wolfhece 2.2.23__py3-none-any.whl → 2.2.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
wolfhece/wolf_array.py CHANGED
@@ -1384,6 +1384,34 @@ class header_wolf():
1384
1384
 
1385
1385
  return newvector
1386
1386
 
1387
+ def rasterize_zone_along_grid(self, zone2raster:zone, outformat:Union[np.ndarray, vector]=zone) -> Union[np.ndarray,zone]:
1388
+ """ Rasterize a zone according to the grid
1389
+
1390
+ :param zone2raster: zone to rasterize
1391
+ :param outformat: output format (np.ndarray or zone)
1392
+ """
1393
+
1394
+ assert outformat in [np.ndarray, zone], _('outformat must be np.ndarray or zone')
1395
+
1396
+ if outformat is zone:
1397
+ out_vec = vector
1398
+ else:
1399
+ out_vec = np.ndarray
1400
+ new_vecs = []
1401
+ for vec in zone2raster.myvectors:
1402
+ new_vecs.append(self.rasterize_vector_along_grid(vec, outformat=out_vec))
1403
+
1404
+ if outformat is np.ndarray:
1405
+ return np.vstack(new_vecs)
1406
+ elif outformat is zone:
1407
+ # create new zone
1408
+ newzone = zone()
1409
+ for vec, oldvec in zip(new_vecs, zone2raster.myvectors):
1410
+ vec.myname = oldvec.myname # keep the original name
1411
+ newzone.add_vector(vec, forceparent=True)
1412
+ return newzone
1413
+
1414
+
1387
1415
  def rasterize_vector(self, vector2raster:vector, outformat:Union[np.ndarray, vector]=vector) -> Union[np.ndarray,vector]:
1388
1416
  """ DEPRECATED since 2.2.8 -- use rasterize_vector_along_grid instead.
1389
1417
 
@@ -5752,14 +5780,31 @@ class WolfArray(Element_To_Draw, header_wolf):
5752
5780
  mapviewer.add_object('array', newobj = newarray, ToCheck = True, id = self.idx + '_extracted')
5753
5781
 
5754
5782
  def crop_array(self, bbox:list[list[float],list[float]], setnull_trx_try:bool = False) -> "WolfArray":
5755
- """ Crop the data based on the bounding box
5783
+ """ Crop the data based on the bounding box.
5756
5784
 
5757
- :param bbox: bounding box [[xmin, xmax], [ymin, ymax]]
5758
- :param setnull_trx_try: set the translation to 0 if True, origx and origy will be set to the lower left corner of the bbox. Default is False
5785
+ Beware of the grid:
5786
+ - If the cropped region is smaller than a cell, then the cropped array
5787
+ will be empty.
5788
+ - If the cropped region doesn't align with the source array grid, it
5789
+ will be forced to do so.
5790
+
5791
+ :param bbox: bounding box [[xmin, xmax], [ymin, ymax]].
5792
+ :param setnull_trx_try: set the translation to 0 if True, origx and
5793
+ origy will be set to the lower left corner of the bbox. Default is
5794
+ `False`.
5759
5795
  """
5760
5796
 
5761
- imin, jmin = self.get_ij_from_xy(bbox[0][0], bbox[1][0])
5762
- imax, jmax = self.get_ij_from_xy(bbox[0][1], bbox[1][1])
5797
+ xmin, xmax = bbox[0]
5798
+ ymin, ymax = bbox[1]
5799
+
5800
+ # Make sure the bounding box can be used.
5801
+ if xmin > xmax:
5802
+ xmin, xmax = xmax, xmin
5803
+ if ymin > ymax:
5804
+ ymin, ymax = ymax, ymin
5805
+
5806
+ imin, jmin = self.get_ij_from_xy(xmin, ymin)
5807
+ imax, jmax = self.get_ij_from_xy(xmax, ymax)
5763
5808
 
5764
5809
  imin = int(imin)
5765
5810
  jmin = int(jmin)
@@ -5783,7 +5828,11 @@ class WolfArray(Element_To_Draw, header_wolf):
5783
5828
 
5784
5829
  newarray = WolfArray(srcheader=newheader)
5785
5830
 
5786
- newarray.array[:,:] = self.array[imin:imax, jmin:jmax]
5831
+ if imin < imax and jmin < jmax:
5832
+ newarray.array[:,:] = self.array[imin:imax, jmin:jmax]
5833
+ else:
5834
+ # One of the dimensions has 0 size => the array is empty
5835
+ pass
5787
5836
 
5788
5837
  return newarray
5789
5838
 
@@ -4155,6 +4155,10 @@ class Wolfresults_2D(Element_To_Draw):
4155
4155
  :param to_rasterize : pour rasteriser le vecteur selon la grille de calcul
4156
4156
  """
4157
4157
 
4158
+ if self.nb_blocks > 1:
4159
+ logging.error(_('This method is not implemented for multi-block results - Need to be implemented !'))
4160
+ return []
4161
+
4158
4162
  myhead = self.get_header_block(1)
4159
4163
  if to_rasterize:
4160
4164
  myvect = myhead.rasterize_vector_along_grid(myvect)
@@ -6129,4 +6133,123 @@ class Wolfresults_2D(Element_To_Draw):
6129
6133
  qx_avg.array.mask[:,:] = h_avg.array.mask[:,:]
6130
6134
  qy_avg.array.mask[:,:] = h_avg.array.mask[:,:]
6131
6135
 
6132
- return h_avg, qx_avg, qy_avg
6136
+ return h_avg, qx_avg, qy_avg
6137
+
6138
+ def danger_map_velocity_with_directions(self, start:int=0, end:int=-1, every:int=1, callback=None) -> Union[tuple[WolfArray, WolfArray, WolfArray, WolfArray], tuple[WolfArrayMB, WolfArrayMB, WolfArrayMB, WolfArrayMB]]:
6139
+ """
6140
+ Create Danger Map of velocity magnitudes and also retain their directions
6141
+
6142
+ :param start: start time step - 0-based
6143
+ :param end: end time step - 0-based
6144
+ :param every: step interval
6145
+ :param callback: optional callback to update progress
6146
+
6147
+ :return : tuple of WolfArray or WolfArrayMB - H, U_norm, U_x, U_y
6148
+ """
6149
+
6150
+ # Number of time steps
6151
+ number_of_time_steps = self.get_nbresults()
6152
+ if end ==-1:
6153
+ end = number_of_time_steps
6154
+
6155
+ # Init Danger Maps basde on results type
6156
+ # If only one block --> WolfArray
6157
+ # If only multiple blocks --> WolfArrayMB
6158
+ danger_map_matrix_h = self.as_WolfArray(copyarray=True)
6159
+ danger_map_matrix_v = self.as_WolfArray(copyarray=True)
6160
+ danger_map_matrix_vx = self.as_WolfArray(copyarray=True)
6161
+ danger_map_matrix_vy = self.as_WolfArray(copyarray=True)
6162
+
6163
+ danger_init = [danger_map_matrix_h, danger_map_matrix_v, danger_map_matrix_vx, danger_map_matrix_vy]
6164
+
6165
+ for curdanger in danger_init:
6166
+ curdanger.nullvalue = 0.
6167
+ curdanger.reset()
6168
+ curdanger.mask_reset()
6169
+
6170
+ to_compute = np.arange(start, end, every)
6171
+ #add the end
6172
+ if end not in to_compute:
6173
+ to_compute = np.append(to_compute, end)
6174
+ for time_step in tqdm(to_compute):
6175
+
6176
+ if callback is not None:
6177
+ callback(time_step, "Step {} / {}".format(time_step+1, end))
6178
+
6179
+ self.read_oneresult(time_step+1)
6180
+
6181
+ if self.nb_blocks>1:
6182
+ for curblock in self.myblocks.keys():
6183
+
6184
+ # Get WolfArray
6185
+ wd = self.get_h_for_block(curblock)
6186
+ qx = self.get_qx_for_block(curblock)
6187
+ qy = self.get_qy_for_block(curblock)
6188
+
6189
+ ij = np.where(~wd.array.mask)
6190
+
6191
+ v = np.zeros_like(wd.array)
6192
+ vy = np.zeros_like(wd.array)
6193
+ vx = np.zeros_like(wd.array)
6194
+
6195
+ v[ij] = ((qx.array[ij]**2.+qy.array[ij]**2.)**.5)/wd.array[ij]
6196
+ vy[ij] = qy.array[ij]/wd.array[ij]
6197
+ vx[ij] = qx.array[ij]/wd.array[ij]
6198
+
6199
+ # Comparison
6200
+ ij = np.where((danger_map_matrix_h.array < wd.array.data) & (~wd.array.mask))
6201
+ danger_map_matrix_h.array.data[ij] = wd.array[ij]
6202
+ danger_map_matrix_h.array.mask[ij] = False
6203
+
6204
+ # Comparison
6205
+ ij = np.where((danger_map_matrix_v.array < v) & (~wd.array.mask))
6206
+ danger_map_matrix_v.array.data[ij] = v[ij]
6207
+ danger_map_matrix_vx.array.data[ij] = vx[ij]
6208
+ danger_map_matrix_vy.array.data[ij] = vy[ij]
6209
+ danger_map_matrix_v.array.mask[ij] = False
6210
+ danger_map_matrix_vx.array.mask[ij] = False
6211
+ danger_map_matrix_vy.array.mask[ij] = False
6212
+
6213
+ else:
6214
+ curblock = getkeyblock(0)
6215
+ wd = self.get_h_for_block(curblock)
6216
+ qx = self.get_qx_for_block(curblock)
6217
+ qy = self.get_qy_for_block(curblock)
6218
+
6219
+ ij = np.where(~wd.array.mask)
6220
+
6221
+ v = np.zeros_like(wd.array)
6222
+ vy = np.zeros_like(wd.array)
6223
+ vx = np.zeros_like(wd.array)
6224
+
6225
+ v[ij] = ((qx.array[ij]**2.+qy.array[ij]**2.)**.5)/wd.array[ij]
6226
+ vy[ij] = qy.array[ij]/wd.array[ij]
6227
+ vx[ij] = qx.array[ij]/wd.array[ij]
6228
+
6229
+ # Comparison
6230
+ ij = np.where((danger_map_matrix_h.array < wd.array.data) & (~wd.array.mask))
6231
+ danger_map_matrix_h.array.data[ij] = wd.array[ij]
6232
+ danger_map_matrix_h.array.mask[ij] = False
6233
+
6234
+ # Comparison
6235
+ ij = np.where((danger_map_matrix_v.array < v) & (~wd.array.mask))
6236
+ danger_map_matrix_v.array.data[ij] = v[ij]
6237
+ danger_map_matrix_vx.array.data[ij] = vx[ij]
6238
+ danger_map_matrix_vy.array.data[ij] = vy[ij]
6239
+ danger_map_matrix_v.array.mask[ij] = False
6240
+ danger_map_matrix_vx.array.mask[ij] = False
6241
+ danger_map_matrix_vy.array.mask[ij] = False
6242
+
6243
+ danger_map_matrix_h.mask_lower(self.epsilon)
6244
+
6245
+ if self.nb_blocks>1:
6246
+ for i in range(self.nb_blocks):
6247
+ danger_map_matrix_v[i].array.mask[:,:] = danger_map_matrix_h[i].array.mask[:,:]
6248
+ danger_map_matrix_vx[i].array.mask[:,:] = danger_map_matrix_h[i].array.mask[:,:]
6249
+ danger_map_matrix_vy[i].array.mask[:,:] = danger_map_matrix_h[i].array.mask[:,:]
6250
+ else:
6251
+ danger_map_matrix_v.array.mask[:,:] = danger_map_matrix_h.array.mask[:,:]
6252
+ danger_map_matrix_vx.array.mask[:,:] = danger_map_matrix_h.array.mask[:,:]
6253
+ danger_map_matrix_vy.array.mask[:,:] = danger_map_matrix_h.array.mask[:,:]
6254
+
6255
+ return (danger_map_matrix_h, danger_map_matrix_v, danger_map_matrix_vx, danger_map_matrix_vy)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: wolfhece
3
- Version: 2.2.23
3
+ Version: 2.2.25
4
4
  Author-email: Pierre Archambeau <pierre.archambeau@uliege.be>
5
5
  Project-URL: Homepage, https://uee.uliege.be/hece
6
6
  Project-URL: Issues, https://uee.uliege.be/hece
@@ -1,4 +1,4 @@
1
- wolfhece/Coordinates_operations.py,sha256=YyWlAwKManb-ReQrmP37rEXxehunUCihmkeDYX6qTAQ,8037
1
+ wolfhece/Coordinates_operations.py,sha256=KaIcP1b0IpKSLaynZgfvwkD6wsMKLmZo-kxeLfv9-8c,8101
2
2
  wolfhece/CpGrid.py,sha256=_piG1u-ua7NzWh_PHJYTmxuPJ43ZfeYKNEQgZIJwDJ8,10660
3
3
  wolfhece/GraphNotebook.py,sha256=2TR8qjEwpMtl34QWgYNVe_PgTnuwhUxT5f9Y2zrmN2U,28257
4
4
  wolfhece/GraphProfile.py,sha256=OCgJo0YFFBI6H1z-5egJsOOoWF_iziiza0-bbPejNMc,69656
@@ -8,7 +8,7 @@ wolfhece/Model1D.py,sha256=snEmu8Uj2YGcp1ybPnly-4A389XRnuOujGduqInNcgw,477001
8
8
  wolfhece/PandasGrid.py,sha256=YIleVkUkoP2MjtQBZ9Xgwk61zbgMj4Pmjj-clVTfPRs,2353
9
9
  wolfhece/PyConfig.py,sha256=Y0wtSIFpAMYa7IByh7hbW-WEOVjNsQEduq7vhIYdZQw,16716
10
10
  wolfhece/PyCrosssections.py,sha256=igU_ELrg5VrHU6RNbF5tHxPyVImpR3xdpfopJYc7haw,114711
11
- wolfhece/PyDraw.py,sha256=Okx2Uv4zOeCxtYYAGx6T7SGZh4taamdCMvZ6QqruLxE,655901
11
+ wolfhece/PyDraw.py,sha256=3ZKNrXhdHYNjuFKV47l7vHFMcqWElQUxDuM8XX1R5zk,662179
12
12
  wolfhece/PyGui.py,sha256=DqMTDsC9GthnMdYOXvkMKfl5pNciExVzxG4ogptWf6g,146010
13
13
  wolfhece/PyGuiHydrology.py,sha256=sKafpOopBg50L5llZCI_fZtbebVTDtxvoRI6-osUwhg,14745
14
14
  wolfhece/PyHydrographs.py,sha256=1P5XAURNqCvtSsMQXhOn1ihjTpr725sRsZdlCEhhk6M,3730
@@ -16,14 +16,14 @@ wolfhece/PyPalette.py,sha256=k9b_95GYD0USQ8DS5zGXeZ577712U6772kmhEbJtlXw,35406
16
16
  wolfhece/PyParams.py,sha256=BgTAwxxq831rYEq_KLcFBX_upjiSUpVtfoQnCxCNWUI,100443
17
17
  wolfhece/PyPictures.py,sha256=m1kY0saW6Y9Q0bDCo47lW6XxDkBrbQG-Fd8uVn8G5ic,2514
18
18
  wolfhece/PyTranslate.py,sha256=4appkmNeHHZLFmUtaA_k5_5QL-5ymxnbVN4R2OblmtE,622
19
- wolfhece/PyVertex.py,sha256=WT2UprotBUEA6rvs8kXfPRscKrhIL4_pya2UylzoBJE,50385
20
- wolfhece/PyVertexvectors.py,sha256=lAJCjDgQNt7-3Lj2Z1LvNhNZ76Vp0f14GgDTXzdzpAA,336548
19
+ wolfhece/PyVertex.py,sha256=a56oY1NB45QnwARg96Tbnq-z-mhZKFkYOkFOO1lNtlk,51056
20
+ wolfhece/PyVertexvectors.py,sha256=V4YQDIN69yj1SZvYWxXXa3sUomyAeJq74c2xrHCkrhc,337191
21
21
  wolfhece/PyWMS.py,sha256=-wU-oWS5il1z702gYd90xHx5O7PvGNr9nb693oue_cI,31412
22
22
  wolfhece/RatingCurve.py,sha256=bUjIrQjvIjkD4V-z8bZmA6pe1ILtYNM0-3fT6YUY1RU,22498
23
23
  wolfhece/RatingCurveData.py,sha256=5UvnIm89BwqjnEbLCcY3CA8WoFd_xHJbooNy62fX5iY,57660
24
24
  wolfhece/RatingCurve_xml.py,sha256=cUjReVMHFKtakA2wVey5zz6lCgHlSr72y7ZfswZDvTM,33891
25
25
  wolfhece/ReadDataDCENN.py,sha256=vm-I4YMryvRldjXTvRYEUCxZsjb_tM7U9yj6OaPyD0k,1538
26
- wolfhece/Results2DGPU.py,sha256=kVEbP61PfcsMwyJT1pvXgUxpPfVVxlP_8saXWzsYAbg,27021
26
+ wolfhece/Results2DGPU.py,sha256=GTu7PMuwfH-xH8J7sVr6zq2CTkGKF24fG1ujEW62PtM,31598
27
27
  wolfhece/__init__.py,sha256=Gd96hBcXEFUUssyRgJAGC1vCmNR30S66m_80KjcXzGA,946
28
28
  wolfhece/_add_path.py,sha256=mAyu85CQHk0KgUI6ZizweeQiw1Gdyea9OEjGLC6lLA4,916
29
29
  wolfhece/analyze_poly.py,sha256=jsCUsd0ZJtTwSk5hekcXj8i0tGhH-WCfNkrBtPRJpCc,12715
@@ -39,7 +39,7 @@ wolfhece/gpuview.py,sha256=Jql8pLZ0PpvZ_ScT-U4jsXANZ9j4-m_RWhsLA2HISuQ,24544
39
39
  wolfhece/images_tiles.py,sha256=w5BX6kRqA0wW9TWyKrJUIRl-XyqHclq_kp5ET2VA0Sg,3227
40
40
  wolfhece/import_ascfiles.py,sha256=6Zl8qBR9c6VtyziookQ8YE9KC0GtW_J9WFt5ubyGp-s,4465
41
41
  wolfhece/ins.py,sha256=uUeLMS1n3GPnfJhxl0Z2l-UXpmPUgthuwct282OOEzk,36184
42
- wolfhece/irm_qdf.py,sha256=DMdDEAYbgYxApObm6w-dZbBmA8ec6PghBLXR2lUEZLc,27457
42
+ wolfhece/irm_qdf.py,sha256=MjDn6dCaJ6JgeH0RkMiHqWXLPeTZ_Fd7nH_7q5jvbQg,30269
43
43
  wolfhece/ismember.py,sha256=fkLvaH9fhx-p0QrlEzqa6ySO-ios3ysjAgXVXzLgSpY,2482
44
44
  wolfhece/lagrange_multiplier.py,sha256=0G-M7b2tGzLx9v0oNYYq4_tLAiHcs_39B4o4W3TUVWM,6567
45
45
  wolfhece/lifewatch.py,sha256=Q_Wy6VGkrD-xxY0fv3PKpT8U8oXxNMgiLlrAE3bMheo,16340
@@ -52,7 +52,7 @@ wolfhece/pyGui1D.py,sha256=9g7OS3YiKsqy--6y0cBD7x2gaqTTYFXWkxImpgnTA20,121937
52
52
  wolfhece/pybridges.py,sha256=bFAqjL4ColeJtwvyCPGQ8VllWoq1RbVWXxFrdfrvqm8,65954
53
53
  wolfhece/pydike.py,sha256=dRb6qGkqoTXjf107KcajcIk1F_FuMPaOZLSwixT3dgA,11196
54
54
  wolfhece/pylogging.py,sha256=4TI8hgBB65z-zpvU5Rfa2jkPXPhJaqXjHVPwbcdzTNc,4528
55
- wolfhece/pypolygons_scen.py,sha256=WubNPQEk4fC--4qIHZK6mJqQnRs4mAWUpmjRL8q33Sw,46069
55
+ wolfhece/pypolygons_scen.py,sha256=dG4zyJL_t5wgDqRfe-OqSH-fnxUt-su1H-tM3K3wHnc,46339
56
56
  wolfhece/pyshields.py,sha256=ymH393EQys2aZmh41ccJnWmmlF7dVa-eTY32jFgwK08,25269
57
57
  wolfhece/pyviews.py,sha256=zuZjWUptRDm1MTE1PN4Xj_qSITnojgDMG0LlFIBH3SE,13739
58
58
  wolfhece/pywalous.py,sha256=mWB7UxlYMIbPxNUDlONQEjcOOy9VSaRU9aYWZ5IFLu8,19164
@@ -60,13 +60,13 @@ wolfhece/rain_SPWMI.py,sha256=qCfcmF7LajloOaCwnTrrSMzyME03YyilmRUOqrPrv3U,13846
60
60
  wolfhece/textpillow.py,sha256=map7HsGYML_o5NHRdFg2s_TVQed_lDnpYNDv27MM0Vw,14130
61
61
  wolfhece/tools2d_dll.py,sha256=TfvvmyZUqEZIH0uHwUCJf0bdmCks_AiidDt23Unsp5w,13550
62
62
  wolfhece/tools_mpl.py,sha256=gQ3Jg1iuZiecmMqa5Eli2ZLSkttu68VXL8YmMDBaEYU,564
63
- wolfhece/wolf_array.py,sha256=avAoanXV6vcbOH4j2RjZuRmjarvbLE6MlXtKqHCWirs,517578
63
+ wolfhece/wolf_array.py,sha256=zPyJhWFkbwYpPndfIDiul0rX2tdOjVhv3ZU1Nf77_X8,519285
64
64
  wolfhece/wolf_hist.py,sha256=fTEb60Q4TEwobdZsRU4CFXAId1eOKdWAqF8lnF1xEWc,3590
65
65
  wolfhece/wolf_texture.py,sha256=8BcVSezLEogTHYmtA4yfSPzaw6UpAeYYySVaAowIKtQ,20858
66
66
  wolfhece/wolf_tiles.py,sha256=v-HohqaWuMYdn75XLnA22dlloAG90iwnIqrgnB0ASQ4,10488
67
67
  wolfhece/wolf_vrt.py,sha256=wbxXVN7TL9zgdyF79S-4e3pje6wJEAgBEfF_Y8kkzxs,14271
68
68
  wolfhece/wolf_zi_db.py,sha256=baE0niMCzybWGSvPJc5FNxo9ZxsGfU4p-FmfiavFHAs,12967
69
- wolfhece/wolfresults_2D.py,sha256=iRTrukQntMfy2XUc2v4deNNJTZdboqEb_QvSjsu6bjM,240103
69
+ wolfhece/wolfresults_2D.py,sha256=0c3akPDFETE0Uq0JiZ0FZEx6Rxiy9JB5s9P6sDei0E0,245735
70
70
  wolfhece/xyz_file.py,sha256=1pzLFmmdHca4yBVR9Jitic6N82rY28mRytGC1zMbY28,6615
71
71
  wolfhece/acceptability/Parallels.py,sha256=2wVkfJYor4yl7VYiAZiGGTFwtAab2z66ZfRtBliVweE,4088
72
72
  wolfhece/acceptability/__init__.py,sha256=hfgoPKLDpX7drN1Vpvux-_5Lfyc_7feT2C2zQr5v-Os,258
@@ -82,13 +82,13 @@ wolfhece/apps/WolfPython2.png,sha256=VMPV-M-3BCOg8zOJss8bXwPmzRYZy8Fo-XtnVYNgbaw
82
82
  wolfhece/apps/WolfPython3.png,sha256=3G84zx14HnlB9YXMY4VUAO7IB3eu7JFvi4Kpmc_4zBE,403298
83
83
  wolfhece/apps/__init__.py,sha256=OzzKItATWV0mDkz_LC2L3w5sgT2rt8ExXXCbR_FwvlY,24
84
84
  wolfhece/apps/acceptability.py,sha256=hMIxTRNQARTTWJJaakb6kEK9udNh-w64VDgxxezVk3k,790
85
- wolfhece/apps/check_install.py,sha256=-lDn9mVS9Pq9b2jWT0uo-hqM6_IXwr0UrW0rWIEMJ9E,3992
85
+ wolfhece/apps/check_install.py,sha256=DmyFC5Thz29UFQlokD7dbhlWPDeWstiukcBPuXofnsk,9753
86
86
  wolfhece/apps/check_version.py,sha256=Zze7ltzcM2ZzIGMwkcASIjapCG8CEzzW9kwNscA3NhM,1768
87
87
  wolfhece/apps/curvedigitizer.py,sha256=lEJJwgAfulrrWQc-U6ij6sj59hWN3SZl4Yu1kQxVzzA,9106
88
88
  wolfhece/apps/hydrometry.py,sha256=lhhJsFeb4zGL4bNQTs0co85OQ_6ssL1Oy0OUJCzhfYE,656
89
89
  wolfhece/apps/isocurrent.py,sha256=dagmGR8ja9QQ1gwz_8fU-N052hIw-W0mWGVkzLu6C7I,4247
90
90
  wolfhece/apps/splashscreen.py,sha256=EdGDN9NhudIiP7c3gVqj7dp4MWFB8ySizM_tpMnsgpE,3091
91
- wolfhece/apps/version.py,sha256=geYky3SvOR_9WIk1PDzpLRmFH1-xzccADG2iDWg8JCc,388
91
+ wolfhece/apps/version.py,sha256=cAahpCeFFjP_sz4qZ9K6UjX5aa6jztuXsxI_b-YmJ1A,388
92
92
  wolfhece/apps/wolf.py,sha256=mRnjYsUu4KIsRuamdQWAINFMuwN4eJgMo9erG-hkZ70,729
93
93
  wolfhece/apps/wolf2D.py,sha256=4z_OPQ3IgaLtjexjMKX9ppvqEYyjFLt1hcfFABy3-jU,703
94
94
  wolfhece/apps/wolf_logo.bmp,sha256=ruJ4MA51CpGO_AYUp_dB4SWKHelvhOvd7Q8NrVOjDJk,3126
@@ -227,7 +227,7 @@ wolfhece/mesh2d/config_manager.py,sha256=DcdxCIIs_dyC6ayJOBULeY364LONogL9PBaqBtC
227
227
  wolfhece/mesh2d/cst_2D_boundary_conditions.py,sha256=r43pHHdCtmNp5R2zh1Ckb7EzwQDf6C4YMLwRFTl4KMc,5006
228
228
  wolfhece/mesh2d/gpu_2d.py,sha256=GGOAW3c3c2CKtDyxSJJdX_1A1QfMFC5CU4MjzhAbR5o,25551
229
229
  wolfhece/mesh2d/simple_2d.py,sha256=wqENJwpUPxKQcpGIcymQXUj2KgkGWCVH6cs4Os9h9Gs,112581
230
- wolfhece/mesh2d/wolf2dprev.py,sha256=N50tmed97OgNATEp9DPEXQlcbqy3fjWkvAvyhmTsWmI,493023
230
+ wolfhece/mesh2d/wolf2dprev.py,sha256=oK9r94CYJaeOBSv4s4mkuhLA8rCsnrkjG2sGW_zR1x0,493127
231
231
  wolfhece/models/5_coul.pal,sha256=OI1UqcNIDBpJn2k_VDel__r-hKjjvdob0eqinGCI3QY,160
232
232
  wolfhece/models/6_coul.pal,sha256=z7NK2dg0tAQBUweRQV54dIwJbPM1U5y1AR2LLw19Idw,148
233
233
  wolfhece/models/7_coul.pal,sha256=XTnnUyCE8ONokScB2YzYDnSTft7E6sppmr7P-XwMsCE,205
@@ -268,6 +268,7 @@ wolfhece/report/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
268
268
  wolfhece/report/pdf.py,sha256=zrSSY1JPk59FxK9pFWQfhVKIQAoc_wjeTrXO3tSiEHo,1959
269
269
  wolfhece/report/reporting.py,sha256=JUEXovx_S4jpYkJEBU0AC-1Qw2OkkWyV3VAp6iOfSHc,19494
270
270
  wolfhece/report/simplesimgpu.py,sha256=kx9IMCr9afPwv9B3G5ADQfaIuHXuqTkgSjg-5bXVuqo,60738
271
+ wolfhece/report/tools.py,sha256=1s_xr-O4ttOg3QKqhLaVAdiXCb_mz7onb20dVW8Y99M,89340
271
272
  wolfhece/report/wolf_report.png,sha256=NoSV58LSwb-oxCcZScRiJno-kxDwRdm_bK-fiMsKJdA,592485
272
273
  wolfhece/scenario/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
273
274
  wolfhece/scenario/check_scenario.py,sha256=d-LWa_FxmPxTSc_H1lDHwqLB6TCqj1IUrRJhatfPMMA,5623
@@ -300,8 +301,8 @@ wolfhece/ui/wolf_multiselection_collapsiblepane.py,sha256=8PlMYrb_8jI8h9F0_EagpM
300
301
  wolfhece/ui/wolf_times_selection_comparison_models.py,sha256=ORy7fz4dcp691qKzaOZHrRLZ0uXNhL-LIHxmpDGL6BI,5007
301
302
  wolfhece/wintab/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
302
303
  wolfhece/wintab/wintab.py,sha256=8A-JNONV6ujgsgG3lM5Uw-pVgglPATwKs86oBzzljoc,7179
303
- wolfhece-2.2.23.dist-info/METADATA,sha256=Rol51FGEuEGXU8Pxmu4d5jXHO5uH1jOg_WrBNa3jNzU,2729
304
- wolfhece-2.2.23.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
305
- wolfhece-2.2.23.dist-info/entry_points.txt,sha256=Jr187pyvA3EeJiQLjZK9yo6mJX7IAn6ygZU9T8qF_gQ,658
306
- wolfhece-2.2.23.dist-info/top_level.txt,sha256=EfqZXMVCn7eILUzx9xsEu2oBbSo9liWPFWjIHik0iCI,9
307
- wolfhece-2.2.23.dist-info/RECORD,,
304
+ wolfhece-2.2.25.dist-info/METADATA,sha256=7ttBudLA0qZ4Tk2jrnIZa1P9chEa9UDTdIhIv7b0hc0,2729
305
+ wolfhece-2.2.25.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
306
+ wolfhece-2.2.25.dist-info/entry_points.txt,sha256=Jr187pyvA3EeJiQLjZK9yo6mJX7IAn6ygZU9T8qF_gQ,658
307
+ wolfhece-2.2.25.dist-info/top_level.txt,sha256=EfqZXMVCn7eILUzx9xsEu2oBbSo9liWPFWjIHik0iCI,9
308
+ wolfhece-2.2.25.dist-info/RECORD,,