workbench 0.8.156__py3-none-any.whl → 0.8.158__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- workbench/core/artifacts/data_source_abstract.py +1 -1
- workbench/core/artifacts/feature_set_core.py +2 -6
- workbench/core/cloud_platform/aws/aws_account_clamp.py +19 -9
- workbench/core/cloud_platform/aws/aws_df_store.py +1 -1
- workbench/core/transforms/features_to_model/features_to_model.py +6 -3
- workbench/core/transforms/pandas_transforms/pandas_to_features.py +6 -1
- workbench/model_scripts/custom_models/nn_models/Readme.md +9 -0
- workbench/model_scripts/custom_models/nn_models/generated_model_script.py +543 -0
- workbench/model_scripts/custom_models/nn_models/pytorch.template +542 -0
- workbench/model_scripts/custom_models/nn_models/requirements.txt +4 -0
- workbench/model_scripts/xgb_model/generated_model_script.py +4 -4
- workbench/utils/cloudwatch_handler.py +1 -9
- workbench/web_interface/components/plugins/dashboard_status.py +2 -0
- {workbench-0.8.156.dist-info → workbench-0.8.158.dist-info}/METADATA +3 -3
- {workbench-0.8.156.dist-info → workbench-0.8.158.dist-info}/RECORD +19 -16
- workbench/model_scripts/custom_models/uq_models/meta_uq_experiment.template +0 -393
- {workbench-0.8.156.dist-info → workbench-0.8.158.dist-info}/WHEEL +0 -0
- {workbench-0.8.156.dist-info → workbench-0.8.158.dist-info}/entry_points.txt +0 -0
- {workbench-0.8.156.dist-info → workbench-0.8.158.dist-info}/licenses/LICENSE +0 -0
- {workbench-0.8.156.dist-info → workbench-0.8.158.dist-info}/top_level.txt +0 -0
|
@@ -51,16 +51,16 @@ workbench/core/artifacts/__init__.py,sha256=ps7rA_rbWnDbvWbg4kvu--IKMY8WmbPRyv4S
|
|
|
51
51
|
workbench/core/artifacts/artifact.py,sha256=mF1lqQ8EP43zMRSxqPYuWoHRwQTjyWdpW9LewU7utEE,17517
|
|
52
52
|
workbench/core/artifacts/athena_source.py,sha256=RNmCe7s6uH4gVHpcdJcL84aSbF5Q1ahJBLLGwHYRXEU,26081
|
|
53
53
|
workbench/core/artifacts/cached_artifact_mixin.py,sha256=TNRq-4frDS0GRodfnz6qN2SGP0U_QglZw5X5gw-K7-Y,3755
|
|
54
|
-
workbench/core/artifacts/data_source_abstract.py,sha256=
|
|
54
|
+
workbench/core/artifacts/data_source_abstract.py,sha256=5IRCzFVK-17cd4NXPMRfx99vQAmQ0WHE5jcm5RfsVTg,10619
|
|
55
55
|
workbench/core/artifacts/data_source_factory.py,sha256=YL_tA5fsgubbB3dPF6T4tO0rGgz-6oo3ge4i_YXVC-M,2380
|
|
56
56
|
workbench/core/artifacts/endpoint_core.py,sha256=L6uWOxHKItjbpRS2rFrAbxAqDyZIv2CO9dnZpohKrUI,48768
|
|
57
|
-
workbench/core/artifacts/feature_set_core.py,sha256=
|
|
57
|
+
workbench/core/artifacts/feature_set_core.py,sha256=055VdSYR09HP4ygAuYvIYtHQ7Ec4XxsZygpgEl5H5jQ,29136
|
|
58
58
|
workbench/core/artifacts/model_core.py,sha256=WjiZyqwUVeVZF22FO8zXFoHmgh-Vd6c_KQLx_da_FTQ,50194
|
|
59
59
|
workbench/core/artifacts/monitor_core.py,sha256=BP6UuCyBI4zB2wwcIXvUw6RC0EktTcQd5Rv0x73qzio,37670
|
|
60
60
|
workbench/core/cloud_platform/cloud_meta.py,sha256=J3qqMLdzikRRI9TC7UEk9Ib2-64ovU8X-lzLxhze1uY,8669
|
|
61
61
|
workbench/core/cloud_platform/aws/README.md,sha256=QT5IQXoUHbIA0qQ2wO6_2P2lYjYQFVYuezc22mWY4i8,97
|
|
62
|
-
workbench/core/cloud_platform/aws/aws_account_clamp.py,sha256=
|
|
63
|
-
workbench/core/cloud_platform/aws/aws_df_store.py,sha256=
|
|
62
|
+
workbench/core/cloud_platform/aws/aws_account_clamp.py,sha256=OzFknZXKW7VTvnDGGX4BXKoh0i1gQ7yaEBhkLCyHFSs,6310
|
|
63
|
+
workbench/core/cloud_platform/aws/aws_df_store.py,sha256=utRIlTCPwFneHHZ8_Z3Hw3rOJSeryiFA4wBtucxULRQ,15055
|
|
64
64
|
workbench/core/cloud_platform/aws/aws_graph_store.py,sha256=ytYxQTplUmeWbsPmxyZbf6mO9qyTl60ewlJG8MyfyEY,9414
|
|
65
65
|
workbench/core/cloud_platform/aws/aws_meta.py,sha256=ijbzucUF948RyD-GgYYyxl-Ejvkv5Z6gqB_g497ss7M,33932
|
|
66
66
|
workbench/core/cloud_platform/aws/aws_parameter_store.py,sha256=9ekuMOQFHFMIEV68UbHhS_fLB9iqG5Hvu4EV6iamEpk,10400
|
|
@@ -101,14 +101,14 @@ workbench/core/transforms/features_to_features/__init__.py,sha256=47DEQpj8HBSa-_
|
|
|
101
101
|
workbench/core/transforms/features_to_features/heavy/emr/Readme.md,sha256=YtQgCEQeKe0CQXQkhzMTYq9xOtCsCYb5P5LW2BmRKWQ,68
|
|
102
102
|
workbench/core/transforms/features_to_features/heavy/glue/Readme.md,sha256=TuyCatWfoDr99zUwvOcxf-TqMkQzaMqXlj5nmFcRzfo,48
|
|
103
103
|
workbench/core/transforms/features_to_model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
104
|
-
workbench/core/transforms/features_to_model/features_to_model.py,sha256=
|
|
104
|
+
workbench/core/transforms/features_to_model/features_to_model.py,sha256=xAOcbcm2f9iumCCM_T8OTdzRkl3ZLTzyGRdv9ImmnqM,19333
|
|
105
105
|
workbench/core/transforms/model_to_endpoint/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
106
106
|
workbench/core/transforms/model_to_endpoint/model_to_endpoint.py,sha256=5IBhA56qSDSnfh4Xwvb2PP5UDM7md2R7Ur38hP4Mgyw,4624
|
|
107
107
|
workbench/core/transforms/pandas_transforms/__init__.py,sha256=xL4MT8-fZ1SFqDbTLc8XyxjupHtB1YR6Ej0AC2nwd7I,894
|
|
108
108
|
workbench/core/transforms/pandas_transforms/data_to_pandas.py,sha256=sJHPeuNF8Q8aQqgRnkdWkyvur5cbggdUVIwR-xF3Dlo,3621
|
|
109
109
|
workbench/core/transforms/pandas_transforms/features_to_pandas.py,sha256=af6xdPt2V4zhh-SzQa_UYxdmNMzMLXbrbsznV5QoIJg,3441
|
|
110
110
|
workbench/core/transforms/pandas_transforms/pandas_to_data.py,sha256=cqo6hQmzUGUFACvNuVLZQdgrlXrQIu4NjqK-ujPmoIc,9181
|
|
111
|
-
workbench/core/transforms/pandas_transforms/pandas_to_features.py,sha256=
|
|
111
|
+
workbench/core/transforms/pandas_transforms/pandas_to_features.py,sha256=XiUz2BqOX4N34g6hvFvcLswhkEouyU0AjyIy9EGv2zg,20440
|
|
112
112
|
workbench/core/transforms/pandas_transforms/pandas_to_features_chunked.py,sha256=0R8mQlWfbIlTVmYUmrtu2gsw0AE815k6kqPgpd0bmyQ,4422
|
|
113
113
|
workbench/core/views/__init__.py,sha256=UZJMAJBCMVM3uSYmnFg8c2LWtdu9-479WNAdVMIohAc,962
|
|
114
114
|
workbench/core/views/column_subset_view.py,sha256=vGDKTTGrPIY-IFOeWvudJrhKiq0OjWDp5rTuuj-X40U,4261
|
|
@@ -130,6 +130,10 @@ workbench/model_scripts/custom_models/chem_info/requirements.txt,sha256=7HBUzvNi
|
|
|
130
130
|
workbench/model_scripts/custom_models/chem_info/tautomerize.py,sha256=KAxTAqtTql4_FvnrAyYRgaJEmtAx399HXA_iw_awa08,3125
|
|
131
131
|
workbench/model_scripts/custom_models/meta_endpoints/example.py,sha256=hzOAuLhIGB8vei-555ruNxpsE1GhuByHGjGB0zw8GSs,1726
|
|
132
132
|
workbench/model_scripts/custom_models/network_security/Readme.md,sha256=Z2gtiu0hLHvEJ1x-_oFq3qJZcsK81sceBAGAGltpqQ8,222
|
|
133
|
+
workbench/model_scripts/custom_models/nn_models/Readme.md,sha256=x6U_gox2yV-kLspgmzE77t2xk5GFNgcpcuQq-Q78G7w,146
|
|
134
|
+
workbench/model_scripts/custom_models/nn_models/generated_model_script.py,sha256=PsowW-kosyN2wWhuDgP_41mBYscUDYKOhzzQFVUKBzc,20695
|
|
135
|
+
workbench/model_scripts/custom_models/nn_models/pytorch.template,sha256=-gd0FbDW1ilTo1WcwiOLVZPAyTQ09naVlnSXxrVxKYU,20422
|
|
136
|
+
workbench/model_scripts/custom_models/nn_models/requirements.txt,sha256=sC6v1LSBkwJFbvObn6DUD1HwPM86_rbmXEMH5Tcn2kM,184
|
|
133
137
|
workbench/model_scripts/custom_models/proximity/Readme.md,sha256=RlMFAJZgAT2mCgDk-UwR_R0Y_NbCqeI5-8DUsxsbpWQ,289
|
|
134
138
|
workbench/model_scripts/custom_models/proximity/feature_space_proximity.template,sha256=2c3eDu4sLP_bCTBAf_aIR1QdC7CpYDpXo8UU_2ZoLuE,4833
|
|
135
139
|
workbench/model_scripts/custom_models/proximity/generated_model_script.py,sha256=RdbKbXtrSNYQJvB-oLcRHpJ6w0TM7zbmMfuocHb7GM0,7967
|
|
@@ -142,7 +146,6 @@ workbench/model_scripts/custom_models/uq_models/gaussian_process.template,sha256
|
|
|
142
146
|
workbench/model_scripts/custom_models/uq_models/generated_model_script.py,sha256=l74VibzFnhmPeNUEiFwIIg5aNujcCs9LtRywUvc5Avo,14528
|
|
143
147
|
workbench/model_scripts/custom_models/uq_models/mapie_xgb.template,sha256=ZTmerwkmXtewJwx3GGJSdLRyzJV5SJ86PvCu3dV_GHw,7330
|
|
144
148
|
workbench/model_scripts/custom_models/uq_models/meta_uq.template,sha256=26FNangcpyV9nFOIufRuVZ45BQv6oPf9xlJZkVIULG4,9287
|
|
145
|
-
workbench/model_scripts/custom_models/uq_models/meta_uq_experiment.template,sha256=2MT6-jzhmz69DuQCXAmMXoKRkBruto1m92LDsG8vdVI,14326
|
|
146
149
|
workbench/model_scripts/custom_models/uq_models/ngboost.template,sha256=N-eWP967-X2Qbvk18VL7LPXRJMKne9SS2fb_jntwTec,7738
|
|
147
150
|
workbench/model_scripts/custom_models/uq_models/proximity.py,sha256=zqmNlX70LnWXr5fdtFFQppSNTLjlOciQVrjGr-g9jRE,13716
|
|
148
151
|
workbench/model_scripts/custom_models/uq_models/requirements.txt,sha256=jfwV5b1t6BFtdaRGrSz8LnuQzJm-4V5OlhhP-4CGxhs,107
|
|
@@ -155,7 +158,7 @@ workbench/model_scripts/quant_regression/quant_regression.template,sha256=AQihff
|
|
|
155
158
|
workbench/model_scripts/quant_regression/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
|
|
156
159
|
workbench/model_scripts/scikit_learn/requirements.txt,sha256=aVvwiJ3LgBUhM_PyFlb2gHXu_kpGPho3ANBzlOkfcvs,107
|
|
157
160
|
workbench/model_scripts/scikit_learn/scikit_learn.template,sha256=d4pgeZYFezUQsB-7iIsjsUgB1FM6d27651wpfDdXmI0,12640
|
|
158
|
-
workbench/model_scripts/xgb_model/generated_model_script.py,sha256=
|
|
161
|
+
workbench/model_scripts/xgb_model/generated_model_script.py,sha256=BDExjY02zSbcCloW4VNzHvej_kS3H0uJxa92egoASNY,17954
|
|
159
162
|
workbench/model_scripts/xgb_model/requirements.txt,sha256=jWlGc7HH7vqyukTm38LN4EyDi8jDUPEay4n45z-30uc,104
|
|
160
163
|
workbench/model_scripts/xgb_model/xgb_model.template,sha256=RaUr8X6al5R2IILNKgGUH05Gb4H7AFFG9RE524_VH7Q,17935
|
|
161
164
|
workbench/repl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -194,7 +197,7 @@ workbench/utils/aws_utils.py,sha256=XckM0vzud7Nx1OxD1GoYGLQxdj1PqeQ43cN66tnrRYI,
|
|
|
194
197
|
workbench/utils/bulk_utils.py,sha256=s1lYN2Uk536MNGetekLYL_VL0N34hUjk1FX9BAz3Qu0,1182
|
|
195
198
|
workbench/utils/cache.py,sha256=0R5RXYEz_XHARK3anmQC4VRMawMks_cJ8S4vwC2roAE,5524
|
|
196
199
|
workbench/utils/chem_utils.py,sha256=tLTAvLKTOiYSzbVQF0M8V5-ej36IVgr21CNB2vVJjYQ,56780
|
|
197
|
-
workbench/utils/cloudwatch_handler.py,sha256=
|
|
200
|
+
workbench/utils/cloudwatch_handler.py,sha256=dtnkr8tXtTRAASQ60QO0lz3SRA5LEbzsK1VCIqblfKs,5157
|
|
198
201
|
workbench/utils/color_utils.py,sha256=TmDGLK44t975lkfjt_1O-ee02QxrKfke7vPuXb-V-Uo,11779
|
|
199
202
|
workbench/utils/config_manager.py,sha256=Yj43Ta67dn34XdOcKcOvXw38ln6TRiv4DePXjPt2jg8,17641
|
|
200
203
|
workbench/utils/dashboard_metrics.py,sha256=cNFI0GIAjd_IiDzM1oebsJ2QkRZuW068W_66ZC3J100,7398
|
|
@@ -252,7 +255,7 @@ workbench/web_interface/components/experiments/dashboard_metric_plots.py,sha256=
|
|
|
252
255
|
workbench/web_interface/components/experiments/outlier_plot.py,sha256=5bWsmJEXyt50npeQxLHXCPtiq4WRVgg938Sl0DVjNWg,3647
|
|
253
256
|
workbench/web_interface/components/plugins/ag_table.py,sha256=HrPOMotlOGigk0v8Cxx_doSHXdOKTT1-bzlsqDwwzng,3979
|
|
254
257
|
workbench/web_interface/components/plugins/confusion_matrix.py,sha256=1K94JSlDwQwdf5uDYVydQzY-EQm89hYXchxbXoNvons,7176
|
|
255
|
-
workbench/web_interface/components/plugins/dashboard_status.py,sha256=
|
|
258
|
+
workbench/web_interface/components/plugins/dashboard_status.py,sha256=8Tu38lR5YgntxDjz_x2XfLiW7SOdreNLOFT5VkbYzKo,5748
|
|
256
259
|
workbench/web_interface/components/plugins/data_details.py,sha256=pZm1AbM_0EXQwx77qUkfyrU9MedAs4Wlkp6iOtSrUtI,11104
|
|
257
260
|
workbench/web_interface/components/plugins/endpoint_details.py,sha256=0A7g_Lx5-3XnDWOGT3YEDPNpmME_-WfYc65f-rRVjJE,3769
|
|
258
261
|
workbench/web_interface/components/plugins/generated_compounds.py,sha256=hC0sh-1_rbN55Huno-E_2wF37kgIHi5Mtaer6Xk5fRM,8052
|
|
@@ -272,9 +275,9 @@ workbench/web_interface/page_views/main_page.py,sha256=QIGiQPXu5Q9TU15nPEAYa6sjQ
|
|
|
272
275
|
workbench/web_interface/page_views/models_page_view.py,sha256=M0bdC7bAzLyIaE2jviY12FF4abdMFZmg6sFuOY_LaGI,2650
|
|
273
276
|
workbench/web_interface/page_views/page_view.py,sha256=Gh6YnpOGlUejx-bHZAf5pzqoQ1H1R0OSwOpGhOBO06w,455
|
|
274
277
|
workbench/web_interface/page_views/pipelines_page_view.py,sha256=v2pxrIbsHBcYiblfius3JK766NZ7ciD2yPx0t3E5IJo,2656
|
|
275
|
-
workbench-0.8.
|
|
276
|
-
workbench-0.8.
|
|
277
|
-
workbench-0.8.
|
|
278
|
-
workbench-0.8.
|
|
279
|
-
workbench-0.8.
|
|
280
|
-
workbench-0.8.
|
|
278
|
+
workbench-0.8.158.dist-info/licenses/LICENSE,sha256=z4QMMPlLJkZjU8VOKqJkZiQZCEZ--saIU2Z8-p3aVc0,1080
|
|
279
|
+
workbench-0.8.158.dist-info/METADATA,sha256=gzWmV7xJLnwpDa2r_SM6XIOPXR2zNb6shhtoEwHD1d4,9393
|
|
280
|
+
workbench-0.8.158.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
281
|
+
workbench-0.8.158.dist-info/entry_points.txt,sha256=oZykkheWiiIBjRE8cS5SdcxwmZKSFaQEGwMBjNh-eNM,238
|
|
282
|
+
workbench-0.8.158.dist-info/top_level.txt,sha256=Dhy72zTxaA_o_yRkPZx5zw-fwumnjGaeGf0hBN3jc_w,10
|
|
283
|
+
workbench-0.8.158.dist-info/RECORD,,
|
|
@@ -1,393 +0,0 @@
|
|
|
1
|
-
# Model: NGBoost Regressor with Distribution output
|
|
2
|
-
from ngboost import NGBRegressor
|
|
3
|
-
from xgboost import XGBRegressor # Base Estimator
|
|
4
|
-
from sklearn.model_selection import train_test_split
|
|
5
|
-
import numpy as np
|
|
6
|
-
|
|
7
|
-
# Model Performance Scores
|
|
8
|
-
from sklearn.metrics import (
|
|
9
|
-
mean_absolute_error,
|
|
10
|
-
r2_score,
|
|
11
|
-
root_mean_squared_error
|
|
12
|
-
)
|
|
13
|
-
|
|
14
|
-
from io import StringIO
|
|
15
|
-
import json
|
|
16
|
-
import argparse
|
|
17
|
-
import joblib
|
|
18
|
-
import os
|
|
19
|
-
import pandas as pd
|
|
20
|
-
|
|
21
|
-
# Local Imports
|
|
22
|
-
from proximity import Proximity
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
# Template Placeholders
|
|
27
|
-
TEMPLATE_PARAMS = {
|
|
28
|
-
"id_column": "{{id_column}}",
|
|
29
|
-
"features": "{{feature_list}}",
|
|
30
|
-
"target": "{{target_column}}",
|
|
31
|
-
"train_all_data": "{{train_all_data}}",
|
|
32
|
-
"track_columns": "{{track_columns}}"
|
|
33
|
-
}
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
# Function to check if dataframe is empty
|
|
37
|
-
def check_dataframe(df: pd.DataFrame, df_name: str) -> None:
|
|
38
|
-
"""
|
|
39
|
-
Check if the provided dataframe is empty and raise an exception if it is.
|
|
40
|
-
|
|
41
|
-
Args:
|
|
42
|
-
df (pd.DataFrame): DataFrame to check
|
|
43
|
-
df_name (str): Name of the DataFrame
|
|
44
|
-
"""
|
|
45
|
-
if df.empty:
|
|
46
|
-
msg = f"*** The training data {df_name} has 0 rows! ***STOPPING***"
|
|
47
|
-
print(msg)
|
|
48
|
-
raise ValueError(msg)
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
def match_features_case_insensitive(df: pd.DataFrame, model_features: list) -> pd.DataFrame:
|
|
52
|
-
"""
|
|
53
|
-
Matches and renames DataFrame columns to match model feature names (case-insensitive).
|
|
54
|
-
Prioritizes exact matches, then case-insensitive matches.
|
|
55
|
-
|
|
56
|
-
Raises ValueError if any model features cannot be matched.
|
|
57
|
-
"""
|
|
58
|
-
df_columns_lower = {col.lower(): col for col in df.columns}
|
|
59
|
-
rename_dict = {}
|
|
60
|
-
missing = []
|
|
61
|
-
for feature in model_features:
|
|
62
|
-
if feature in df.columns:
|
|
63
|
-
continue # Exact match
|
|
64
|
-
elif feature.lower() in df_columns_lower:
|
|
65
|
-
rename_dict[df_columns_lower[feature.lower()]] = feature
|
|
66
|
-
else:
|
|
67
|
-
missing.append(feature)
|
|
68
|
-
|
|
69
|
-
if missing:
|
|
70
|
-
raise ValueError(f"Features not found: {missing}")
|
|
71
|
-
|
|
72
|
-
# Rename the DataFrame columns to match the model features
|
|
73
|
-
return df.rename(columns=rename_dict)
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
def distance_weighted_calibrated_intervals(
|
|
77
|
-
df_pred: pd.DataFrame,
|
|
78
|
-
prox_df: pd.DataFrame,
|
|
79
|
-
calibration_strength: float = 0.7,
|
|
80
|
-
distance_decay: float = 3.0,
|
|
81
|
-
) -> pd.DataFrame:
|
|
82
|
-
"""
|
|
83
|
-
Calibrate intervals using distance-weighted neighbor quantiles.
|
|
84
|
-
Uses all 10 neighbors with distance-based weighting.
|
|
85
|
-
"""
|
|
86
|
-
id_column = TEMPLATE_PARAMS["id_column"]
|
|
87
|
-
target_column = TEMPLATE_PARAMS["target"]
|
|
88
|
-
|
|
89
|
-
# Distance-weighted neighbor statistics
|
|
90
|
-
def weighted_quantile(values, weights, q):
|
|
91
|
-
"""Calculate weighted quantile"""
|
|
92
|
-
if len(values) == 0:
|
|
93
|
-
return np.nan
|
|
94
|
-
sorted_indices = np.argsort(values)
|
|
95
|
-
sorted_values = values[sorted_indices]
|
|
96
|
-
sorted_weights = weights[sorted_indices]
|
|
97
|
-
cumsum = np.cumsum(sorted_weights)
|
|
98
|
-
cutoff = q * cumsum[-1]
|
|
99
|
-
return np.interp(cutoff, cumsum, sorted_values)
|
|
100
|
-
|
|
101
|
-
# Calculate distance weights (closer neighbors get more weight)
|
|
102
|
-
prox_df = prox_df.copy()
|
|
103
|
-
prox_df['weight'] = 1 / (1 + prox_df['distance'] ** distance_decay)
|
|
104
|
-
|
|
105
|
-
# Get weighted quantiles and statistics for each ID
|
|
106
|
-
neighbor_stats = []
|
|
107
|
-
for id_val, group in prox_df.groupby(id_column):
|
|
108
|
-
values = group[target_column].values
|
|
109
|
-
weights = group['weight'].values
|
|
110
|
-
|
|
111
|
-
# Normalize weights
|
|
112
|
-
weights = weights / weights.sum()
|
|
113
|
-
|
|
114
|
-
stats = {
|
|
115
|
-
id_column: id_val,
|
|
116
|
-
'local_q025': weighted_quantile(values, weights, 0.025),
|
|
117
|
-
'local_q25': weighted_quantile(values, weights, 0.25),
|
|
118
|
-
'local_q75': weighted_quantile(values, weights, 0.75),
|
|
119
|
-
'local_q975': weighted_quantile(values, weights, 0.975),
|
|
120
|
-
'local_median': weighted_quantile(values, weights, 0.5),
|
|
121
|
-
'local_std': np.sqrt(np.average((values - np.average(values, weights=weights)) ** 2, weights=weights)),
|
|
122
|
-
'avg_distance': group['distance'].mean(),
|
|
123
|
-
'min_distance': group['distance'].min(),
|
|
124
|
-
'max_distance': group['distance'].max(),
|
|
125
|
-
}
|
|
126
|
-
neighbor_stats.append(stats)
|
|
127
|
-
|
|
128
|
-
neighbor_df = pd.DataFrame(neighbor_stats)
|
|
129
|
-
out = df_pred.merge(neighbor_df, on=id_column, how='left')
|
|
130
|
-
|
|
131
|
-
# Model disagreement score (normalized by prediction std)
|
|
132
|
-
model_disagreement = (out["prediction"] - out["prediction_uq"]).abs()
|
|
133
|
-
disagreement_score = (model_disagreement / out["prediction_std"]).clip(0, 2)
|
|
134
|
-
|
|
135
|
-
# Local confidence based on:
|
|
136
|
-
# 1. How close the neighbors are (closer = more confident)
|
|
137
|
-
# 2. How much local variance there is (less variance = more confident)
|
|
138
|
-
max_reasonable_distance = out['max_distance'].quantile(0.8) # 80th percentile as reference
|
|
139
|
-
distance_confidence = (1 - (out['avg_distance'] / max_reasonable_distance)).clip(0.1, 1.0)
|
|
140
|
-
|
|
141
|
-
variance_confidence = (out["prediction_std"] / out["local_std"]).clip(0.5, 2.0)
|
|
142
|
-
local_confidence = distance_confidence * variance_confidence.clip(0.5, 1.5)
|
|
143
|
-
|
|
144
|
-
# Calibration weight: higher when models disagree and we have good local data
|
|
145
|
-
calibration_weight = (
|
|
146
|
-
calibration_strength *
|
|
147
|
-
local_confidence * # Weight by local data quality
|
|
148
|
-
disagreement_score.clip(0.3, 1.0) # More calibration when models disagree
|
|
149
|
-
)
|
|
150
|
-
|
|
151
|
-
# Consensus prediction (slight preference for NGBoost since it provides intervals)
|
|
152
|
-
consensus_pred = 0.65 * out["prediction_uq"] + 0.35 * out["prediction"]
|
|
153
|
-
|
|
154
|
-
# Re-center local intervals around consensus prediction
|
|
155
|
-
local_center_offset = consensus_pred - out["local_median"]
|
|
156
|
-
|
|
157
|
-
# Apply calibration to each quantile
|
|
158
|
-
quantile_pairs = [
|
|
159
|
-
("q_025", "local_q025"),
|
|
160
|
-
("q_25", "local_q25"),
|
|
161
|
-
("q_75", "local_q75"),
|
|
162
|
-
("q_975", "local_q975")
|
|
163
|
-
]
|
|
164
|
-
|
|
165
|
-
for model_q, local_q in quantile_pairs:
|
|
166
|
-
# Adjust local quantiles to be centered around consensus
|
|
167
|
-
adjusted_local_q = out[local_q] + local_center_offset
|
|
168
|
-
|
|
169
|
-
# Blend model and local intervals
|
|
170
|
-
out[model_q] = (
|
|
171
|
-
(1 - calibration_weight) * out[model_q] +
|
|
172
|
-
calibration_weight * adjusted_local_q
|
|
173
|
-
)
|
|
174
|
-
|
|
175
|
-
# Ensure proper interval ordering and bounds using pandas
|
|
176
|
-
out["q_025"] = pd.concat([out["q_025"], consensus_pred], axis=1).min(axis=1)
|
|
177
|
-
out["q_975"] = pd.concat([out["q_975"], consensus_pred], axis=1).max(axis=1)
|
|
178
|
-
out["q_25"] = pd.concat([out["q_25"], out["q_75"]], axis=1).min(axis=1)
|
|
179
|
-
|
|
180
|
-
# Optional: Add some interval expansion when neighbors are very far
|
|
181
|
-
# (indicates we're in a sparse region of feature space)
|
|
182
|
-
sparse_region_mask = out['min_distance'] > out['min_distance'].quantile(0.9)
|
|
183
|
-
expansion_factor = 1 + 0.2 * sparse_region_mask # 20% expansion in sparse regions
|
|
184
|
-
|
|
185
|
-
for q in ["q_025", "q_25", "q_75", "q_975"]:
|
|
186
|
-
interval_width = out[q] - consensus_pred
|
|
187
|
-
out[q] = consensus_pred + interval_width * expansion_factor
|
|
188
|
-
|
|
189
|
-
# Clean up temporary columns
|
|
190
|
-
cleanup_cols = [col for col in out.columns if col.startswith("local_")] + \
|
|
191
|
-
['avg_distance', 'min_distance', 'max_distance']
|
|
192
|
-
|
|
193
|
-
return out.drop(columns=cleanup_cols)
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
# TRAINING SECTION
|
|
197
|
-
#
|
|
198
|
-
# This section (__main__) is where SageMaker will execute the training job
|
|
199
|
-
# and save the model artifacts to the model directory.
|
|
200
|
-
#
|
|
201
|
-
if __name__ == "__main__":
|
|
202
|
-
# Template Parameters
|
|
203
|
-
id_column = TEMPLATE_PARAMS["id_column"]
|
|
204
|
-
features = TEMPLATE_PARAMS["features"]
|
|
205
|
-
target = TEMPLATE_PARAMS["target"]
|
|
206
|
-
train_all_data = TEMPLATE_PARAMS["train_all_data"]
|
|
207
|
-
track_columns = TEMPLATE_PARAMS["track_columns"] # Can be None
|
|
208
|
-
validation_split = 0.2
|
|
209
|
-
|
|
210
|
-
# Script arguments for input/output directories
|
|
211
|
-
parser = argparse.ArgumentParser()
|
|
212
|
-
parser.add_argument("--model-dir", type=str, default=os.environ.get("SM_MODEL_DIR", "/opt/ml/model"))
|
|
213
|
-
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN", "/opt/ml/input/data/train"))
|
|
214
|
-
parser.add_argument(
|
|
215
|
-
"--output-data-dir", type=str, default=os.environ.get("SM_OUTPUT_DATA_DIR", "/opt/ml/output/data")
|
|
216
|
-
)
|
|
217
|
-
args = parser.parse_args()
|
|
218
|
-
|
|
219
|
-
# Load training data from the specified directory
|
|
220
|
-
training_files = [
|
|
221
|
-
os.path.join(args.train, file)
|
|
222
|
-
for file in os.listdir(args.train) if file.endswith(".csv")
|
|
223
|
-
]
|
|
224
|
-
print(f"Training Files: {training_files}")
|
|
225
|
-
|
|
226
|
-
# Combine files and read them all into a single pandas dataframe
|
|
227
|
-
df = pd.concat([pd.read_csv(file, engine="python") for file in training_files])
|
|
228
|
-
|
|
229
|
-
# Check if the DataFrame is empty
|
|
230
|
-
check_dataframe(df, "training_df")
|
|
231
|
-
|
|
232
|
-
# Training data split logic
|
|
233
|
-
if train_all_data:
|
|
234
|
-
# Use all data for both training and validation
|
|
235
|
-
print("Training on all data...")
|
|
236
|
-
df_train = df.copy()
|
|
237
|
-
df_val = df.copy()
|
|
238
|
-
elif "training" in df.columns:
|
|
239
|
-
# Split data based on a 'training' column if it exists
|
|
240
|
-
print("Splitting data based on 'training' column...")
|
|
241
|
-
df_train = df[df["training"]].copy()
|
|
242
|
-
df_val = df[~df["training"]].copy()
|
|
243
|
-
else:
|
|
244
|
-
# Perform a random split if no 'training' column is found
|
|
245
|
-
print("Splitting data randomly...")
|
|
246
|
-
df_train, df_val = train_test_split(df, test_size=validation_split, random_state=42)
|
|
247
|
-
|
|
248
|
-
# We're using XGBoost for point predictions and NGBoost for uncertainty quantification
|
|
249
|
-
xgb_model = XGBRegressor()
|
|
250
|
-
ngb_model = NGBRegressor()
|
|
251
|
-
|
|
252
|
-
# Prepare features and targets for training
|
|
253
|
-
X_train = df_train[features]
|
|
254
|
-
X_val = df_val[features]
|
|
255
|
-
y_train = df_train[target]
|
|
256
|
-
y_val = df_val[target]
|
|
257
|
-
|
|
258
|
-
# Train both models using the training data
|
|
259
|
-
xgb_model.fit(X_train, y_train)
|
|
260
|
-
ngb_model.fit(X_train, y_train, X_val=X_val, Y_val=y_val)
|
|
261
|
-
|
|
262
|
-
# Make Predictions on the Validation Set
|
|
263
|
-
print(f"Making Predictions on Validation Set...")
|
|
264
|
-
y_validate = df_val[target]
|
|
265
|
-
X_validate = df_val[features]
|
|
266
|
-
preds = xgb_model.predict(X_validate)
|
|
267
|
-
|
|
268
|
-
# Calculate various model performance metrics (regression)
|
|
269
|
-
rmse = root_mean_squared_error(y_validate, preds)
|
|
270
|
-
mae = mean_absolute_error(y_validate, preds)
|
|
271
|
-
r2 = r2_score(y_validate, preds)
|
|
272
|
-
print(f"RMSE: {rmse:.3f}")
|
|
273
|
-
print(f"MAE: {mae:.3f}")
|
|
274
|
-
print(f"R2: {r2:.3f}")
|
|
275
|
-
print(f"NumRows: {len(df_val)}")
|
|
276
|
-
|
|
277
|
-
# Save the trained XGBoost model
|
|
278
|
-
xgb_model.save_model(os.path.join(args.model_dir, "xgb_model.json"))
|
|
279
|
-
|
|
280
|
-
# Save the trained NGBoost model
|
|
281
|
-
joblib.dump(ngb_model, os.path.join(args.model_dir, "ngb_model.joblib"))
|
|
282
|
-
|
|
283
|
-
# Save the feature list to validate input during predictions
|
|
284
|
-
with open(os.path.join(args.model_dir, "feature_columns.json"), "w") as fp:
|
|
285
|
-
json.dump(features, fp)
|
|
286
|
-
|
|
287
|
-
# Now the Proximity model
|
|
288
|
-
model = Proximity(df_train, id_column, features, target, track_columns=track_columns)
|
|
289
|
-
|
|
290
|
-
# Now serialize the model
|
|
291
|
-
model.serialize(args.model_dir)
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
#
|
|
295
|
-
# Inference Section
|
|
296
|
-
#
|
|
297
|
-
def model_fn(model_dir) -> dict:
|
|
298
|
-
"""Load and return XGBoost and NGBoost regressors from model directory."""
|
|
299
|
-
|
|
300
|
-
# Load XGBoost regressor
|
|
301
|
-
xgb_path = os.path.join(model_dir, "xgb_model.json")
|
|
302
|
-
xgb_model = XGBRegressor(enable_categorical=True)
|
|
303
|
-
xgb_model.load_model(xgb_path)
|
|
304
|
-
|
|
305
|
-
# Load NGBoost regressor
|
|
306
|
-
ngb_model = joblib.load(os.path.join(model_dir, "ngb_model.joblib"))
|
|
307
|
-
|
|
308
|
-
# Deserialize the proximity model
|
|
309
|
-
prox_model = Proximity.deserialize(model_dir)
|
|
310
|
-
|
|
311
|
-
return {
|
|
312
|
-
"xgboost": xgb_model,
|
|
313
|
-
"ngboost": ngb_model,
|
|
314
|
-
"proximity": prox_model
|
|
315
|
-
}
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
def input_fn(input_data, content_type):
|
|
319
|
-
"""Parse input data and return a DataFrame."""
|
|
320
|
-
if not input_data:
|
|
321
|
-
raise ValueError("Empty input data is not supported!")
|
|
322
|
-
|
|
323
|
-
# Decode bytes to string if necessary
|
|
324
|
-
if isinstance(input_data, bytes):
|
|
325
|
-
input_data = input_data.decode("utf-8")
|
|
326
|
-
|
|
327
|
-
if "text/csv" in content_type:
|
|
328
|
-
return pd.read_csv(StringIO(input_data))
|
|
329
|
-
elif "application/json" in content_type:
|
|
330
|
-
return pd.DataFrame(json.loads(input_data)) # Assumes JSON array of records
|
|
331
|
-
else:
|
|
332
|
-
raise ValueError(f"{content_type} not supported!")
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
def output_fn(output_df, accept_type):
|
|
336
|
-
"""Supports both CSV and JSON output formats."""
|
|
337
|
-
if "text/csv" in accept_type:
|
|
338
|
-
csv_output = output_df.fillna("N/A").to_csv(index=False) # CSV with N/A for missing values
|
|
339
|
-
return csv_output, "text/csv"
|
|
340
|
-
elif "application/json" in accept_type:
|
|
341
|
-
return output_df.to_json(orient="records"), "application/json" # JSON array of records (NaNs -> null)
|
|
342
|
-
else:
|
|
343
|
-
raise RuntimeError(f"{accept_type} accept type is not supported by this script.")
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
def predict_fn(df, models) -> pd.DataFrame:
|
|
347
|
-
"""Make Predictions with our XGB Quantile Regression Model
|
|
348
|
-
|
|
349
|
-
Args:
|
|
350
|
-
df (pd.DataFrame): The input DataFrame
|
|
351
|
-
models (dict): The dictionary of models to use for predictions
|
|
352
|
-
|
|
353
|
-
Returns:
|
|
354
|
-
pd.DataFrame: The DataFrame with the predictions added
|
|
355
|
-
"""
|
|
356
|
-
|
|
357
|
-
# Grab our feature columns (from training)
|
|
358
|
-
model_dir = os.environ.get("SM_MODEL_DIR", "/opt/ml/model")
|
|
359
|
-
with open(os.path.join(model_dir, "feature_columns.json")) as fp:
|
|
360
|
-
model_features = json.load(fp)
|
|
361
|
-
|
|
362
|
-
# Match features in a case-insensitive manner
|
|
363
|
-
matched_df = match_features_case_insensitive(df, model_features)
|
|
364
|
-
|
|
365
|
-
# Use XGBoost for point predictions
|
|
366
|
-
df["prediction"] = models["xgboost"].predict(matched_df[model_features])
|
|
367
|
-
|
|
368
|
-
# NGBoost predict returns distribution objects
|
|
369
|
-
y_dists = models["ngboost"].pred_dist(matched_df[model_features])
|
|
370
|
-
|
|
371
|
-
# Extract parameters from distribution
|
|
372
|
-
dist_params = y_dists.params
|
|
373
|
-
|
|
374
|
-
# Extract mean and std from distribution parameters
|
|
375
|
-
df["prediction_uq"] = dist_params['loc'] # mean
|
|
376
|
-
df["prediction_std"] = dist_params['scale'] # standard deviation
|
|
377
|
-
|
|
378
|
-
# Add 95% prediction intervals using ppf (percent point function)
|
|
379
|
-
df["q_025"] = y_dists.ppf(0.025) # 2.5th percentile
|
|
380
|
-
df["q_975"] = y_dists.ppf(0.975) # 97.5th percentile
|
|
381
|
-
|
|
382
|
-
# Add 50% prediction intervals
|
|
383
|
-
df["q_25"] = y_dists.ppf(0.25) # 25th percentile
|
|
384
|
-
df["q_75"] = y_dists.ppf(0.75) # 75th percentile
|
|
385
|
-
|
|
386
|
-
# Compute Nearest neighbors with Proximity model
|
|
387
|
-
prox_df = models["proximity"].neighbors(df)
|
|
388
|
-
|
|
389
|
-
# Shrink prediction intervals based on KNN variance
|
|
390
|
-
df = distance_weighted_calibrated_intervals(df, prox_df)
|
|
391
|
-
|
|
392
|
-
# Return the modified DataFrame
|
|
393
|
-
return df
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|