wolfhece 2.2.2__py3-none-any.whl → 2.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
wolfhece/lifewatch.py ADDED
@@ -0,0 +1,88 @@
1
+ from enum import Enum
2
+ from PIL import Image
3
+
4
+ class LifeWatch_Legend(Enum):
5
+ """
6
+ https://www.mdpi.com/2306-5729/8/1/13
7
+
8
+ Map Class Map Code Related EAGLE Code Percentage of Land Area [%] Based on 2018 Product
9
+ Water 10 LCC-3 0.73
10
+ Natural Material Surfaces with less than 10% vegetation 15 LCC-1_2 0.32
11
+ Artificially sealed ground surface 20 LCC-1_1_1_3 5.75
12
+ Building, specific structures and facilities 21 LCC-1_1_1_1 || LCC-1_1_1_2 1.99
13
+ Herbaceous in rotation during the year (e.g., crops) 30 LCC-2_2 23.94
14
+ Grassland with intensive management 35 LCC-2_2 27.57
15
+ Grassland and scrub of biological interest 40 LCC-2_2 1.82
16
+ Inundated grassland and scrub of biological interest 45 LCC-2_2 & LCH-4_4_2 0.22
17
+ Vegetation of recently disturbed area (e.g., clear cut) 48 LCC-2_2 & LCH-3_8 2.64
18
+ Coniferous trees (≥3 m) 50 LCC-2_1_1 & LCH-3_1_1 11.24
19
+ Small coniferous trees (<3 m) 51 LCC-2_1_2 & LCH-3_1_1 0.40
20
+ Broadleaved trees (≥3 m) 55 LCC-2_1_1 & LCH-3_1_2 21.63
21
+ Small broadleaved trees (<3 m) and shrubs 56 LCC-2_1_2 & LCH-3_1_2 1.75
22
+
23
+ Color Table (RGB with 256 entries) from tiff file
24
+ 10: 10,10,210,255
25
+ 11: 254,254,254,255
26
+ 15: 215,215,215,255
27
+ 20: 20,20,20,255
28
+ 21: 210,0,0,255
29
+ 30: 230,230,130,255
30
+ 35: 235,170,0,255
31
+ 40: 240,40,240,255
32
+ 45: 145,245,245,255
33
+ 46: 246,146,246,255
34
+ 48: 148,112,0,255
35
+ 50: 50,150,50,255
36
+ 51: 0,151,151,255
37
+ 55: 55,255,0,255
38
+ 56: 156,255,156,255
39
+ """
40
+ WATER = (10, (10, 210, 255))
41
+ NATURAL_MATERIAL_SURFACES = (15, (215, 215, 215, 255))
42
+ ARTIFICIALLY_SEALED_GROUND_SURFACE = (20, (20, 20, 20, 255))
43
+ BUILDING = (21, (210, 0, 0, 255))
44
+ HERBACEOUS_ROTATION = (30, (230, 230, 130, 255))
45
+ GRASSLAND_INTENSIVE_MANAGEMENT = (35, (235, 170, 0, 255))
46
+ GRASSLAND_SCRUB_BIOLOGICAL_INTEREST = (40, (240, 40, 240, 255))
47
+ INUNDATED_GRASSLAND_SCRUB_BIOLOGICAL_INTEREST = (45, (145, 245, 245, 255))
48
+ VEGETATION_RECENTLY_DISTURBED_AREA = (48, (148, 112, 0, 255))
49
+ CONIFEROUS_TREES = (50, (50, 150, 50, 255))
50
+ SMALL_CONIFEROUS_TREES = (51, (0, 151, 151, 255))
51
+ BROADLEAVED_TREES = (55, (55, 255, 0, 255))
52
+ SMALL_BROADLEAVED_TREES_SHRUBS = (56, (156, 255, 156, 255))
53
+
54
+ NODATA11 = (11, (254,254,254,255)) # Not used
55
+ NODATA46 = (46, (246,146,246,255)) # Not used
56
+ NODATA100 = (100, (0, 0, 0, 255)) # Outside Belgium/Wallonia
57
+
58
+ if __name__ == "__main__":
59
+ import numpy as np
60
+ n = 4
61
+
62
+ DIR = r'E:\MODREC-Vesdre\vesdre-data\LifeWatch'
63
+
64
+ # Tif file is very large, so we need to use PIL to open it
65
+ Image.MAX_IMAGE_PIXELS = 15885900000
66
+ img = Image.open(DIR + r'\lifewatch_LC2018_vx19_2mLB08cog.tif',)
67
+ img = np.asarray(img)
68
+
69
+ ij11 = np.where(img == 11)
70
+ ij46 = np.where(img == 46)
71
+
72
+ print(ij11[0].shape) # must be 0
73
+ print(ij11[1].shape) # must be 0
74
+
75
+ img = img[::n,:-img.shape[1]//2:n]
76
+ print(np.unique(img))
77
+
78
+ img = Image.open(DIR +r'\lifewatch_LC2022_vx20_2mLB08cog.tif',)
79
+ img = np.asarray(img)
80
+
81
+ ij11 = np.where(img == 11) # must be 0
82
+ ij46 = np.where(img == 46) # must be 0
83
+
84
+ print(ij11[0].shape)
85
+ print(ij11[1].shape)
86
+
87
+ img = img[::n,:-img.shape[1]//2:n]
88
+ print(np.unique(img))
@@ -2341,8 +2341,8 @@ class UI_Manager_2D_GPU():
2341
2341
  cursim._save_json()
2342
2342
  except Exception as e:
2343
2343
  self._wp[cursim] = None
2344
- logging.debug(_('Error while saving parameters for simulation {}'.format(cursim.path.name)))
2345
- logging.debug(str(e))
2344
+ logging.error(_('Error while saving parameters for simulation {}'.format(cursim.path.name)))
2345
+ logging.error(str(e))
2346
2346
 
2347
2347
  def _callbackwp_destroy(self):
2348
2348
  """ Callback for wolfparam """
@@ -2355,8 +2355,8 @@ class UI_Manager_2D_GPU():
2355
2355
  cursim._save_json()
2356
2356
  except Exception as e:
2357
2357
  self._wp[cursim] = None
2358
- logging.debug(_('Error while saving parameters for simulation {}'.format(cursim.path.name)))
2359
- logging.debug(str(e))
2358
+ logging.error(_('Error while saving parameters for simulation {}'.format(cursim.path.name)))
2359
+ logging.error(str(e))
2360
2360
 
2361
2361
  def OnActivateTreeElem(self, e):
2362
2362
  """
wolfhece/wolf_array.py CHANGED
@@ -4061,7 +4061,7 @@ class SelectionData():
4061
4061
  selunique, counts = np.unique(self.myselection, return_counts=True, axis=0)
4062
4062
 
4063
4063
  # les éléments énumérés plus d'une fois doivent être enlevés
4064
- # on trie par ordre décroissant
4064
+ # on trie par ordre décroissant
4065
4065
  locsort = sorted(zip(counts.tolist(), selunique.tolist()), reverse=True)
4066
4066
  counts = [x[0] for x in locsort]
4067
4067
  sel = [tuple(x[1]) for x in locsort]
@@ -5494,6 +5494,11 @@ class WolfArray(Element_To_Draw, header_wolf):
5494
5494
 
5495
5495
  return self.alpha
5496
5496
 
5497
+ # def find_minmax(self, update=False):
5498
+
5499
+ # if update:
5500
+ # [self.xmin, self.xmax], [self.ymin, self.ymax] = self.get_bounds()
5501
+
5497
5502
  @property
5498
5503
  def memory_usage(self):
5499
5504
  """
@@ -9289,9 +9294,20 @@ class WolfArray(Element_To_Draw, header_wolf):
9289
9294
  elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER16, WOLF_ARRAY_FULL_INTEGER16_2]:
9290
9295
  value=np.int16(value)
9291
9296
  elif self.wolftype in [WOLF_ARRAY_FULL_INTEGER8]:
9292
- value=np.int8(value)
9297
+ try:
9298
+ value = np.int8(value)
9299
+ except:
9300
+ value = 0
9301
+ logging.warning(_('Value too high for int8 conversion'))
9302
+ logging.warning(_('Value set to 0'))
9303
+
9293
9304
  elif self.wolftype in [WOLF_ARRAY_FULL_UINTEGER8]:
9294
- value=np.uint8(value)
9305
+ try:
9306
+ value = np.uint8(value)
9307
+ except:
9308
+ value = 0
9309
+ logging.warning(_('Value too high for int8 conversion'))
9310
+ logging.warning(_('Value set to 0'))
9295
9311
  except:
9296
9312
  logging.error(_('Type not supported : {} - {}'.format(value, type(value))))
9297
9313
  logging.warning(_('Masking operation compromised'))
@@ -9690,6 +9706,13 @@ class WolfArray(Element_To_Draw, header_wolf):
9690
9706
  for cur in self.viewers3d:
9691
9707
  cur.update_palette(self.idx, self.mypal.get_colors_f32().flatten(), self.mypal.values.astype(np.float32))
9692
9708
 
9709
+ def find_minmax(self, update=False):
9710
+ """ Find the min and max values of the array
9711
+
9712
+ ATTENTION : Just to conform to the interface of the Element_To_Draw class
9713
+ """
9714
+ if update:
9715
+ [self.xmin, self.xmax], [self.ymin, self.ymax] = self.get_bounds()
9693
9716
 
9694
9717
  def plot(self, sx:float=None, sy:float=None, xmin:float=None, ymin:float=None, xmax:float=None, ymax:float=None, size:float=None):
9695
9718
  """
@@ -9711,17 +9734,17 @@ class WolfArray(Element_To_Draw, header_wolf):
9711
9734
  if self.plotted and sx is None:
9712
9735
  sx = self.sx
9713
9736
  sy = self.sy
9714
- xmin = self.xmin
9715
- xmax = self.xmax
9716
- ymin = self.ymin
9717
- ymax = self.ymax
9737
+ xmin = self._xmin_plot
9738
+ xmax = self._xmax_plot
9739
+ ymin = self._ymin_plot
9740
+ ymax = self._ymax_plot
9718
9741
  else:
9719
9742
  self.sx = sx
9720
9743
  self.sy = sy
9721
- self.xmin = xmin
9722
- self.xmax = xmax
9723
- self.ymin = ymin
9724
- self.ymax = ymax
9744
+ self._xmin_plot = xmin
9745
+ self._xmax_plot = xmax
9746
+ self._ymin_plot = ymin
9747
+ self._ymax_plot = ymax
9725
9748
 
9726
9749
  nbpix = min(sx * self.dx, sy * self.dy)
9727
9750
  if nbpix >= 1.:
wolfhece/wolf_texture.py CHANGED
@@ -26,7 +26,7 @@ import math
26
26
  import numpy as np
27
27
 
28
28
  from .PyTranslate import _
29
- from .PyWMS import getIGNFrance, getWalonmap, getVlaanderen
29
+ from .PyWMS import getIGNFrance, getWalonmap, getVlaanderen, getLifeWatch
30
30
  from .textpillow import Font_Priority, Text_Image,Text_Infos
31
31
  from .drawing_obj import Element_To_Draw
32
32
 
@@ -253,7 +253,8 @@ class imagetexture(Element_To_Draw):
253
253
  def __init__(self, which: str, label: str, cat: str, subc: str, mapviewer,
254
254
  xmin:float, xmax:float, ymin:float, ymax:float,
255
255
  width:int = 1000, height:int = 1000,
256
- France:bool = False, epsg='31370', Vlaanderen:bool = False) -> None:
256
+ France:bool = False, epsg='31370', Vlaanderen:bool = False,
257
+ LifeWatch:bool = False) -> None:
257
258
 
258
259
  super().__init__(label+cat+subc, plotted=False, mapviewer=mapviewer, need_for_wx=False)
259
260
 
@@ -264,6 +265,7 @@ class imagetexture(Element_To_Draw):
264
265
 
265
266
  self.France = France
266
267
  self.Vlaanderen = Vlaanderen
268
+ self.LifeWatch = LifeWatch
267
269
 
268
270
  self.epsg = epsg
269
271
 
@@ -306,6 +308,11 @@ class imagetexture(Element_To_Draw):
306
308
  mybytes = getVlaanderen(self.category,
307
309
  self.xmin, self.ymin, self.xmax, self.ymax,
308
310
  self.width, self.height, False)
311
+
312
+ elif self.LifeWatch:
313
+ mybytes = getLifeWatch(self.category + '_' + self.subcategory,
314
+ self.xmin, self.ymin, self.xmax, self.ymax,
315
+ self.width, self.height, False)
309
316
  else:
310
317
  mybytes = getWalonmap(self.category + '/' + self.subcategory,
311
318
  self.xmin, self.ymin, self.xmax, self.ymax,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: wolfhece
3
- Version: 2.2.2
3
+ Version: 2.2.4
4
4
  Author-email: Pierre Archambeau <pierre.archambeau@uliege.be>
5
5
  Project-URL: Homepage, https://uee.uliege.be/hece
6
6
  Project-URL: Issues, https://uee.uliege.be/hece
@@ -69,6 +69,8 @@ Requires-Dist: plyfile
69
69
  Requires-Dist: tabulate
70
70
  Requires-Dist: ipympl
71
71
  Requires-Dist: contextily
72
+ Requires-Dist: pefile
73
+ Requires-Dist: wolfpydike
72
74
 
73
75
  Ce paquet contient l'interface graphique Python du logiciel WOLF (HECE - ULiège) de même que plusieurs outils de traitements topographique, hydraulique et hydrologique.
74
76
 
@@ -5,19 +5,20 @@ wolfhece/GraphProfile.py,sha256=OCgJo0YFFBI6H1z-5egJsOOoWF_iziiza0-bbPejNMc,6965
5
5
  wolfhece/Lidar2002.py,sha256=bX-nIzdpjD7rOfEgJpTeaW6rIdAXwDp_z4YTM9CgANY,6068
6
6
  wolfhece/ManageParams.py,sha256=EeuUI5Vvh9ixCvYf8YShMC1s1Yacc7OxOCN7q81gqiQ,517
7
7
  wolfhece/Model1D.py,sha256=SI4oNF_J3MdjiWZoizS8kuRXLMVyymX9dYfYJNVCQVI,476989
8
+ wolfhece/PandasGrid.py,sha256=YIleVkUkoP2MjtQBZ9Xgwk61zbgMj4Pmjj-clVTfPRs,2353
8
9
  wolfhece/PyConfig.py,sha256=Y0wtSIFpAMYa7IByh7hbW-WEOVjNsQEduq7vhIYdZQw,16716
9
10
  wolfhece/PyCrosssections.py,sha256=igU_ELrg5VrHU6RNbF5tHxPyVImpR3xdpfopJYc7haw,114711
10
- wolfhece/PyDraw.py,sha256=wmBEYPkPiuk5sywCpKS1frEEirHDryVpF8P1G9wwuJA,603350
11
- wolfhece/PyGui.py,sha256=B7-pAQ0tOkXVIb_3BSjNVROFF9s23lGCSBaQD5NxvOQ,145093
11
+ wolfhece/PyDraw.py,sha256=mCIcXgtTT3vvixO_bvo76HlgK9p1MKk1GljGGIuIosw,631732
12
+ wolfhece/PyGui.py,sha256=IU97wVlmer3Q2MpWbJv4MQWH7nYbc5uN4pRzhr4jdlM,145197
12
13
  wolfhece/PyGuiHydrology.py,sha256=sKafpOopBg50L5llZCI_fZtbebVTDtxvoRI6-osUwhg,14745
13
14
  wolfhece/PyHydrographs.py,sha256=1P5XAURNqCvtSsMQXhOn1ihjTpr725sRsZdlCEhhk6M,3730
14
- wolfhece/PyPalette.py,sha256=mTknZlfioRGX7iJVoKG1Yc0pQooZA_KYyFsAzvLY4Rk,34344
15
+ wolfhece/PyPalette.py,sha256=SnzMfzpVblbvq1kItLp52jufk6-R1b0QX3fF6RUKKT4,34842
15
16
  wolfhece/PyParams.py,sha256=Dh9C_WYICMjo3m9roRySsu8ZgFzzYhSr6RpbaXZni0M,99423
16
17
  wolfhece/PyPictures.py,sha256=m1kY0saW6Y9Q0bDCo47lW6XxDkBrbQG-Fd8uVn8G5ic,2514
17
18
  wolfhece/PyTranslate.py,sha256=4appkmNeHHZLFmUtaA_k5_5QL-5ymxnbVN4R2OblmtE,622
18
- wolfhece/PyVertex.py,sha256=PDKpLFPqE1ORzfi36xKIjuKsxR8DR0iNMsLhAGw11rY,45205
19
+ wolfhece/PyVertex.py,sha256=Ym42pHWwEVv6Fu5v-OzhlHiQB46DnvLf9MUe_c3lbR0,45610
19
20
  wolfhece/PyVertexvectors.py,sha256=0lt0YyHIz_IxgXqdqPlTDruDwjeP6L1Dw6B2Q35a8kQ,325801
20
- wolfhece/PyWMS.py,sha256=WmOzHP02wVcB5RGJAlENL_NzF9rYfvLxslRFyxaEt1Q,6615
21
+ wolfhece/PyWMS.py,sha256=_HwJh3WVc0eHNCOPlQx40TVCdfXQF86Lb-_qpbzTC2M,8829
21
22
  wolfhece/RatingCurve.py,sha256=bUjIrQjvIjkD4V-z8bZmA6pe1ILtYNM0-3fT6YUY1RU,22498
22
23
  wolfhece/RatingCurveData.py,sha256=5UvnIm89BwqjnEbLCcY3CA8WoFd_xHJbooNy62fX5iY,57660
23
24
  wolfhece/RatingCurve_xml.py,sha256=cUjReVMHFKtakA2wVey5zz6lCgHlSr72y7ZfswZDvTM,33891
@@ -28,6 +29,7 @@ wolfhece/_add_path.py,sha256=nudniS-lsgHwXXq5o626XRDzIeYj76GoGKYt6lcu2Nc,616
28
29
  wolfhece/analyze_vect.py,sha256=3lkMwaQ4KRddBVRvlP9PcM66wZwwC0eCmypP91AW-os,6015
29
30
  wolfhece/cli.py,sha256=U8D7e_OezfrRfgMsa4TyQ7rI4voLKSY3RK-c8fb6rrw,3156
30
31
  wolfhece/color_constants.py,sha256=Snc5RX11Ydi756EkBp_83C7DiAQ_Z1aHD9jFIBsosAU,37121
32
+ wolfhece/dike.py,sha256=eG9EDCRk46Nlzpg5OycUeOag_T8joyJ2wzTkQgAT5F0,30710
31
33
  wolfhece/drawing_obj.py,sha256=7vY04B6r08nurTTFmBXHyR5tVIF1YzAEw_uz4pqTDIw,4233
32
34
  wolfhece/eikonal.py,sha256=iDeDs571sVXGe4IsPSJ1Sa4hX8Ri2jWE7u83xzvA2K8,23189
33
35
  wolfhece/flow_SPWMI.py,sha256=XDAelwAY-3rYOR0WKW3fgYJ_r8DU4IP6Y5xULW421tk,20956
@@ -39,6 +41,7 @@ wolfhece/ins.py,sha256=uUeLMS1n3GPnfJhxl0Z2l-UXpmPUgthuwct282OOEzk,36184
39
41
  wolfhece/irm_qdf.py,sha256=DMdDEAYbgYxApObm6w-dZbBmA8ec6PghBLXR2lUEZLc,27457
40
42
  wolfhece/ismember.py,sha256=fkLvaH9fhx-p0QrlEzqa6ySO-ios3ysjAgXVXzLgSpY,2482
41
43
  wolfhece/lagrange_multiplier.py,sha256=0G-M7b2tGzLx9v0oNYYq4_tLAiHcs_39B4o4W3TUVWM,6567
44
+ wolfhece/lifewatch.py,sha256=TOqmbD_fuxXLvrnx401z5OxMqOBBSn-7Yg6flndWXFE,3324
42
45
  wolfhece/matplotlib_fig.py,sha256=vnFI6sghw9N9jKhR8X1Z4aWli_5fPNylZQtFuujFJDY,84075
43
46
  wolfhece/multiprojects.py,sha256=Sd6Bl6YP33jlR79A6rvSLu23vq8sqbFYL8lWuVPkEpE,21549
44
47
  wolfhece/picc.py,sha256=0X_pzhSBoVxgtTfJ37pkOQO3Vbr9yurPaD1nVeurx8k,8531
@@ -55,9 +58,9 @@ wolfhece/rain_SPWMI.py,sha256=qCfcmF7LajloOaCwnTrrSMzyME03YyilmRUOqrPrv3U,13846
55
58
  wolfhece/textpillow.py,sha256=map7HsGYML_o5NHRdFg2s_TVQed_lDnpYNDv27MM0Vw,14130
56
59
  wolfhece/tools2d_dll.py,sha256=oU0m9XYAf4CZsMoB68IuKeE6SQh-AqY7O5NVED8r9uw,13125
57
60
  wolfhece/tools_mpl.py,sha256=gQ3Jg1iuZiecmMqa5Eli2ZLSkttu68VXL8YmMDBaEYU,564
58
- wolfhece/wolf_array.py,sha256=Q5dXKhs3gtQXGHFUaN9AfJnc0FpAUJTLKnpbjB7CcQo,485619
61
+ wolfhece/wolf_array.py,sha256=t6-gLy1Op3Lx6Nmxv-Yo7cQIW62BinFDRP7x6Qpb5u8,486606
59
62
  wolfhece/wolf_hist.py,sha256=7jeVrgSkM3ErJO6SRMH_PGzfLjIdw8vTy87kesldggk,3582
60
- wolfhece/wolf_texture.py,sha256=ecoXXmmcLuyG1oPqU2dB_k03qMTCLTVQoSq1xi1EalU,17359
63
+ wolfhece/wolf_texture.py,sha256=IvFtekT5iLU2sivZOOlJXpE4CevjTQYSxHaOp4cH_wI,17723
61
64
  wolfhece/wolf_tiles.py,sha256=v-HohqaWuMYdn75XLnA22dlloAG90iwnIqrgnB0ASQ4,10488
62
65
  wolfhece/wolf_vrt.py,sha256=wbxXVN7TL9zgdyF79S-4e3pje6wJEAgBEfF_Y8kkzxs,14271
63
66
  wolfhece/wolf_zi_db.py,sha256=baE0niMCzybWGSvPJc5FNxo9ZxsGfU4p-FmfiavFHAs,12967
@@ -67,9 +70,9 @@ wolfhece/acceptability/Parallels.py,sha256=2wVkfJYor4yl7VYiAZiGGTFwtAab2z66ZfRtB
67
70
  wolfhece/acceptability/__init__.py,sha256=hfgoPKLDpX7drN1Vpvux-_5Lfyc_7feT2C2zQr5v-Os,258
68
71
  wolfhece/acceptability/_add_path.py,sha256=nudniS-lsgHwXXq5o626XRDzIeYj76GoGKYt6lcu2Nc,616
69
72
  wolfhece/acceptability/acceptability.py,sha256=dLsYVwPiYH33M7y2vVzlLVd9q8dLgDIeTuJ8f20L4ig,28006
70
- wolfhece/acceptability/acceptability_gui.py,sha256=z_g1Ip7-H67KawR_EA_QeVtFXpMaoGKIKSmujVRz3Q0,75899
73
+ wolfhece/acceptability/acceptability_gui.py,sha256=OR02JhbBzhqtJAhP1tXudP3Tbi6qkhbu1Kfn6oY-Zds,72307
71
74
  wolfhece/acceptability/cli.py,sha256=ul_GmDnSgKSgA7z5ZIzeA_MlS2uqo-Xi48bqmWUS-Qk,19141
72
- wolfhece/acceptability/func.py,sha256=NHUoYPxQg-WP6K1uOAoXrwofVZfn4VX-jSl9fHt07qM,68593
75
+ wolfhece/acceptability/func.py,sha256=OP9Gd3l3BQ4_93Zl0rQjGqKf-we_Ncpmu-YkwrZFAkQ,72545
73
76
  wolfhece/apps/ManageParams.py,sha256=9okXHGHKEayA9iKTnv8jsVYCP2up5kr6hDaKO_fMCaQ,748
74
77
  wolfhece/apps/Optimisation_hydro.py,sha256=ySIaVsFNEx4PaHFLlT2QW9BiwChVcTNd2TBnW1aICsI,810
75
78
  wolfhece/apps/WolfPython.png,sha256=K3dcbeZUiJCFNwOAAlGMaRGLJ56yM8WD2I_0bk0xT1g,104622
@@ -77,13 +80,13 @@ wolfhece/apps/WolfPython2.png,sha256=VMPV-M-3BCOg8zOJss8bXwPmzRYZy8Fo-XtnVYNgbaw
77
80
  wolfhece/apps/WolfPython3.png,sha256=3G84zx14HnlB9YXMY4VUAO7IB3eu7JFvi4Kpmc_4zBE,403298
78
81
  wolfhece/apps/__init__.py,sha256=OzzKItATWV0mDkz_LC2L3w5sgT2rt8ExXXCbR_FwvlY,24
79
82
  wolfhece/apps/acceptability.py,sha256=hMIxTRNQARTTWJJaakb6kEK9udNh-w64VDgxxezVk3k,790
80
- wolfhece/apps/check_install.py,sha256=vrrkPu0ay5Ru25JKrYqzdVnyfnlzY3rDLYFGDJOptko,3989
83
+ wolfhece/apps/check_install.py,sha256=ULUN2frWsMK2a-aKu5an6qx7JBJ9JJWGK9sWWTqYpYA,4001
81
84
  wolfhece/apps/check_version.py,sha256=Zze7ltzcM2ZzIGMwkcASIjapCG8CEzzW9kwNscA3NhM,1768
82
85
  wolfhece/apps/curvedigitizer.py,sha256=lEJJwgAfulrrWQc-U6ij6sj59hWN3SZl4Yu1kQxVzzA,9106
83
86
  wolfhece/apps/hydrometry.py,sha256=lhhJsFeb4zGL4bNQTs0co85OQ_6ssL1Oy0OUJCzhfYE,656
84
87
  wolfhece/apps/isocurrent.py,sha256=dagmGR8ja9QQ1gwz_8fU-N052hIw-W0mWGVkzLu6C7I,4247
85
- wolfhece/apps/splashscreen.py,sha256=SrustmIQeXnsiD-92OzjdGhBi-S7c_j-cSvuX4T6rtg,2929
86
- wolfhece/apps/version.py,sha256=pfJCxRPgSHvPoFtUBh1y_UjYF4wpkW6f7GnMs9a_h9g,387
88
+ wolfhece/apps/splashscreen.py,sha256=eCPAUYscZPWDYKBHDBWum_VIcE7WXOCBe1GLHL3KUmU,3088
89
+ wolfhece/apps/version.py,sha256=ZQEA7v7GBHHT9_GNdNPgeQvXG9KlV9xxGk8ae-2UVaU,387
87
90
  wolfhece/apps/wolf.py,sha256=j_CgvsL8rwixbVvVD5Z0s7m7cHZ86gmFLojKGuetMls,729
88
91
  wolfhece/apps/wolf2D.py,sha256=4z_OPQ3IgaLtjexjMKX9ppvqEYyjFLt1hcfFABy3-jU,703
89
92
  wolfhece/apps/wolf_logo.bmp,sha256=ruJ4MA51CpGO_AYUp_dB4SWKHelvhOvd7Q8NrVOjDJk,3126
@@ -92,6 +95,8 @@ wolfhece/apps/wolf_logo3.bmp,sha256=AxRvS_uc2MJn_ksMExPhFEDJ0_PmlR3xU13gzfc28xk,
92
95
  wolfhece/apps/wolf_logo4.bmp,sha256=N6d_NZ3V2M-qtSdTM0LP3PhU2TtltB_UNW6Z2WiLrvM,5830
93
96
  wolfhece/apps/wolfcompare2Darrays.py,sha256=AfEJjku_oSWWqyCIDOqId0quZrS_NpTIFN4fHcVDWb4,4179
94
97
  wolfhece/apps/wolfhydro.py,sha256=EsXTtXhnsQV1j-tiFYcyfMrJpjFv1MrWiftwODdi_8I,817
98
+ wolfhece/assets/__init__.py,sha256=FRDE8PiJAWxX9PMXsShRMZ8YADAY4WIgKMRh52rmhiw,23
99
+ wolfhece/assets/speedometer.py,sha256=Oqttbw-AB9niaQRNDd0bmyu-ozyOHoYRQd1dApywwdU,5877
95
100
  wolfhece/bernoulli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
96
101
  wolfhece/bernoulli/chamber.py,sha256=ZWNjTAmTaH8u8J00n8uEib7dy84mUfHWN43805W_Qsw,2354
97
102
  wolfhece/bernoulli/fluids.py,sha256=-mPv3EtCcIEfvTI7oSELtOjUFiKhKANu8w96NnUnrvU,464
@@ -107,6 +112,9 @@ wolfhece/clientserver/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
107
112
  wolfhece/clientserver/clientserver.py,sha256=sNJ8STw0kqUjCB4AerqZNbzCtl5WRe_JRvhe7whNoSE,2798
108
113
  wolfhece/coupling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
109
114
  wolfhece/coupling/hydrology_2d.py,sha256=QBIcgujfOX1xX3ARF2PQz6Uqwu3j6EaRw0QlGjG_H7k,53090
115
+ wolfhece/drowning_victims/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
+ wolfhece/drowning_victims/drowning_class.py,sha256=xWr_SoFqpodQ51x2CqCRbfIiL903kk2YqIRoU35xZy0,93482
117
+ wolfhece/drowning_victims/drowning_functions.py,sha256=hlAOyzt15GYe0urDPYquJaV6i0LyDj7X5BAUGE6ppso,47535
110
118
  wolfhece/eva/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
111
119
  wolfhece/eva/bootstrap.py,sha256=Ys4xTDIvG_QtxCKWLYzb3_XAZU441jGX7fHIbd9Mvr0,840
112
120
  wolfhece/eva/hydrogramme_mono.py,sha256=uZFIgJJ-JogMFzt7D7OnyVaHvgxCQJPZz9W9FgnuthA,8138
@@ -276,7 +284,7 @@ wolfhece/report/reporting.py,sha256=JUEXovx_S4jpYkJEBU0AC-1Qw2OkkWyV3VAp6iOfSHc,
276
284
  wolfhece/report/wolf_report.png,sha256=NoSV58LSwb-oxCcZScRiJno-kxDwRdm_bK-fiMsKJdA,592485
277
285
  wolfhece/scenario/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
278
286
  wolfhece/scenario/check_scenario.py,sha256=d-LWa_FxmPxTSc_H1lDHwqLB6TCqj1IUrRJhatfPMMA,5623
279
- wolfhece/scenario/config_manager.py,sha256=uJvMry-ApxSDnrlDANkF_8a67VH5tOCbRIQQCtPu9SI,113836
287
+ wolfhece/scenario/config_manager.py,sha256=5_USTuhaAYDNQaqDt2VA0wssv2f53rgjGnMt1vkoc48,113836
280
288
  wolfhece/scenario/imposebc_void.py,sha256=PqA_99hKcaqK5zsK6IRIc5Exgg3WVpgWU8xpwNL49zQ,5571
281
289
  wolfhece/scenario/update_void.py,sha256=Yb7TMIUx9Gzm9_6qRMJnF39Uqi17dIkMmscSXo2WaTs,10033
282
290
  wolfhece/shaders/fragment_shader_texture.glsl,sha256=w6h8d5mJqFaGbao0LGmjRcFFdcEQ3ICIl9JpuT71K5k,177
@@ -305,8 +313,8 @@ wolfhece/ui/wolf_multiselection_collapsiblepane.py,sha256=8PlMYrb_8jI8h9F0_EagpM
305
313
  wolfhece/ui/wolf_times_selection_comparison_models.py,sha256=ORy7fz4dcp691qKzaOZHrRLZ0uXNhL-LIHxmpDGL6BI,5007
306
314
  wolfhece/wintab/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
307
315
  wolfhece/wintab/wintab.py,sha256=8A-JNONV6ujgsgG3lM5Uw-pVgglPATwKs86oBzzljoc,7179
308
- wolfhece-2.2.2.dist-info/METADATA,sha256=rzjoOd8XS0mz80a0NdAokfYYiKOC5R2btg6qXj-4-ZE,2694
309
- wolfhece-2.2.2.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
310
- wolfhece-2.2.2.dist-info/entry_points.txt,sha256=ZZ-aSfbpdcmo-wo84lRFzBN7LaSnD1XRGSaAKVX-Gpc,522
311
- wolfhece-2.2.2.dist-info/top_level.txt,sha256=EfqZXMVCn7eILUzx9xsEu2oBbSo9liWPFWjIHik0iCI,9
312
- wolfhece-2.2.2.dist-info/RECORD,,
316
+ wolfhece-2.2.4.dist-info/METADATA,sha256=JJuO3xTYTfqTWVbcVcF-dLDr89VgsykNuEikAt6elpk,2744
317
+ wolfhece-2.2.4.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
318
+ wolfhece-2.2.4.dist-info/entry_points.txt,sha256=ZZ-aSfbpdcmo-wo84lRFzBN7LaSnD1XRGSaAKVX-Gpc,522
319
+ wolfhece-2.2.4.dist-info/top_level.txt,sha256=EfqZXMVCn7eILUzx9xsEu2oBbSo9liWPFWjIHik0iCI,9
320
+ wolfhece-2.2.4.dist-info/RECORD,,