wolof-translate 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,8 +1,9 @@
1
- import torch
2
1
  import numpy as np
3
- from typing import Optional, List, Iterator
2
+ from typing import Optional, List, Iterator, Union
4
3
  from torch.utils.data import Sampler
5
4
  from math import ceil
5
+ from tqdm import tqdm
6
+ import time
6
7
 
7
8
  class SequenceLengthBatchSampler(Sampler[List[int]]):
8
9
  def __init__(
@@ -18,62 +19,135 @@ class SequenceLengthBatchSampler(Sampler[List[int]]):
18
19
  self.boundaries = boundaries
19
20
  self.batch_sizes = batch_sizes
20
21
  self.drop_unique = drop_unique
21
- self.data_info = {}
22
22
 
23
- # Extract lengths
24
- for i in range(len(dataset)):
25
- data = dataset[i]
26
- if input_key is None or label_key is None:
27
- length = max(len(data[0]), len(data[2]))
28
- else:
29
- length = max(len(data[input_key]), len(data[label_key]))
30
- self.data_info[i] = {"index": i, "length": length}
23
+ start_time = time.time()
24
+ tqdm.write("Computing sequence lengths...")
31
25
 
32
- self.calculate_length()
26
+ # Compute lengths with tqdm progress bar
27
+ self.lengths = np.array([
28
+ max(len(data[0]), len(data[2])) if input_key is None or label_key is None
29
+ else max(len(data[input_key]), len(data[label_key]))
30
+ for data in tqdm(dataset, desc="Lengths", unit="seq")
31
+ ])
33
32
 
34
- def calculate_length(self):
33
+ tqdm.write(f"Sequence lengths computed in {time.time() - start_time:.2f} seconds.")
34
+
35
+ start_time = time.time()
36
+ tqdm.write("Assigning buckets...")
37
+
38
+ # Assign bucket ids using digitize (vectorized)
39
+ self.bucket_ids = np.digitize(self.lengths, bins=self.boundaries, right=True)
40
+
41
+ # Create buckets of indices
42
+ self.buckets = [np.where(self.bucket_ids == i)[0] for i in range(len(boundaries) + 1)]
43
+
44
+ tqdm.write(f"Buckets assigned in {time.time() - start_time:.2f} seconds.")
45
+
46
+ start_time = time.time()
47
+ tqdm.write("Preparing batches...")
48
+
49
+ # Prepare batches from buckets
35
50
  self.batches = []
36
- sorted_indices = sorted(self.data_info.keys(), key=lambda i: self.data_info[i]["length"])
37
-
38
- prev_boundary = 0
39
- for boundary in self.boundaries:
40
- batch = [i for i in sorted_indices if prev_boundary < self.data_info[i]["length"] <= boundary]
41
- self.batches.append(batch)
42
- sorted_indices = [i for i in sorted_indices if i not in batch]
43
- prev_boundary = boundary
44
-
45
- # Remaining sequences > last boundary
46
- self.batches.append(sorted_indices)
47
-
48
- total_batches = 0
49
- for batch, batch_size in zip(self.batches, self.batch_sizes):
50
- n_full_batches = len(batch) // batch_size
51
- leftover = len(batch) % batch_size
52
- total_batches += n_full_batches
53
- if leftover > 0 and (leftover != 1 or not self.drop_unique):
54
- total_batches += 1
55
- self.length = total_batches
51
+ for bucket, batch_size in zip(self.buckets, self.batch_sizes):
52
+ bucket = bucket.copy()
53
+ np.random.shuffle(bucket)
56
54
 
57
- def __iter__(self) -> Iterator[List[int]]:
58
- for batch_indices, batch_size in zip(self.batches, self.batch_sizes):
59
- num_batches = len(batch_indices) // batch_size
55
+ n_full_batches = len(bucket) // batch_size
56
+ leftover = len(bucket) % batch_size
60
57
 
61
- for i in range(num_batches):
62
- current_bucket = batch_indices[i * batch_size: (i + 1) * batch_size]
63
- np.random.shuffle(current_bucket)
64
- yield [self.data_info[idx]["index"] for idx in current_bucket]
58
+ for i in range(n_full_batches):
59
+ batch = bucket[i * batch_size : (i + 1) * batch_size].tolist()
60
+ self.batches.append(batch)
65
61
 
66
- remaining = len(batch_indices) % batch_size
67
- if remaining > 0 and (remaining != 1 or not self.drop_unique):
68
- current_bucket = batch_indices[-remaining:]
69
- np.random.shuffle(current_bucket)
70
- yield [self.data_info[idx]["index"] for idx in current_bucket]
62
+ if leftover > 0 and (leftover != 1 or not self.drop_unique):
63
+ batch = bucket[-leftover:].tolist()
64
+ self.batches.append(batch)
65
+
66
+ self.length = len(self.batches)
67
+ tqdm.write(f"Batches prepared in {time.time() - start_time:.2f} seconds.")
68
+
69
+ def __iter__(self) -> Iterator[List[int]]:
70
+ # Shuffle all batches globally to add randomness between buckets
71
+ np.random.shuffle(self.batches)
72
+ for batch in self.batches:
73
+ yield batch
71
74
 
72
75
  def __len__(self) -> int:
73
76
  return self.length
74
77
 
75
78
 
76
79
 
80
+
81
+ # class SequenceLengthBatchSampler(Sampler[List[int]]):
82
+ # def __init__(
83
+ # self,
84
+ # dataset,
85
+ # boundaries: List[int],
86
+ # batch_sizes: List[int],
87
+ # input_key: Optional[int] = None,
88
+ # label_key: Optional[int] = None,
89
+ # drop_unique: bool = True,
90
+ # ):
91
+ # self.dataset = dataset
92
+ # self.boundaries = boundaries
93
+ # self.batch_sizes = batch_sizes
94
+ # self.drop_unique = drop_unique
95
+ # self.data_info = {}
96
+
97
+ # # Extract lengths
98
+ # for i in range(len(dataset)):
99
+ # data = dataset[i]
100
+ # if input_key is None or label_key is None:
101
+ # length = max(len(data[0]), len(data[2]))
102
+ # else:
103
+ # length = max(len(data[input_key]), len(data[label_key]))
104
+ # self.data_info[i] = {"index": i, "length": length}
105
+
106
+ # self.calculate_length()
107
+
108
+ # def calculate_length(self):
109
+ # self.batches = []
110
+ # sorted_indices = sorted(self.data_info.keys(), key=lambda i: self.data_info[i]["length"])
111
+
112
+ # prev_boundary = 0
113
+ # for boundary in self.boundaries:
114
+ # batch = [i for i in sorted_indices if prev_boundary < self.data_info[i]["length"] <= boundary]
115
+ # self.batches.append(batch)
116
+ # sorted_indices = [i for i in sorted_indices if i not in batch]
117
+ # prev_boundary = boundary
118
+
119
+ # # Remaining sequences > last boundary
120
+ # self.batches.append(sorted_indices)
121
+
122
+ # total_batches = 0
123
+ # for batch, batch_size in zip(self.batches, self.batch_sizes):
124
+ # n_full_batches = len(batch) // batch_size
125
+ # leftover = len(batch) % batch_size
126
+ # total_batches += n_full_batches
127
+ # if leftover > 0 and (leftover != 1 or not self.drop_unique):
128
+ # total_batches += 1
129
+ # self.length = total_batches
130
+
131
+ # def __iter__(self) -> Iterator[List[int]]:
132
+ # for batch_indices, batch_size in zip(self.batches, self.batch_sizes):
133
+ # num_batches = len(batch_indices) // batch_size
134
+
135
+ # for i in range(num_batches):
136
+ # current_bucket = batch_indices[i * batch_size: (i + 1) * batch_size]
137
+ # np.random.shuffle(current_bucket)
138
+ # yield [self.data_info[idx]["index"] for idx in current_bucket]
139
+
140
+ # remaining = len(batch_indices) % batch_size
141
+ # if remaining > 0 and (remaining != 1 or not self.drop_unique):
142
+ # current_bucket = batch_indices[-remaining:]
143
+ # np.random.shuffle(current_bucket)
144
+ # yield [self.data_info[idx]["index"] for idx in current_bucket]
145
+
146
+ # def __len__(self) -> int:
147
+ # return self.length
148
+
149
+
150
+
77
151
  class BucketSampler(Sampler):
78
152
  def __init__(self, dataset, batch_size, sort_key=lambda x, index_1, index_2: max(len(x[index_1]), len(x[index_2])), input_key: Union[str, int] = 0, label_key: Union[str, int] = 1):
79
153
  self.dataset = dataset
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: wolof-translate
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: Contain function and classes to process corpora for making translation between wolof text and other languages.
5
5
  Author: Oumar Kane
6
6
  Author-email: oumar.kane@univ-thies.sn
@@ -22,7 +22,7 @@ wolof_translate/trainers/transformer_trainer_custom.py,sha256=hHUBcU4YK6wuRUMiwX
22
22
  wolof_translate/trainers/transformer_trainer_ml.py,sha256=WgggaugkVHSJlwIAZT-QwI90Fl-_zT8Clhb-7M0m8gM,33561
23
23
  wolof_translate/trainers/transformer_trainer_ml_.py,sha256=QaN9DB5pqhBxV4WlFmJCmUyfwlX-UyAzKRwL6rVEr4Q,38199
24
24
  wolof_translate/utils/__init__.py,sha256=Nl3300H-Xd3uTHDR8y-rYa-UUR9FqbqZPwUKJUpQOb4,64
25
- wolof_translate/utils/bucket_iterator.py,sha256=VLqmgZ9Z7PoXFS76R81McV3jKlWQ_A4LYLAZx_a0xfU,5800
25
+ wolof_translate/utils/bucket_iterator.py,sha256=JctNzZI1yU1FjZUKY-zNiRMXS3JpRiXOOSKdObRdPbg,8511
26
26
  wolof_translate/utils/database_manager.py,sha256=7yhgBN1LvVFNEQikxCjSCva82h5nX44Nx2zh8cpFWyA,3543
27
27
  wolof_translate/utils/display_predictions.py,sha256=y5H5lfgIODl6E5Zfb1YIwiAxIlHUxRBoChfQR5kjh24,5145
28
28
  wolof_translate/utils/download_model.py,sha256=x92KpfVPvNK8Suen1qnOcPtZOlB4kXTfqWgoVuuMUEM,1241
@@ -43,7 +43,7 @@ wolof_translate/utils/training.py,sha256=5vPVuqHL6_gqLkh4PTxXqW4UvAJBWNWVDDXC9Fk
43
43
  wolof_translate/utils/trunc_hg_training.py,sha256=mMGrU7Mjr9vYd7eLc8nbFRhRXwSWMKyg35lGf0L6RtQ,6418
44
44
  wolof_translate/utils/improvements/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
45
  wolof_translate/utils/improvements/end_marks.py,sha256=scmhMMYguZmrZTPozx1ZovizKrrPfPpMLXbU2-IOdGs,1194
46
- wolof_translate-0.0.2.dist-info/METADATA,sha256=l8TYjNCIujICJklQFsyVy9XINJNNAU0hPkkNt0kbKFM,818
47
- wolof_translate-0.0.2.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
48
- wolof_translate-0.0.2.dist-info/top_level.txt,sha256=YG-kBnOwUZyQ7SofNvMxNYjzCreH2PVcW2UaEg1-Reg,16
49
- wolof_translate-0.0.2.dist-info/RECORD,,
46
+ wolof_translate-0.0.3.dist-info/METADATA,sha256=IztySbGGsGKbrtFqCcLpppA07bO8kt2_dxdd4hdMVOI,818
47
+ wolof_translate-0.0.3.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
48
+ wolof_translate-0.0.3.dist-info/top_level.txt,sha256=YG-kBnOwUZyQ7SofNvMxNYjzCreH2PVcW2UaEg1-Reg,16
49
+ wolof_translate-0.0.3.dist-info/RECORD,,