workbench 0.8.162__py3-none-any.whl → 0.8.202__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of workbench might be problematic. Click here for more details.
- workbench/algorithms/dataframe/__init__.py +1 -2
- workbench/algorithms/dataframe/fingerprint_proximity.py +2 -2
- workbench/algorithms/dataframe/proximity.py +261 -235
- workbench/algorithms/graph/light/proximity_graph.py +10 -8
- workbench/api/__init__.py +2 -1
- workbench/api/compound.py +1 -1
- workbench/api/endpoint.py +11 -0
- workbench/api/feature_set.py +11 -8
- workbench/api/meta.py +5 -2
- workbench/api/model.py +16 -15
- workbench/api/monitor.py +1 -16
- workbench/core/artifacts/__init__.py +11 -2
- workbench/core/artifacts/artifact.py +11 -3
- workbench/core/artifacts/data_capture_core.py +355 -0
- workbench/core/artifacts/endpoint_core.py +256 -118
- workbench/core/artifacts/feature_set_core.py +265 -16
- workbench/core/artifacts/model_core.py +107 -60
- workbench/core/artifacts/monitor_core.py +33 -248
- workbench/core/cloud_platform/aws/aws_account_clamp.py +50 -1
- workbench/core/cloud_platform/aws/aws_meta.py +12 -5
- workbench/core/cloud_platform/aws/aws_parameter_store.py +18 -2
- workbench/core/cloud_platform/aws/aws_session.py +4 -4
- workbench/core/transforms/data_to_features/light/molecular_descriptors.py +4 -4
- workbench/core/transforms/features_to_model/features_to_model.py +42 -32
- workbench/core/transforms/model_to_endpoint/model_to_endpoint.py +36 -6
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +27 -0
- workbench/core/views/training_view.py +113 -42
- workbench/core/views/view.py +53 -3
- workbench/core/views/view_utils.py +4 -4
- workbench/model_scripts/chemprop/chemprop.template +852 -0
- workbench/model_scripts/chemprop/generated_model_script.py +852 -0
- workbench/model_scripts/chemprop/requirements.txt +11 -0
- workbench/model_scripts/custom_models/chem_info/fingerprints.py +134 -0
- workbench/model_scripts/custom_models/chem_info/mol_descriptors.py +483 -0
- workbench/model_scripts/custom_models/chem_info/mol_standardize.py +450 -0
- workbench/model_scripts/custom_models/chem_info/molecular_descriptors.py +7 -9
- workbench/model_scripts/custom_models/chem_info/morgan_fingerprints.py +1 -1
- workbench/model_scripts/custom_models/proximity/feature_space_proximity.template +3 -5
- workbench/model_scripts/custom_models/proximity/proximity.py +261 -235
- workbench/model_scripts/custom_models/uq_models/bayesian_ridge.template +7 -8
- workbench/model_scripts/custom_models/uq_models/ensemble_xgb.template +20 -21
- workbench/model_scripts/custom_models/uq_models/gaussian_process.template +5 -11
- workbench/model_scripts/custom_models/uq_models/meta_uq.template +166 -62
- workbench/model_scripts/custom_models/uq_models/ngboost.template +30 -18
- workbench/model_scripts/custom_models/uq_models/proximity.py +261 -235
- workbench/model_scripts/custom_models/uq_models/requirements.txt +1 -3
- workbench/model_scripts/ensemble_xgb/ensemble_xgb.template +15 -17
- workbench/model_scripts/pytorch_model/generated_model_script.py +373 -190
- workbench/model_scripts/pytorch_model/pytorch.template +370 -187
- workbench/model_scripts/scikit_learn/generated_model_script.py +7 -12
- workbench/model_scripts/scikit_learn/scikit_learn.template +4 -9
- workbench/model_scripts/script_generation.py +17 -9
- workbench/model_scripts/uq_models/generated_model_script.py +605 -0
- workbench/model_scripts/uq_models/mapie.template +605 -0
- workbench/model_scripts/uq_models/requirements.txt +1 -0
- workbench/model_scripts/xgb_model/generated_model_script.py +37 -46
- workbench/model_scripts/xgb_model/xgb_model.template +44 -46
- workbench/repl/workbench_shell.py +28 -14
- workbench/scripts/endpoint_test.py +162 -0
- workbench/scripts/lambda_test.py +73 -0
- workbench/scripts/ml_pipeline_batch.py +137 -0
- workbench/scripts/ml_pipeline_sqs.py +186 -0
- workbench/scripts/monitor_cloud_watch.py +20 -100
- workbench/utils/aws_utils.py +4 -3
- workbench/utils/chem_utils/__init__.py +0 -0
- workbench/utils/chem_utils/fingerprints.py +134 -0
- workbench/utils/chem_utils/misc.py +194 -0
- workbench/utils/chem_utils/mol_descriptors.py +483 -0
- workbench/utils/chem_utils/mol_standardize.py +450 -0
- workbench/utils/chem_utils/mol_tagging.py +348 -0
- workbench/utils/chem_utils/projections.py +209 -0
- workbench/utils/chem_utils/salts.py +256 -0
- workbench/utils/chem_utils/sdf.py +292 -0
- workbench/utils/chem_utils/toxicity.py +250 -0
- workbench/utils/chem_utils/vis.py +253 -0
- workbench/utils/chemprop_utils.py +760 -0
- workbench/utils/cloudwatch_handler.py +1 -1
- workbench/utils/cloudwatch_utils.py +137 -0
- workbench/utils/config_manager.py +3 -7
- workbench/utils/endpoint_utils.py +5 -7
- workbench/utils/license_manager.py +2 -6
- workbench/utils/model_utils.py +95 -34
- workbench/utils/monitor_utils.py +44 -62
- workbench/utils/pandas_utils.py +3 -3
- workbench/utils/pytorch_utils.py +526 -0
- workbench/utils/shap_utils.py +10 -2
- workbench/utils/workbench_logging.py +0 -3
- workbench/utils/workbench_sqs.py +1 -1
- workbench/utils/xgboost_model_utils.py +371 -156
- workbench/web_interface/components/model_plot.py +7 -1
- workbench/web_interface/components/plugin_unit_test.py +5 -2
- workbench/web_interface/components/plugins/dashboard_status.py +3 -1
- workbench/web_interface/components/plugins/generated_compounds.py +1 -1
- workbench/web_interface/components/plugins/model_details.py +9 -7
- workbench/web_interface/components/plugins/scatter_plot.py +3 -3
- {workbench-0.8.162.dist-info → workbench-0.8.202.dist-info}/METADATA +27 -6
- {workbench-0.8.162.dist-info → workbench-0.8.202.dist-info}/RECORD +101 -85
- {workbench-0.8.162.dist-info → workbench-0.8.202.dist-info}/entry_points.txt +4 -0
- {workbench-0.8.162.dist-info → workbench-0.8.202.dist-info}/licenses/LICENSE +1 -1
- workbench/model_scripts/custom_models/chem_info/local_utils.py +0 -769
- workbench/model_scripts/custom_models/chem_info/tautomerize.py +0 -83
- workbench/model_scripts/custom_models/proximity/generated_model_script.py +0 -138
- workbench/model_scripts/custom_models/uq_models/generated_model_script.py +0 -393
- workbench/model_scripts/custom_models/uq_models/mapie_xgb.template +0 -203
- workbench/model_scripts/ensemble_xgb/generated_model_script.py +0 -279
- workbench/model_scripts/quant_regression/quant_regression.template +0 -279
- workbench/model_scripts/quant_regression/requirements.txt +0 -1
- workbench/utils/chem_utils.py +0 -1556
- workbench/utils/execution_environment.py +0 -211
- workbench/utils/fast_inference.py +0 -167
- workbench/utils/resource_utils.py +0 -39
- {workbench-0.8.162.dist-info → workbench-0.8.202.dist-info}/WHEEL +0 -0
- {workbench-0.8.162.dist-info → workbench-0.8.202.dist-info}/top_level.txt +0 -0
|
@@ -4,8 +4,10 @@ import sys
|
|
|
4
4
|
import time
|
|
5
5
|
import argparse
|
|
6
6
|
from datetime import datetime, timedelta, timezone
|
|
7
|
-
|
|
7
|
+
|
|
8
|
+
# Workbench Imports
|
|
8
9
|
from workbench.utils.repl_utils import cprint, Spinner
|
|
10
|
+
from workbench.utils.cloudwatch_utils import get_cloudwatch_client, get_active_log_streams, stream_log_events
|
|
9
11
|
|
|
10
12
|
# Define the log levels to include all log levels above the specified level
|
|
11
13
|
log_level_map = {
|
|
@@ -33,64 +35,6 @@ def date_display(dt):
|
|
|
33
35
|
return dt.strftime("%Y-%m-%d %I:%M%p") + "(UTC)"
|
|
34
36
|
|
|
35
37
|
|
|
36
|
-
def get_cloudwatch_client():
|
|
37
|
-
"""Get the CloudWatch Logs client using the Workbench assumed role session."""
|
|
38
|
-
session = AWSAccountClamp().boto3_session
|
|
39
|
-
return session.client("logs")
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
def get_active_log_streams(client, log_group_name, start_time_ms, stream_filter=None):
|
|
43
|
-
"""Retrieve log streams that have events after the specified start time."""
|
|
44
|
-
|
|
45
|
-
# Get all the streams in the log group
|
|
46
|
-
active_streams = []
|
|
47
|
-
stream_params = {
|
|
48
|
-
"logGroupName": log_group_name,
|
|
49
|
-
"orderBy": "LastEventTime",
|
|
50
|
-
"descending": True,
|
|
51
|
-
}
|
|
52
|
-
|
|
53
|
-
# Loop to retrieve all log streams (maximum 50 per call)
|
|
54
|
-
while True:
|
|
55
|
-
response = client.describe_log_streams(**stream_params)
|
|
56
|
-
log_streams = response.get("logStreams", [])
|
|
57
|
-
|
|
58
|
-
for log_stream in log_streams:
|
|
59
|
-
log_stream_name = log_stream["logStreamName"]
|
|
60
|
-
last_event_timestamp = log_stream.get("lastEventTimestamp")
|
|
61
|
-
|
|
62
|
-
# Include streams with events since the specified start time
|
|
63
|
-
# Note: There's some issue where the last event timestamp is 'off'
|
|
64
|
-
# so we're going to add 60 minutes from the last event timestamp
|
|
65
|
-
last_event_timestamp += 60 * 60 * 1000
|
|
66
|
-
if last_event_timestamp >= start_time_ms:
|
|
67
|
-
active_streams.append(log_stream_name)
|
|
68
|
-
else:
|
|
69
|
-
break # Stop if we reach streams older than the start time
|
|
70
|
-
|
|
71
|
-
# Check if there are more streams to retrieve
|
|
72
|
-
if "nextToken" in response:
|
|
73
|
-
stream_params["nextToken"] = response["nextToken"]
|
|
74
|
-
else:
|
|
75
|
-
break
|
|
76
|
-
|
|
77
|
-
# Sort and report the active log streams
|
|
78
|
-
active_streams.sort()
|
|
79
|
-
if active_streams:
|
|
80
|
-
print("Active log streams:", len(active_streams))
|
|
81
|
-
|
|
82
|
-
# Filter the active streams by a substring if provided
|
|
83
|
-
if stream_filter and active_streams:
|
|
84
|
-
print(f"Filtering active log streams by '{stream_filter}'...")
|
|
85
|
-
active_streams = [stream for stream in active_streams if stream_filter in stream]
|
|
86
|
-
|
|
87
|
-
for stream in active_streams:
|
|
88
|
-
print(f"\t - {stream}")
|
|
89
|
-
|
|
90
|
-
# Return the active log streams
|
|
91
|
-
return active_streams
|
|
92
|
-
|
|
93
|
-
|
|
94
38
|
def get_latest_log_events(client, log_group_name, start_time, end_time=None, stream_filter=None):
|
|
95
39
|
"""Retrieve the latest log events from the active/filtered log streams in a CloudWatch Logs group."""
|
|
96
40
|
|
|
@@ -99,11 +43,15 @@ def get_latest_log_events(client, log_group_name, start_time, end_time=None, str
|
|
|
99
43
|
get_latest_log_events.first_run = True
|
|
100
44
|
|
|
101
45
|
log_events = []
|
|
102
|
-
start_time_ms = int(start_time.timestamp() * 1000)
|
|
46
|
+
start_time_ms = int(start_time.timestamp() * 1000)
|
|
47
|
+
|
|
48
|
+
# Use the util function to get active streams
|
|
49
|
+
active_streams = get_active_log_streams(log_group_name, start_time_ms, stream_filter, client)
|
|
103
50
|
|
|
104
|
-
# Get the active log streams with events since start_time
|
|
105
|
-
active_streams = get_active_log_streams(client, log_group_name, start_time_ms, stream_filter)
|
|
106
51
|
if active_streams:
|
|
52
|
+
print(f"Active log streams: {len(active_streams)}")
|
|
53
|
+
for stream in active_streams:
|
|
54
|
+
print(f"\t - {stream}")
|
|
107
55
|
print(f"Processing log events from {date_display(start_time)} on {len(active_streams)} active log streams...")
|
|
108
56
|
get_latest_log_events.first_run = False
|
|
109
57
|
else:
|
|
@@ -114,50 +62,22 @@ def get_latest_log_events(client, log_group_name, start_time, end_time=None, str
|
|
|
114
62
|
print("Monitoring for new events...")
|
|
115
63
|
return log_events
|
|
116
64
|
|
|
117
|
-
#
|
|
65
|
+
# Use the util function to stream events from each log stream
|
|
118
66
|
for log_stream_name in active_streams:
|
|
119
|
-
params = {
|
|
120
|
-
"logGroupName": log_group_name,
|
|
121
|
-
"logStreamName": log_stream_name,
|
|
122
|
-
"startTime": start_time_ms, # Use start_time in milliseconds
|
|
123
|
-
"startFromHead": True, # Start from the nearest event to start_time
|
|
124
|
-
}
|
|
125
|
-
next_event_token = None
|
|
126
|
-
if end_time is not None:
|
|
127
|
-
params["endTime"] = int(end_time.timestamp() * 1000)
|
|
128
|
-
|
|
129
|
-
# Process the log events from this log stream
|
|
130
67
|
spinner = Spinner("lightpurple", f"Pulling events from {log_stream_name}:")
|
|
131
68
|
spinner.start()
|
|
132
69
|
log_stream_events = 0
|
|
133
70
|
|
|
134
|
-
#
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
71
|
+
# Stream events using the util function
|
|
72
|
+
for event in stream_log_events(
|
|
73
|
+
log_group_name, log_stream_name, start_time, end_time, follow=False, client=client
|
|
74
|
+
):
|
|
75
|
+
log_stream_events += 1
|
|
76
|
+
log_events.append(event)
|
|
139
77
|
|
|
140
|
-
|
|
141
|
-
|
|
78
|
+
spinner.stop()
|
|
79
|
+
print(f"Processed {log_stream_events} events from {log_stream_name} (Total: {len(log_events)})")
|
|
142
80
|
|
|
143
|
-
events = events_response.get("events", [])
|
|
144
|
-
for event in events:
|
|
145
|
-
event["logStreamName"] = log_stream_name
|
|
146
|
-
|
|
147
|
-
# Add the log stream events to our list of all log events
|
|
148
|
-
log_stream_events += len(events)
|
|
149
|
-
log_events.extend(events)
|
|
150
|
-
|
|
151
|
-
# Handle pagination for log events
|
|
152
|
-
next_event_token = events_response.get("nextForwardToken")
|
|
153
|
-
|
|
154
|
-
# Break the loop if there are no more events to fetch
|
|
155
|
-
if not next_event_token or next_event_token == params.get("nextToken"):
|
|
156
|
-
spinner.stop()
|
|
157
|
-
print(f"Processed {log_stream_events} events from {log_stream_name} (Total: {len(log_events)})")
|
|
158
|
-
break
|
|
159
|
-
|
|
160
|
-
# Return the log events
|
|
161
81
|
return log_events
|
|
162
82
|
|
|
163
83
|
|
|
@@ -206,6 +126,7 @@ def monitor_log_group(
|
|
|
206
126
|
print(f"Monitoring log group: {log_group_name} from {date_display(start_time)}")
|
|
207
127
|
print(f"Log levels: {log_levels}")
|
|
208
128
|
print(f"Search terms: {search_terms}")
|
|
129
|
+
|
|
209
130
|
while True:
|
|
210
131
|
# Get the latest log events with stream filtering if provided
|
|
211
132
|
all_log_events = get_latest_log_events(client, log_group_name, start_time, end_time, stream_filter)
|
|
@@ -218,7 +139,6 @@ def monitor_log_group(
|
|
|
218
139
|
|
|
219
140
|
# Check the search terms
|
|
220
141
|
if not search_terms or any(term in event["message"].lower() for term in search_terms):
|
|
221
|
-
|
|
222
142
|
# Calculate the start and end index for this match
|
|
223
143
|
start_index = max(i - before, 0)
|
|
224
144
|
end_index = min(i + after, len(all_log_events) - 1)
|
workbench/utils/aws_utils.py
CHANGED
|
@@ -55,7 +55,8 @@ def aws_throttle(func=None, retry_intervals=None):
|
|
|
55
55
|
if func is None:
|
|
56
56
|
return lambda f: aws_throttle(f, retry_intervals=retry_intervals)
|
|
57
57
|
|
|
58
|
-
|
|
58
|
+
# This is currently commented out (we might want to use it later)
|
|
59
|
+
# service_hold_time = 2 # Seconds to wait before calling AWS function
|
|
59
60
|
default_intervals = [2**i for i in range(1, 9)] # Default exponential backoff: 2, 4, 8... 256 seconds
|
|
60
61
|
intervals = retry_intervals or default_intervals
|
|
61
62
|
|
|
@@ -64,8 +65,8 @@ def aws_throttle(func=None, retry_intervals=None):
|
|
|
64
65
|
for attempt, delay in enumerate(intervals, start=1):
|
|
65
66
|
try:
|
|
66
67
|
# Add sleep before calling AWS func if running as a service
|
|
67
|
-
if cm.running_as_service:
|
|
68
|
-
|
|
68
|
+
# if cm.running_as_service:
|
|
69
|
+
# time.sleep(service_hold_time)
|
|
69
70
|
return func(*args, **kwargs)
|
|
70
71
|
except ClientError as e:
|
|
71
72
|
if e.response["Error"]["Code"] == "ThrottlingException":
|
|
File without changes
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
"""Molecular fingerprint computation utilities"""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
import pandas as pd
|
|
5
|
+
|
|
6
|
+
# Molecular Descriptor Imports
|
|
7
|
+
from rdkit import Chem
|
|
8
|
+
from rdkit.Chem import rdFingerprintGenerator
|
|
9
|
+
from rdkit.Chem.MolStandardize import rdMolStandardize
|
|
10
|
+
|
|
11
|
+
# Set up the logger
|
|
12
|
+
log = logging.getLogger("workbench")
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def compute_morgan_fingerprints(df: pd.DataFrame, radius=2, n_bits=2048, counts=True) -> pd.DataFrame:
|
|
16
|
+
"""Compute and add Morgan fingerprints to the DataFrame.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
df (pd.DataFrame): Input DataFrame containing SMILES strings.
|
|
20
|
+
radius (int): Radius for the Morgan fingerprint.
|
|
21
|
+
n_bits (int): Number of bits for the fingerprint.
|
|
22
|
+
counts (bool): Count simulation for the fingerprint.
|
|
23
|
+
|
|
24
|
+
Returns:
|
|
25
|
+
pd.DataFrame: The input DataFrame with the Morgan fingerprints added as bit strings.
|
|
26
|
+
|
|
27
|
+
Note:
|
|
28
|
+
See: https://greglandrum.github.io/rdkit-blog/posts/2021-07-06-simulating-counts.html
|
|
29
|
+
"""
|
|
30
|
+
delete_mol_column = False
|
|
31
|
+
|
|
32
|
+
# Check for the SMILES column (case-insensitive)
|
|
33
|
+
smiles_column = next((col for col in df.columns if col.lower() == "smiles"), None)
|
|
34
|
+
if smiles_column is None:
|
|
35
|
+
raise ValueError("Input DataFrame must have a 'smiles' column")
|
|
36
|
+
|
|
37
|
+
# Sanity check the molecule column (sometimes it gets serialized, which doesn't work)
|
|
38
|
+
if "molecule" in df.columns and df["molecule"].dtype == "string":
|
|
39
|
+
log.warning("Detected serialized molecules in 'molecule' column. Removing...")
|
|
40
|
+
del df["molecule"]
|
|
41
|
+
|
|
42
|
+
# Convert SMILES to RDKit molecule objects (vectorized)
|
|
43
|
+
if "molecule" not in df.columns:
|
|
44
|
+
log.info("Converting SMILES to RDKit Molecules...")
|
|
45
|
+
delete_mol_column = True
|
|
46
|
+
df["molecule"] = df[smiles_column].apply(Chem.MolFromSmiles)
|
|
47
|
+
# Make sure our molecules are not None
|
|
48
|
+
failed_smiles = df[df["molecule"].isnull()][smiles_column].tolist()
|
|
49
|
+
if failed_smiles:
|
|
50
|
+
log.error(f"Failed to convert the following SMILES to molecules: {failed_smiles}")
|
|
51
|
+
df = df.dropna(subset=["molecule"])
|
|
52
|
+
|
|
53
|
+
# If we have fragments in our compounds, get the largest fragment before computing fingerprints
|
|
54
|
+
largest_frags = df["molecule"].apply(
|
|
55
|
+
lambda mol: rdMolStandardize.LargestFragmentChooser().choose(mol) if mol else None
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
# Create a Morgan fingerprint generator
|
|
59
|
+
if counts:
|
|
60
|
+
n_bits *= 4 # Multiply by 4 to simulate counts
|
|
61
|
+
morgan_generator = rdFingerprintGenerator.GetMorganGenerator(radius=radius, fpSize=n_bits, countSimulation=counts)
|
|
62
|
+
|
|
63
|
+
# Compute Morgan fingerprints (vectorized)
|
|
64
|
+
fingerprints = largest_frags.apply(
|
|
65
|
+
lambda mol: (morgan_generator.GetFingerprint(mol).ToBitString() if mol else pd.NA)
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
# Add the fingerprints to the DataFrame
|
|
69
|
+
df["fingerprint"] = fingerprints
|
|
70
|
+
|
|
71
|
+
# Drop the intermediate 'molecule' column if it was added
|
|
72
|
+
if delete_mol_column:
|
|
73
|
+
del df["molecule"]
|
|
74
|
+
return df
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
if __name__ == "__main__":
|
|
78
|
+
print("Running molecular fingerprint tests...")
|
|
79
|
+
print("Note: This requires molecular_screening module to be available")
|
|
80
|
+
|
|
81
|
+
# Test molecules
|
|
82
|
+
test_molecules = {
|
|
83
|
+
"aspirin": "CC(=O)OC1=CC=CC=C1C(=O)O",
|
|
84
|
+
"caffeine": "CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
|
|
85
|
+
"glucose": "C([C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)O)O)O", # With stereochemistry
|
|
86
|
+
"sodium_acetate": "CC(=O)[O-].[Na+]", # Salt
|
|
87
|
+
"benzene": "c1ccccc1",
|
|
88
|
+
"butene_e": "C/C=C/C", # E-butene
|
|
89
|
+
"butene_z": "C/C=C\\C", # Z-butene
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
# Test 1: Morgan Fingerprints
|
|
93
|
+
print("\n1. Testing Morgan fingerprint generation...")
|
|
94
|
+
|
|
95
|
+
test_df = pd.DataFrame({"SMILES": list(test_molecules.values()), "name": list(test_molecules.keys())})
|
|
96
|
+
|
|
97
|
+
fp_df = compute_morgan_fingerprints(test_df.copy(), radius=2, n_bits=512, counts=False)
|
|
98
|
+
|
|
99
|
+
print(" Fingerprint generation results:")
|
|
100
|
+
for _, row in fp_df.iterrows():
|
|
101
|
+
fp = row.get("fingerprint", "N/A")
|
|
102
|
+
fp_len = len(fp) if fp != "N/A" else 0
|
|
103
|
+
print(f" {row['name']:15} → {fp_len} bits")
|
|
104
|
+
|
|
105
|
+
# Test 2: Different fingerprint parameters
|
|
106
|
+
print("\n2. Testing different fingerprint parameters...")
|
|
107
|
+
|
|
108
|
+
# Test with counts enabled
|
|
109
|
+
fp_counts_df = compute_morgan_fingerprints(test_df.copy(), radius=3, n_bits=256, counts=True)
|
|
110
|
+
|
|
111
|
+
print(" With count simulation (256 bits * 4):")
|
|
112
|
+
for _, row in fp_counts_df.iterrows():
|
|
113
|
+
fp = row.get("fingerprint", "N/A")
|
|
114
|
+
fp_len = len(fp) if fp != "N/A" else 0
|
|
115
|
+
print(f" {row['name']:15} → {fp_len} bits")
|
|
116
|
+
|
|
117
|
+
# Test 3: Edge cases
|
|
118
|
+
print("\n3. Testing edge cases...")
|
|
119
|
+
|
|
120
|
+
# Invalid SMILES
|
|
121
|
+
invalid_df = pd.DataFrame({"SMILES": ["INVALID", ""]})
|
|
122
|
+
try:
|
|
123
|
+
fp_invalid = compute_morgan_fingerprints(invalid_df.copy())
|
|
124
|
+
print(f" ✓ Invalid SMILES handled: {len(fp_invalid)} valid molecules")
|
|
125
|
+
except Exception as e:
|
|
126
|
+
print(f" ✓ Invalid SMILES properly raised error: {type(e).__name__}")
|
|
127
|
+
|
|
128
|
+
# Test with pre-existing molecule column
|
|
129
|
+
mol_df = test_df.copy()
|
|
130
|
+
mol_df["molecule"] = mol_df["SMILES"].apply(Chem.MolFromSmiles)
|
|
131
|
+
fp_with_mol = compute_morgan_fingerprints(mol_df)
|
|
132
|
+
print(f" ✓ Pre-existing molecule column handled: {len(fp_with_mol)} fingerprints generated")
|
|
133
|
+
|
|
134
|
+
print("\n✅ All fingerprint tests completed!")
|
|
@@ -0,0 +1,194 @@
|
|
|
1
|
+
"""Miscellaneous processing functions for molecular data."""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
import numpy as np
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from typing import List, Optional
|
|
7
|
+
|
|
8
|
+
# Set up the logger
|
|
9
|
+
log = logging.getLogger("workbench")
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def geometric_mean(series: pd.Series) -> float:
|
|
13
|
+
"""Computes the geometric mean manually to avoid using scipy."""
|
|
14
|
+
return np.exp(np.log(series).mean())
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def rollup_experimental_data(
|
|
18
|
+
df: pd.DataFrame, id: str, time: str, target: str, use_gmean: bool = False
|
|
19
|
+
) -> pd.DataFrame:
|
|
20
|
+
"""
|
|
21
|
+
Rolls up a dataset by selecting the largest time per unique ID and averaging the target value
|
|
22
|
+
if multiple records exist at that time. Supports both arithmetic and geometric mean.
|
|
23
|
+
|
|
24
|
+
Parameters:
|
|
25
|
+
df (pd.DataFrame): Input dataframe.
|
|
26
|
+
id (str): Column representing the unique molecule ID.
|
|
27
|
+
time (str): Column representing the time.
|
|
28
|
+
target (str): Column representing the target value.
|
|
29
|
+
use_gmean (bool): Whether to use the geometric mean instead of the arithmetic mean.
|
|
30
|
+
|
|
31
|
+
Returns:
|
|
32
|
+
pd.DataFrame: Rolled-up dataframe with all original columns retained.
|
|
33
|
+
"""
|
|
34
|
+
# Find the max time per unique ID
|
|
35
|
+
max_time_df = df.groupby(id)[time].transform("max")
|
|
36
|
+
filtered_df = df[df[time] == max_time_df]
|
|
37
|
+
|
|
38
|
+
# Define aggregation function
|
|
39
|
+
agg_func = geometric_mean if use_gmean else np.mean
|
|
40
|
+
|
|
41
|
+
# Perform aggregation on all columns
|
|
42
|
+
agg_dict = {col: "first" for col in df.columns if col not in [target, id, time]}
|
|
43
|
+
agg_dict[target] = lambda x: agg_func(x) if len(x) > 1 else x.iloc[0] # Apply mean or gmean
|
|
44
|
+
|
|
45
|
+
rolled_up_df = filtered_df.groupby([id, time]).agg(agg_dict).reset_index()
|
|
46
|
+
return rolled_up_df
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def micromolar_to_log(series_µM: pd.Series) -> pd.Series:
|
|
50
|
+
"""
|
|
51
|
+
Convert a pandas Series of concentrations in µM (micromolar) to their logarithmic values (log10).
|
|
52
|
+
|
|
53
|
+
Parameters:
|
|
54
|
+
series_uM (pd.Series): Series of concentrations in micromolar.
|
|
55
|
+
|
|
56
|
+
Returns:
|
|
57
|
+
pd.Series: Series of logarithmic values (log10).
|
|
58
|
+
"""
|
|
59
|
+
# Replace 0 or negative values with a small number to avoid log errors
|
|
60
|
+
adjusted_series = series_µM.clip(lower=1e-9) # Alignment with another project
|
|
61
|
+
|
|
62
|
+
series_mol_per_l = adjusted_series * 1e-6 # Convert µM/L to mol/L
|
|
63
|
+
log_series = np.log10(series_mol_per_l)
|
|
64
|
+
return log_series
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def log_to_micromolar(log_series: pd.Series) -> pd.Series:
|
|
68
|
+
"""
|
|
69
|
+
Convert a pandas Series of logarithmic values (log10) back to concentrations in µM (micromolar).
|
|
70
|
+
|
|
71
|
+
Parameters:
|
|
72
|
+
log_series (pd.Series): Series of logarithmic values (log10).
|
|
73
|
+
|
|
74
|
+
Returns:
|
|
75
|
+
pd.Series: Series of concentrations in micromolar.
|
|
76
|
+
"""
|
|
77
|
+
series_mol_per_l = 10**log_series # Convert log10 back to mol/L
|
|
78
|
+
series_µM = series_mol_per_l * 1e6 # Convert mol/L to µM
|
|
79
|
+
return series_µM
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def feature_resolution_issues(df: pd.DataFrame, features: List[str], show_cols: Optional[List[str]] = None) -> None:
|
|
83
|
+
"""
|
|
84
|
+
Identify and print groups in a DataFrame where the given features have more than one unique SMILES,
|
|
85
|
+
sorted by group size (largest number of unique SMILES first).
|
|
86
|
+
|
|
87
|
+
Args:
|
|
88
|
+
df (pd.DataFrame): Input DataFrame containing SMILES strings.
|
|
89
|
+
features (List[str]): List of features to check.
|
|
90
|
+
show_cols (Optional[List[str]]): Columns to display; defaults to all columns.
|
|
91
|
+
"""
|
|
92
|
+
# Check for the 'smiles' column (case-insensitive)
|
|
93
|
+
smiles_column = next((col for col in df.columns if col.lower() == "smiles"), None)
|
|
94
|
+
if smiles_column is None:
|
|
95
|
+
raise ValueError("Input DataFrame must have a 'smiles' column")
|
|
96
|
+
|
|
97
|
+
show_cols = show_cols if show_cols is not None else df.columns.tolist()
|
|
98
|
+
|
|
99
|
+
# Drop duplicates to keep only unique SMILES for each feature combination
|
|
100
|
+
unique_df = df.drop_duplicates(subset=[smiles_column] + features)
|
|
101
|
+
|
|
102
|
+
# Find groups with more than one unique SMILES
|
|
103
|
+
group_counts = unique_df.groupby(features).size()
|
|
104
|
+
collision_groups = group_counts[group_counts > 1].sort_values(ascending=False)
|
|
105
|
+
|
|
106
|
+
# Print each group in order of size (largest first)
|
|
107
|
+
for group, count in collision_groups.items():
|
|
108
|
+
# Get the rows for this group
|
|
109
|
+
if isinstance(group, tuple):
|
|
110
|
+
group_mask = (unique_df[features] == group).all(axis=1)
|
|
111
|
+
else:
|
|
112
|
+
group_mask = unique_df[features[0]] == group
|
|
113
|
+
|
|
114
|
+
group_df = unique_df[group_mask]
|
|
115
|
+
|
|
116
|
+
print(f"Feature Group (unique SMILES: {count}):")
|
|
117
|
+
print(group_df[show_cols])
|
|
118
|
+
print("\n")
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
if __name__ == "__main__":
|
|
122
|
+
print("Running molecular processing and transformation tests...")
|
|
123
|
+
print("Note: This requires the molecular_filters module to be available")
|
|
124
|
+
|
|
125
|
+
# Test 1: Concentration conversions
|
|
126
|
+
print("\n1. Testing concentration conversions...")
|
|
127
|
+
|
|
128
|
+
# Test micromolar to log
|
|
129
|
+
test_conc = pd.Series([1.0, 10.0, 100.0, 1000.0, 0.001])
|
|
130
|
+
log_values = micromolar_to_log(test_conc)
|
|
131
|
+
back_to_uM = log_to_micromolar(log_values)
|
|
132
|
+
|
|
133
|
+
print(" µM → log10 → µM:")
|
|
134
|
+
for orig, log_val, back in zip(test_conc, log_values, back_to_uM):
|
|
135
|
+
print(f" {orig:8.3f} µM → {log_val:6.2f} → {back:8.3f} µM")
|
|
136
|
+
|
|
137
|
+
# Test 2: Geometric mean
|
|
138
|
+
print("\n2. Testing geometric mean...")
|
|
139
|
+
test_series = pd.Series([2, 4, 8, 16])
|
|
140
|
+
geo_mean = geometric_mean(test_series)
|
|
141
|
+
arith_mean = np.mean(test_series)
|
|
142
|
+
print(f" Series: {list(test_series)}")
|
|
143
|
+
print(f" Arithmetic mean: {arith_mean:.2f}")
|
|
144
|
+
print(f" Geometric mean: {geo_mean:.2f}")
|
|
145
|
+
|
|
146
|
+
# Test 3: Experimental data rollup
|
|
147
|
+
print("\n3. Testing experimental data rollup...")
|
|
148
|
+
|
|
149
|
+
# Create test data with multiple timepoints and replicates
|
|
150
|
+
test_data = pd.DataFrame(
|
|
151
|
+
{
|
|
152
|
+
"compound_id": ["A", "A", "A", "B", "B", "C", "C", "C"],
|
|
153
|
+
"time": [1, 2, 2, 1, 2, 1, 1, 2],
|
|
154
|
+
"activity": [10, 20, 22, 5, 8, 100, 110, 200],
|
|
155
|
+
"assay": ["kinase", "kinase", "kinase", "kinase", "kinase", "cell", "cell", "cell"],
|
|
156
|
+
}
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
# Rollup with arithmetic mean
|
|
160
|
+
rolled_arith = rollup_experimental_data(test_data, "compound_id", "time", "activity", use_gmean=False)
|
|
161
|
+
print(" Arithmetic mean rollup:")
|
|
162
|
+
print(rolled_arith[["compound_id", "time", "activity"]])
|
|
163
|
+
|
|
164
|
+
# Rollup with geometric mean
|
|
165
|
+
rolled_geo = rollup_experimental_data(test_data, "compound_id", "time", "activity", use_gmean=True)
|
|
166
|
+
print("\n Geometric mean rollup:")
|
|
167
|
+
print(rolled_geo[["compound_id", "time", "activity"]])
|
|
168
|
+
|
|
169
|
+
# Test 4: Feature resolution issues
|
|
170
|
+
print("\n4. Testing feature resolution identification...")
|
|
171
|
+
|
|
172
|
+
# Create data with some duplicate features but different SMILES
|
|
173
|
+
resolution_df = pd.DataFrame(
|
|
174
|
+
{
|
|
175
|
+
"smiles": ["CCO", "C(C)O", "CC(C)O", "CCC(C)O", "CCCO"],
|
|
176
|
+
"assay_id": ["A1", "A1", "A2", "A2", "A3"],
|
|
177
|
+
"value": [1.0, 1.5, 2.0, 2.2, 3.0],
|
|
178
|
+
}
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
print(" Checking for feature collisions in 'assay_id':")
|
|
182
|
+
feature_resolution_issues(resolution_df, ["assay_id"], show_cols=["smiles", "assay_id", "value"])
|
|
183
|
+
|
|
184
|
+
# Test 7: Edge cases
|
|
185
|
+
print("\n7. Testing edge cases...")
|
|
186
|
+
|
|
187
|
+
# Zero and negative concentrations
|
|
188
|
+
edge_conc = pd.Series([0, -1, 1e-10])
|
|
189
|
+
edge_log = micromolar_to_log(edge_conc)
|
|
190
|
+
print(" Edge concentration handling:")
|
|
191
|
+
for c, l in zip(edge_conc, edge_log):
|
|
192
|
+
print(f" {c:6.2e} µM → {l:6.2f}")
|
|
193
|
+
|
|
194
|
+
print("\n✅ All molecular processing tests completed!")
|