wolfhece 2.2.36__py3-none-any.whl → 2.2.38__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wolfhece/PyDraw.py +50 -0
- wolfhece/PyVertex.py +7 -0
- wolfhece/PyVertexvectors.py +173 -53
- wolfhece/apps/version.py +1 -1
- wolfhece/hydrology/climate_data.py +334 -0
- wolfhece/hydrology/constant.py +11 -0
- wolfhece/hydrology/hyetograms.py +2095 -0
- wolfhece/hydrometry/kiwis.py +28 -19
- wolfhece/hydrometry/kiwis_gui.py +7 -2
- wolfhece/picc.py +38 -4
- {wolfhece-2.2.36.dist-info → wolfhece-2.2.38.dist-info}/METADATA +1 -1
- {wolfhece-2.2.36.dist-info → wolfhece-2.2.38.dist-info}/RECORD +15 -13
- {wolfhece-2.2.36.dist-info → wolfhece-2.2.38.dist-info}/WHEEL +0 -0
- {wolfhece-2.2.36.dist-info → wolfhece-2.2.38.dist-info}/entry_points.txt +0 -0
- {wolfhece-2.2.36.dist-info → wolfhece-2.2.38.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,334 @@
|
|
1
|
+
import pandas as pd
|
2
|
+
import geopandas as gpd
|
3
|
+
|
4
|
+
import numpy as np
|
5
|
+
from osgeo import osr, gdal
|
6
|
+
from pyproj import Proj, Transformer
|
7
|
+
from pathlib import Path
|
8
|
+
|
9
|
+
import matplotlib.pyplot as plt
|
10
|
+
from scipy.spatial import KDTree
|
11
|
+
import logging
|
12
|
+
from tqdm import tqdm
|
13
|
+
|
14
|
+
logging.basicConfig(level=logging.INFO)
|
15
|
+
|
16
|
+
DATADIR = Path(r'P:\Donnees\Pluies\IRM\climateGrid') # Path to the IRM climate data directory - To change if needed
|
17
|
+
|
18
|
+
def transform_latlon_to_lambert72_list(lat_list:list[float], lon_list:list[float]) -> list[tuple[float, float]]:
|
19
|
+
"""
|
20
|
+
Transform lists of EPSG:4258 coordinates to Lambert 72 coordinates.
|
21
|
+
|
22
|
+
Coordinates from IRM are in EPSG:4258, and we want to convert them to Lambert 72 (EPSG:31370).
|
23
|
+
"""
|
24
|
+
t = Transformer.from_crs('EPSG:4258', 'EPSG:31370', always_xy=True)
|
25
|
+
return [t.transform(lon, lat) for lat, lon in zip(lat_list, lon_list)]
|
26
|
+
|
27
|
+
def read_pixel_positions(data_dir:Path=DATADIR) -> tuple[list[int], list[tuple[float, float]]]:
|
28
|
+
"""
|
29
|
+
Read pixel positions from the metadata file.
|
30
|
+
"""
|
31
|
+
|
32
|
+
file = data_dir / 'climategrid_pixel_metadata.csv'
|
33
|
+
|
34
|
+
if not file.exists():
|
35
|
+
logging.error(f"Metadata file {file} does not exist.")
|
36
|
+
return None, None
|
37
|
+
|
38
|
+
df = pd.read_csv(file,
|
39
|
+
sep=";",
|
40
|
+
header=0,
|
41
|
+
dtype={'PIXEL_ID': int,
|
42
|
+
'PIXEL_LON_CENTER': float,
|
43
|
+
'PIXEL_LAT_CENTER': float},
|
44
|
+
index_col='PIXEL_ID')
|
45
|
+
|
46
|
+
return df.index, transform_latlon_to_lambert72_list(df['PIXEL_LAT_CENTER'].to_list(),
|
47
|
+
df['PIXEL_LON_CENTER'].to_list())
|
48
|
+
|
49
|
+
def convert_pixels_to_squares(pixels:list[tuple[float, float]]) -> tuple[list[tuple[tuple[float, float], ...]], KDTree]:
|
50
|
+
"""
|
51
|
+
From pixels coordinates, define squares around each pixel center.
|
52
|
+
|
53
|
+
Corners are defined as the average of the pixel center and its neighbors.
|
54
|
+
"""
|
55
|
+
|
56
|
+
PIXEL_SIZE = 5000
|
57
|
+
NB = len(pixels)
|
58
|
+
|
59
|
+
pixels = np.array(pixels)
|
60
|
+
|
61
|
+
# create a KDTree for fast neighbor search
|
62
|
+
tree = KDTree(pixels)
|
63
|
+
|
64
|
+
# find the 4 nearest neighbors for each potential corner
|
65
|
+
corner1 = [(p[0] - PIXEL_SIZE / 2, p[1] - PIXEL_SIZE / 2) for p in pixels] # lower-left corner
|
66
|
+
corner2 = [(p[0] + PIXEL_SIZE / 2, p[1] - PIXEL_SIZE / 2) for p in pixels] # lower-right corner
|
67
|
+
corner3 = [(p[0] + PIXEL_SIZE / 2, p[1] + PIXEL_SIZE / 2) for p in pixels] # upper-right corner
|
68
|
+
corner4 = [(p[0] - PIXEL_SIZE / 2, p[1] + PIXEL_SIZE / 2) for p in pixels] # upper-left corner
|
69
|
+
|
70
|
+
d1, i1 = tree.query(corner1, k=4, distance_upper_bound=PIXEL_SIZE*1.1)
|
71
|
+
d2, i2 = tree.query(corner2, k=4, distance_upper_bound=PIXEL_SIZE*1.1)
|
72
|
+
d3, i3 = tree.query(corner3, k=4, distance_upper_bound=PIXEL_SIZE*1.1)
|
73
|
+
d4, i4 = tree.query(corner4, k=4, distance_upper_bound=PIXEL_SIZE*1.1)
|
74
|
+
|
75
|
+
squares = []
|
76
|
+
for i, pixel in enumerate(pixels):
|
77
|
+
|
78
|
+
used = i1[i][i1[i] != NB] # filter out the invalid indices
|
79
|
+
if len(used) in [1, 3]:
|
80
|
+
x1, y1 = pixel[0] - PIXEL_SIZE / 2, pixel[1] - PIXEL_SIZE / 2
|
81
|
+
elif len(used) == 2:
|
82
|
+
dx = (pixels[used[0], 0] - pixels[used[1], 0])
|
83
|
+
dy = (pixels[used[0], 1] - pixels[used[1], 1])
|
84
|
+
if abs(dx) < 100:
|
85
|
+
x1, y1 = pixel[0] - PIXEL_SIZE / 2, np.asarray([pixels[used,1]]).mean()
|
86
|
+
else:
|
87
|
+
x1, y1 = np.asarray([pixels[used,0]]).mean(), pixel[1] - PIXEL_SIZE / 2
|
88
|
+
else:
|
89
|
+
x1, y1 = np.asarray([pixels[used,0]]).mean(), np.asarray([pixels[used,1]]).mean()
|
90
|
+
|
91
|
+
used = i2[i][i2[i] != NB]
|
92
|
+
if len(used) in [1, 3]:
|
93
|
+
x2, y2 = pixel[0] + PIXEL_SIZE / 2, pixel[1] - PIXEL_SIZE / 2
|
94
|
+
elif len(used) == 2:
|
95
|
+
dx = (pixels[used[0], 0] - pixels[used[1], 0])
|
96
|
+
dy = (pixels[used[0], 1] - pixels[used[1], 1])
|
97
|
+
if abs(dx) < 100:
|
98
|
+
x2, y2 = pixel[0] + PIXEL_SIZE / 2, np.asarray([pixels[used,1]]).mean()
|
99
|
+
else:
|
100
|
+
x2, y2 = np.asarray([pixels[used,0]]).mean(), pixel[1] - PIXEL_SIZE / 2
|
101
|
+
else:
|
102
|
+
x2, y2 = np.asarray([pixels[used,0]]).mean(), np.asarray([pixels[used,1]]).mean()
|
103
|
+
|
104
|
+
used = i3[i][i3[i] != NB]
|
105
|
+
if len(used) in [1, 3]:
|
106
|
+
x3, y3 = pixel[0] + PIXEL_SIZE / 2, pixel[1] + PIXEL_SIZE / 2
|
107
|
+
elif len(used) == 2:
|
108
|
+
dx = (pixels[used[0], 0] - pixels[used[1], 0])
|
109
|
+
dy = (pixels[used[0], 1] - pixels[used[1], 1])
|
110
|
+
if abs(dx) < 100:
|
111
|
+
x3, y3 = pixel[0] + PIXEL_SIZE / 2, np.asarray([pixels[used,1]]).mean()
|
112
|
+
else:
|
113
|
+
x3, y3 = np.asarray([pixels[used,0]]).mean(), pixel[1] + PIXEL_SIZE / 2
|
114
|
+
else:
|
115
|
+
x3, y3 = np.asarray([pixels[used,0]]).mean(), np.asarray([pixels[used,1]]).mean()
|
116
|
+
|
117
|
+
used = i4[i][i4[i] != NB]
|
118
|
+
if len(used) in [1, 3]:
|
119
|
+
x4, y4 = pixel[0] - PIXEL_SIZE / 2, pixel[1] + PIXEL_SIZE / 2
|
120
|
+
elif len(used) == 2:
|
121
|
+
dx = (pixels[used[0], 0] - pixels[used[1], 0])
|
122
|
+
dy = (pixels[used[0], 1] - pixels[used[1], 1])
|
123
|
+
if abs(dx) < 100:
|
124
|
+
x4, y4 = pixel[0] - PIXEL_SIZE / 2, np.asarray([pixels[used,1]]).mean()
|
125
|
+
else:
|
126
|
+
x4, y4 = np.asarray([pixels[used,0]]).mean(), pixel[1] + PIXEL_SIZE / 2
|
127
|
+
else:
|
128
|
+
x4, y4 = np.asarray([pixels[used,0]]).mean(), np.asarray([pixels[used,1]]).mean()
|
129
|
+
|
130
|
+
if x1 == pixel[0]:
|
131
|
+
x1 = pixel[0] - PIXEL_SIZE / 2
|
132
|
+
if y1 == pixel[1]:
|
133
|
+
y1 = pixel[1] - PIXEL_SIZE / 2
|
134
|
+
if x2 == pixel[0]:
|
135
|
+
x2 = pixel[0] + PIXEL_SIZE / 2
|
136
|
+
if y2 == pixel[1]:
|
137
|
+
y2 = pixel[1] - PIXEL_SIZE / 2
|
138
|
+
if x3 == pixel[0]:
|
139
|
+
x3 = pixel[0] + PIXEL_SIZE / 2
|
140
|
+
if y3 == pixel[1]:
|
141
|
+
y3 = pixel[1] + PIXEL_SIZE / 2
|
142
|
+
if x4 == pixel[0]:
|
143
|
+
x4 = pixel[0] - PIXEL_SIZE / 2
|
144
|
+
if y4 == pixel[1]:
|
145
|
+
y4 = pixel[1] + PIXEL_SIZE / 2
|
146
|
+
|
147
|
+
squares.append(((x1, y1), (x2, y2), (x3, y3), (x4, y4)))
|
148
|
+
|
149
|
+
return squares, tree
|
150
|
+
|
151
|
+
def read_historical_year_month(year:int, month:int,
|
152
|
+
data_dir:Path=DATADIR) -> pd.DataFrame:
|
153
|
+
"""
|
154
|
+
Read a specific year and month from the climate data.
|
155
|
+
|
156
|
+
Available variables are :
|
157
|
+
- day
|
158
|
+
- temp_max
|
159
|
+
- temp_min
|
160
|
+
- temp_avg
|
161
|
+
- precip_quantity
|
162
|
+
- humidity_relative
|
163
|
+
- pressure
|
164
|
+
- sun_duration
|
165
|
+
- short_wave_from_sky
|
166
|
+
- evapotrans_ref
|
167
|
+
|
168
|
+
From IRM's Metadata description:
|
169
|
+
- TEMP_MAX °C daily maximum temperature from 08:00LT on DATE_BEGIN to 08:00LT on DATE_END+1
|
170
|
+
- TEMP_MIN °C daily minimum temperature from 08:00LT on DATE_BEGIN-1 to 08:00LT on DATE_END
|
171
|
+
- TEMP_AVG °C average temperature (average of TEMP_MAX and TEMP_MIN)
|
172
|
+
- PRECIP_QUANTITY mm precipitation quantity from 08:00LT on DATE_BEGIN to 08:00LT on DATE_END+1
|
173
|
+
- HUMIDITY_RELATIVE percentage average relative humidity
|
174
|
+
- PRESSURE hPa sea level pressure
|
175
|
+
- SUN_DURATION average daily sunshine duration (hours/day)
|
176
|
+
- SHORT_WAVE_FROM_SKY average daily global solar radiation (kWh/m2/day)
|
177
|
+
- EVAPOTRANS_REF mm reference evapotranspiration ET0
|
178
|
+
|
179
|
+
:param year: Year to read
|
180
|
+
:type year: int
|
181
|
+
:param month: Month to read
|
182
|
+
:type month: int
|
183
|
+
:param variable: Variable to read (e.g., 'temperature', 'precipitation')
|
184
|
+
:type variable: str
|
185
|
+
:param data_dir: Directory where the data is stored
|
186
|
+
:type data_dir: Path
|
187
|
+
:return: DataFrame containing the data for the specified year and month
|
188
|
+
"""
|
189
|
+
|
190
|
+
# force month to be two digits
|
191
|
+
month = f"{month:02d}"
|
192
|
+
file_path = data_dir / f"climategrid_{year}{month:}.csv"
|
193
|
+
|
194
|
+
if file_path.exists():
|
195
|
+
logging.info(f"Reading data from {file_path}")
|
196
|
+
df = pd.read_csv(file_path, header=0, sep=';', index_col='pixel_id')
|
197
|
+
|
198
|
+
# conevrt 'day' to datetime UTC
|
199
|
+
df['day'] = pd.to_datetime(df['day'], format='%Y/%m/%d', utc=True)
|
200
|
+
return df
|
201
|
+
else:
|
202
|
+
logging.warning(f"File {file_path} does not exist.")
|
203
|
+
return pd.DataFrame()
|
204
|
+
|
205
|
+
def scan_climate_files(data_dir:Path=DATADIR) -> list[Path]:
|
206
|
+
"""
|
207
|
+
Scan the directory for climate data files.
|
208
|
+
|
209
|
+
:param data_dir: Directory where the data is stored
|
210
|
+
:type data_dir: Path
|
211
|
+
:return: List of paths to climate data files
|
212
|
+
"""
|
213
|
+
all = list(data_dir.glob('climategrid_*.csv'))
|
214
|
+
# all.pop(all.index('climategrid_parameters_description.txt'))
|
215
|
+
f = [file.stem for file in all]
|
216
|
+
all.pop(f.index('climategrid_pixel_metadata'))
|
217
|
+
return all
|
218
|
+
|
219
|
+
def find_first_available_year_month(data_dir:Path=DATADIR) -> int:
|
220
|
+
"""
|
221
|
+
Find the first available year in the climate data files.
|
222
|
+
|
223
|
+
:param data_dir: Directory where the data is stored
|
224
|
+
:type data_dir: Path
|
225
|
+
:return: First available year as an integer
|
226
|
+
"""
|
227
|
+
files = scan_climate_files(data_dir)
|
228
|
+
years = [int(file.stem.split('_')[1][:4]) for file in files]
|
229
|
+
minyear = min(years) if years else None
|
230
|
+
if minyear is not None:
|
231
|
+
logging.info(f"First available year: {minyear}")
|
232
|
+
#find the first month of the first year
|
233
|
+
first_month = min([int(file.stem.split('_')[1][4:6]) for file in files if file.stem.startswith(f'climategrid_{minyear}')])
|
234
|
+
logging.info(f"First available month: {first_month}")
|
235
|
+
return minyear, first_month
|
236
|
+
else:
|
237
|
+
logging.warning("No climate data files found.")
|
238
|
+
return None, None
|
239
|
+
|
240
|
+
def find_last_available_year_month(data_dir:Path=DATADIR) -> int:
|
241
|
+
"""
|
242
|
+
Find the last available year in the climate data files.
|
243
|
+
|
244
|
+
:param data_dir: Directory where the data is stored
|
245
|
+
:type data_dir: Path
|
246
|
+
:return: Last available year as an integer
|
247
|
+
"""
|
248
|
+
files = scan_climate_files(data_dir)
|
249
|
+
years = [int(file.stem.split('_')[1][:4]) for file in files]
|
250
|
+
maxyear = max(years) if years else None
|
251
|
+
if maxyear is not None:
|
252
|
+
logging.info(f"Last available year: {maxyear}")
|
253
|
+
#find the last month of the last year
|
254
|
+
last_month = max([int(file.stem.split('_')[1][4:6]) for file in files if file.stem.startswith(f'climategrid_{maxyear}')])
|
255
|
+
logging.info(f"Last available month: {last_month}")
|
256
|
+
return maxyear, last_month
|
257
|
+
else:
|
258
|
+
logging.warning("No climate data files found.")
|
259
|
+
return None, None
|
260
|
+
|
261
|
+
def read_between(data_dir:Path=DATADIR, start_year:int = 1961, start_month:int = 1, end_year:int = 2025, end_month:int = 6) -> pd.DataFrame:
|
262
|
+
"""
|
263
|
+
Read climate data files into a single DataFrame.
|
264
|
+
|
265
|
+
:param data_dir: Directory where the data is stored
|
266
|
+
:type data_dir: Path
|
267
|
+
:return: DataFrame containing all climate data
|
268
|
+
"""
|
269
|
+
|
270
|
+
_start_year, _start_month = find_first_available_year_month(data_dir)
|
271
|
+
_end_year, _end_month = find_last_available_year_month(data_dir)
|
272
|
+
|
273
|
+
if start_year < _start_year or (start_year == _start_year and start_month < _start_month):
|
274
|
+
logging.warning(f"Start date {start_year}-{start_month} is before the first available data {_start_year}-{_start_month}. Using {_start_year}-{_start_month} instead.")
|
275
|
+
start_year, start_month = _start_year, _start_month
|
276
|
+
|
277
|
+
if end_year > _end_year or (end_year == _end_year and end_month > _end_month):
|
278
|
+
logging.warning(f"End date {end_year}-{end_month} is after the last available data {_end_year}-{_end_month}. Using {_end_year}-{_end_month} instead.")
|
279
|
+
end_year, end_month = _end_year, _end_month
|
280
|
+
|
281
|
+
logging.info(f"Reading data from {start_year}-{start_month} to {end_year}-{end_month}")
|
282
|
+
|
283
|
+
mapped = []
|
284
|
+
for year in range(start_year, end_year+1):
|
285
|
+
for month in range(1, 13):
|
286
|
+
if year == start_year and month < start_month:
|
287
|
+
continue
|
288
|
+
if year == end_year and month > end_month:
|
289
|
+
continue
|
290
|
+
mapped.append((year, month))
|
291
|
+
|
292
|
+
df_list = list(map(lambda ym: read_historical_year_month(ym[0], ym[1], data_dir), mapped))
|
293
|
+
|
294
|
+
return pd.concat(df_list, axis=0)
|
295
|
+
|
296
|
+
def read_all_data(data_dir:Path=DATADIR) -> pd.DataFrame:
|
297
|
+
"""
|
298
|
+
Read all climate data files into a single DataFrame.
|
299
|
+
|
300
|
+
:param data_dir: Directory where the data is stored
|
301
|
+
:type data_dir: Path
|
302
|
+
:return: DataFrame containing all climate data
|
303
|
+
"""
|
304
|
+
|
305
|
+
return read_between(data_dir, 0, 0, 2100, 12)
|
306
|
+
|
307
|
+
if __name__ == "__main__":
|
308
|
+
|
309
|
+
print(find_first_available_year_month())
|
310
|
+
print(find_last_available_year_month())
|
311
|
+
|
312
|
+
data = read_all_data()
|
313
|
+
print(data.head())
|
314
|
+
|
315
|
+
pixel_ids, xy = read_pixel_positions()
|
316
|
+
print(f"Pixel IDs: {pixel_ids}")
|
317
|
+
print(f"Pixel XY: {xy}")
|
318
|
+
|
319
|
+
squares = convert_pixels_to_squares(xy)
|
320
|
+
|
321
|
+
xy = np.array(xy)
|
322
|
+
|
323
|
+
fig, ax = plt.subplots(figsize=(6, 6))
|
324
|
+
ax.scatter(xy[:, 0], xy[:, 1], s=1)
|
325
|
+
ax.set_title("Pixel Positions in Lambert 72")
|
326
|
+
ax.set_xlabel("X (Lambert 72)")
|
327
|
+
ax.set_ylabel("Y (Lambert 72)")
|
328
|
+
|
329
|
+
# plot squares
|
330
|
+
for square in squares:
|
331
|
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = square
|
332
|
+
ax.plot([x1, x2, x3, x4, x1], [y1, y2, y3, y4, y1], color='red')
|
333
|
+
ax.set_aspect('equal', adjustable='box')
|
334
|
+
plt.show()
|
wolfhece/hydrology/constant.py
CHANGED
@@ -22,6 +22,7 @@ tom_2layers_UH = 8
|
|
22
22
|
tom_HBV = 9
|
23
23
|
tom_SAC_SMA = 10
|
24
24
|
tom_NAM = 11
|
25
|
+
tom_SAC_SMA_LROF = 12
|
25
26
|
compare_opti = -1
|
26
27
|
|
27
28
|
|
@@ -36,6 +37,16 @@ tom_netRain_storage = 1
|
|
36
37
|
tom_transf_no = 0 # aucun modèle de transfert -> utilise les temps estimés
|
37
38
|
tom_transf_cst = 1 # modèle de transfert avec temps constant
|
38
39
|
|
40
|
+
# Type of source/input data
|
41
|
+
source_none = -1 #Données source non présente ou non disponible
|
42
|
+
source_custom = 0 #Données source sous format personnalisé (un mélange des données ci-dessous)
|
43
|
+
source_netcdf = 1 #Données source sous format NetCDF
|
44
|
+
source_IRM = 2 #données source sur base des fichiers matriciels IRM (pas journaliers et dispo sur l'Ourthe)
|
45
|
+
source_municipality_unit_hyeto = 3 #Données QDF de l'IRM par commune
|
46
|
+
source_point_measurements = 4 #Données pluvios SPW
|
47
|
+
source_Copernicus = 5 #Données de pluvios ou températures du projet Copernicus en netCDF
|
48
|
+
source_dist = 6 #Données de pluvios, températures ou evap maillés (polygon + time serie for each)
|
49
|
+
|
39
50
|
|
40
51
|
## dictionnay of the default indices for each landuse
|
41
52
|
DEFAULT_LANDUSE = {}
|