA,sha256=cLYIPKqidwQU6U3CIprMiMImJm8hwvKBAJBXGck_Aqo,9210
282
- workbench-0.8.171.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
283
- workbench-0.8.171.dist-info/entry_points.txt,sha256=zPFPruY9uayk8-wsKrhfnIyIB6jvZOW_ibyllEIsLWo,356
284
- workbench-0.8.171.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
285
- workbench-0.8.171.dist-info/RECORD,,
280
+ workbench-0.8.172.dist-info/licenses/LICENSE,sha256=z4QMMPlLJkZjU8VOKqJkZiQZCEZ--saIU2Z8-p3aVc0,1080
281
+ workbench-0.8.172.dist-info/METADATA,sha256=YSJh5jhFQMb27UB6IcfAS3REU5-2g488p8U0AVRkNV8,9210
282
+ workbench-0.8.172.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
283
+ workbench-0.8.172.dist-info/entry_points.txt,sha256=zPFPruY9uayk8-wsKrhfnIyIB6jvZOW_ibyllEIsLWo,356
284
+ workbench-0.8.172.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
285
+ workbench-0.8.172.dist-info/RECORD,,
@@ -1,203 +0,0 @@
1
- # Model: HistGradientBoosting with MAPIE Conformalized Quantile Regression
2
- from mapie.regression import MapieQuantileRegressor
3
- from sklearn.ensemble import HistGradientBoostingRegressor
4
- from sklearn.model_selection import train_test_split
5
- import numpy as np
6
-
7
- # Template Placeholders
8
- TEMPLATE_PARAMS = {
9
- "features": "{{feature_list}}",
10
- "target": "{{target_column}}",
11
- "train_all_data": "{{train_all_data}}"
12
- }
13
-
14
- from io import StringIO
15
- import json
16
- import argparse
17
- import joblib
18
- import os
19
- import pandas as pd
20
-
21
-
22
- # Function to check if dataframe is empty
23
- def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
24
- """Check if the DataFrame is empty and raise an error if so."""
25
- if df.empty:
26
- msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
27
- print(msg)
28
- raise ValueError(msg)
29
-
30
-
31
- def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
32
- """
33
- Matches and renames DataFrame columns to match model feature names (case-insensitive).
34
- Prioritizes exact matches, then case-insensitive matches.
35
-
36
- Raises ValueError if any model features cannot be matched.
37
- """
38
- df_columns_lower = {col.lower(): col for col in df.columns}
39
- rename_dict = {}
40
- missing = []
41
- for feature in model_features:
42
- if feature in df.columns:
43
- continue # Exact match
44
- elif feature.lower() in df_columns_lower:
45
- rename_dict[df_columns_lower[feature.lower()]] = feature
46
- else:
47
- missing.append(feature)
48
-
49
- if missing:
50
- raise ValueError(f"Features not found: {missing}")
51
-
52
- # Rename the DataFrame columns to match the model features
53
- return df.rename(columns=rename_dict)
54
-
55
-
56
- # TRAINING SECTION
57
- #
58
- # This section (__main__) is where SageMaker will execute the training job
59
- # and save the model artifacts to the model directory.
60
- #
61
- if __name__ == "__main__":
62
- # Template Parameters
63
- features = TEMPLATE_PARAMS["features"]
64
- target = TEMPLATE_PARAMS["target"]
65
- train_all_data = TEMPLATE_PARAMS["train_all_data"]
66
- validation_split = 0.2
67
-
68
- # Script arguments for input/output directories
69
- parser = argparse.ArgumentParser()
70
- parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
71
- parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
72
- parser.add_argument(
73
- "--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
74
- )
75
- args = parser.parse_args()
76
-
77
- # Load training data from the specified directory
78
- training_files = [
79
- os.path.join(args.train, file)
80
- for file in os.listdir(args.train) if file.endswith(".csv")
81
- ]
82
- df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
83
-
84
- # Check if the DataFrame is empty
85
- check_dataframe(df, "training_df")
86
-
87
- # Training data split logic
88
- if train_all_data:
89
- # Use all data for both training and validation
90
- print("Training on all data...")
91
- df_train = df.copy()
92
- df_val = df.copy()
93
- elif "training" in df.columns:
94
- # Split data based on a 'training' column if it exists
95
- print("Splitting data based on 'training' column...")
96
- df_train = df[df["training"]].copy()
97
- df_val = df[~df["training"]].copy()
98
- else:
99
- # Perform a random split if no 'training' column is found
100
- print("Splitting data randomly...")
101
- df_train, df_val = train_test_split(df, test_size=validation_split, random_state=42)
102
-
103
- # Create HistGradientBoosting base model configured for quantile regression
104
- base_estimator = HistGradientBoostingRegressor(
105
- loss='quantile', # Required for MAPIE CQR
106
- quantile=0.5, # Will be overridden by MAPIE for different quantiles
107
- max_iter=1000,
108
- max_depth=6,
109
- learning_rate=0.01,
110
- random_state=42
111
- )
112
-
113
- # Create MAPIE CQR predictor - it will create quantile versions internally
114
- model = MapieQuantileRegressor(
115
- estimator=base_estimator,
116
- method="quantile",
117
- cv="split",
118
- alpha=0.05 # For 95% coverage
119
- )
120
-
121
- # Prepare features and targets for training
122
- X_train = df_train[features]
123
- X_val = df_val[features]
124
- y_train = df_train[target]
125
- y_val = df_val[target]
126
-
127
- # Fit the MAPIE CQR model (train/calibration is handled internally)
128
- model.fit(X_train, y_train)
129
-
130
- # Save the trained model and any necessary assets
131
- joblib.dump(model, os.path.join(args.model_dir, "model.joblib"))
132
-
133
- # Save the feature list to validate input during predictions
134
- with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as fp:
135
- json.dump(features, fp)
136
-
137
-
138
- #
139
- # Inference Section
140
- #
141
- def model_fn(model_dir):
142
- """Load and return the model from the specified directory."""
143
- return joblib.load(os.path.join(model_dir, "model.joblib"))
144
-
145
-
146
- def input_fn(input_data, content_type):
147
- """Parse input data and return a DataFrame."""
148
- if not input_data:
149
- raise ValueError("Empty input data is not supported!")
150
-
151
- # Decode bytes to string if necessary
152
- if isinstance(input_data, bytes):
153
- input_data = input_data.decode("utf-8")
154
-
155
- if "text/csv" in content_type:
156
- return pd.read_csv(StringIO(input_data))
157
- elif "application/json" in content_type:
158
- return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
159
- else:
160
- raise ValueError(f"{content_type} not supported!")
161
-
162
-
163
- def output_fn(output_df, accept_type):
164
- """Supports both CSV and JSON output formats."""
165
- if "text/csv" in accept_type:
166
- csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
167
- return csv_output, "text/csv"
168
- elif "application/json" in accept_type:
169
- return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
170
- else:
171
- raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
172
-
173
-
174
- def predict_fn(df, model):
175
- """Make predictions using MAPIE CQR and return the DataFrame with results."""
176
- model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
177
-
178
- # Load feature columns from the saved file
179
- with open(os.path.join(model_dir, "feature_columns.json")) as fp:
180
- model_features = json.load(fp)
181
-
182
- # Match features in a case-insensitive manner
183
- matched_df = match_features_case_insensitive(df, model_features)
184
-
185
- # Get CQR predictions - returns point prediction and intervals
186
- X_pred = matched_df[model_features]
187
- y_pred, y_pis = model.predict(X_pred)
188
-
189
- # Add predictions to dataframe with 95% intervals
190
- df["prediction"] = y_pred
191
- df["q_025"] = y_pis[:, 0, 0] # Lower bound (2.5th percentile)
192
- df["q_975"] = y_pis[:, 1, 0] # Upper bound (97.5th percentile)
193
-
194
- # Calculate std estimate from 95% interval
195
- interval_width_95 = df["q_975"] - df["q_025"]
196
- df["prediction_std"] = interval_width_95 / 3.92 # 95% CI = ±1.96σ, so width = 3.92σ
197
-
198
- # Calculate 50% intervals using normal approximation
199
- df["q_25"] = df["prediction"] - 0.674 * df["prediction_std"]
200
- df["q_75"] = df["prediction"] + 0.674 * df["prediction_std"]
201
-
202
- # Return the modified DataFrame
203
- return df