wolfhece 2.1.28__py3-none-any.whl → 2.1.30__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
wolfhece/libs/WolfOGL.pyx CHANGED
@@ -1,8 +1,11 @@
1
1
  from libc.math cimport pow
2
+ from .verify_license import VerifyLicense
2
3
  from cython.view cimport array as cvarray
3
4
  cimport cython
4
5
  import numpy as np
5
6
  cimport numpy as np
7
+ import sys
8
+
6
9
  cdef extern from "GL\gl.h" nogil:
7
10
  enum: __gl_h_
8
11
  enum: GL_TYPEDEFS_2_0
@@ -1552,6 +1555,20 @@ cdef extern from "GL\gl.h" nogil:
1552
1555
  void glUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, GLfloat *value)
1553
1556
 
1554
1557
 
1558
+ def init():
1559
+ try:
1560
+ VerifyLicense.increment()
1561
+ except Exception as e:
1562
+ print(e)
1563
+ sys.exit(1)
1564
+
1565
+ def powermode(options):
1566
+ try:
1567
+ VerifyLicense.verify()
1568
+ except Exception as e:
1569
+ print(e)
1570
+ sys.exit(1)
1571
+
1555
1572
  @cython.boundscheck(False) # Deactivate bounds checking
1556
1573
  @cython.wraparound(False) # Deactivate negative indexing.
1557
1574
  cpdef mapColor(float zValue, double[:] colorValues, int paletteSize, double[:,:] colorPalette, int cstcmap):
@@ -1565,7 +1582,7 @@ cpdef mapColor(float zValue, double[:] colorValues, int paletteSize, double[:,:]
1565
1582
  if zValue <= colorValues[0]:
1566
1583
  return colorPalette[0,:]
1567
1584
  elif (zValue >= colorValues[paletteSize-1]):
1568
- return colorPalette[-1,:]
1585
+ return colorPalette[paletteSize-1,:]
1569
1586
  else:
1570
1587
  for i in range(1,paletteSize):
1571
1588
  if zValue <= colorValues[i]:
Binary file
@@ -0,0 +1,25 @@
1
+ 6
2
+ 1.0
3
+ 0
4
+ 128
5
+ 0
6
+ 2.0
7
+ 0
8
+ 255
9
+ 0
10
+ 3.0
11
+ 255
12
+ 128
13
+ 64
14
+ 4.0
15
+ 255
16
+ 128
17
+ 255
18
+ 5.0
19
+ 255
20
+ 0
21
+ 0
22
+ 6.0
23
+ 255
24
+ 0
25
+ 0
wolfhece/wolf_array.py CHANGED
@@ -4177,6 +4177,7 @@ class WolfArray(Element_To_Draw, header_wolf):
4177
4177
  :param mask_source: mask to link to the data
4178
4178
 
4179
4179
  """
4180
+ # wolfogl.powermode('ON')
4180
4181
 
4181
4182
  Element_To_Draw.__init__(self, idx, plotted, mapviewer, need_for_wx)
4182
4183
  header_wolf.__init__(self)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: wolfhece
3
- Version: 2.1.28
3
+ Version: 2.1.30
4
4
  Author-email: Pierre Archambeau <pierre.archambeau@uliege.be>
5
5
  License: AGPL-v3 License
6
6
  Project-URL: Homepage, https://uee.uliege.be/hece
@@ -13,6 +13,7 @@ Classifier: Topic :: Scientific/Engineering :: Physics
13
13
  Requires-Python: <3.11,>=3.10
14
14
  Description-Content-Type: text/markdown
15
15
  Requires-Dist: wxpython
16
+ Requires-Dist: cryptography
16
17
  Requires-Dist: jax
17
18
  Requires-Dist: triangle
18
19
  Requires-Dist: numpy
@@ -6,11 +6,11 @@ wolfhece/ManageParams.py,sha256=Wgt5Zh7QBtyiwTAltPHunSLqt4XuVuRH76GTUrXabS4,219
6
6
  wolfhece/Model1D.py,sha256=-cMz-ePSYzrKVVDidiDOz6cojEZ3y6u9gIb7RPwT6Y8,476593
7
7
  wolfhece/PyConfig.py,sha256=oGSL1WsLM9uinlNP4zGBLK3uHPmBfduUi7R-VtWuRFA,8034
8
8
  wolfhece/PyCrosssections.py,sha256=f4dNYRUGZKePruaaBiTcn5vlrw8TFTj9XwTDrdiF_uU,112450
9
- wolfhece/PyDraw.py,sha256=WMu6lRmC9JJkcRFoj-pkDpRrkaEWRyOMHer3zwZ42Qs,390207
9
+ wolfhece/PyDraw.py,sha256=rF_TaicOrLMk122Mflc82kyz0DoJ-ldWgeYrMkjNIOY,390213
10
10
  wolfhece/PyGui.py,sha256=8UWyaYwiHD9juDbPs__pmCXIDoM8r9_bGKLf29xVGZI,103140
11
11
  wolfhece/PyGuiHydrology.py,sha256=r8kcY2eGAQzSwVtLpyMUiBL5xBpMBsi7ovs0PgStGWw,14648
12
12
  wolfhece/PyHydrographs.py,sha256=GKK8U0byI45H9O_e4LAOOi7Aw0Tg7Q0Lx322stPg5IQ,3453
13
- wolfhece/PyPalette.py,sha256=I4dQrHg4asiKc9YNmnSgtrtokOlboHcGgJLGd3Qq7_I,25539
13
+ wolfhece/PyPalette.py,sha256=-F3E2dyGNMHCZa3xTd_StNYOQZv9fPGO051Z0TtvEqo,25885
14
14
  wolfhece/PyParams.py,sha256=R3AWcb7Mhixwnw4iONSN4gk1DOXKcJR2lj7jaIml4B8,97085
15
15
  wolfhece/PyPictures.py,sha256=-mJB0JL2YYiEK3D7_ssDkvYiMWK4ve9kXhozQXNeSx8,2216
16
16
  wolfhece/PyTranslate.py,sha256=4appkmNeHHZLFmUtaA_k5_5QL-5ymxnbVN4R2OblmtE,622
@@ -48,7 +48,7 @@ wolfhece/rain_SPWMI.py,sha256=YqsF-yFro3y_a6MfVRFfr-Rxi7NR1gl_i8VX7scmzes,13548
48
48
  wolfhece/test_Results2DGPU.py,sha256=NOJ_hFXrcLSQXS1dtsqXRQltqIZtDSHMz_EgAJ2_FHU,307
49
49
  wolfhece/textpillow.py,sha256=zEfLrKhfCDyMaVuQOUjHqz6MGKeQ4aewMxOsWi5-wKI,13832
50
50
  wolfhece/tools_mpl.py,sha256=q8Yc4aukPPiUcEzREvZRM_em67XqXaahdoaNt0DETfE,266
51
- wolfhece/wolf_array.py,sha256=ViEJkKxOBLjiPFZy01wcC7q4djBQcgl5ptRXWAMfcJ0,355676
51
+ wolfhece/wolf_array.py,sha256=lgo1SQaiEZe7yF1vUuH1SyKsK6lT2ccT0WM7cGTxhDg,355711
52
52
  wolfhece/wolf_hist.py,sha256=JpRXvzJLUP-RkSkvth3DQWglgTMFI2ZEUDb4RYOfeeI,3284
53
53
  wolfhece/wolf_texture.py,sha256=llQ7aV8scWXIkhpri9XjaPejzoBJsGfsln2ZnlRbFkU,16270
54
54
  wolfhece/wolf_tiles.py,sha256=F2JsJHdAP8fIffNJdG_J26bonCIRtIwMmxKFqdSCRDA,10088
@@ -58,11 +58,10 @@ wolfhece/wolfresults_2D.py,sha256=wF-wIyqpTrUJX_fT-QCVuNxLZCgUsqK9ptGz8izpyIQ,16
58
58
  wolfhece/xyz_file.py,sha256=aQOcTHkHRhXHxL_WxTHwzygp6e47San7SHSpxKQU0dw,5457
59
59
  wolfhece/acceptability/Parallels.py,sha256=wpCdwkqR6PAFeRkV5TvSSL33Vf368j-bvYcl7D1Y-sc,3695
60
60
  wolfhece/acceptability/__init__.py,sha256=hfgoPKLDpX7drN1Vpvux-_5Lfyc_7feT2C2zQr5v-Os,258
61
- wolfhece/acceptability/acceptability.py,sha256=pXGsV8Rga-YtILhfsE90PjVfsbRl_z7RXLB8537dSfA,21882
62
- wolfhece/acceptability/acceptability1.py,sha256=rf1Bu2JuyOPwMxvez7z5vCXrePAV486hyVM5g1f40g4,13045
61
+ wolfhece/acceptability/acceptability.py,sha256=xhLwqVqUjlBm29yQK23cr9pr87Z5PB3Lzr1Kw8DA5D4,24145
63
62
  wolfhece/acceptability/acceptability_gui.py,sha256=zzbHd_e90fLhbgrdBlnWmBWBO8ZBwb8vikhl-2Rdy0M,12020
64
63
  wolfhece/acceptability/cli.py,sha256=pIh9hIbM5RQFh3EBQJB2jWJ8F2M4l-D6qGoewXROE1M,7102
65
- wolfhece/acceptability/func.py,sha256=E2zPgFRm3x5u6PDt6y8nUCyXL5eCHzbwHMIQoj8Bg8U,58238
64
+ wolfhece/acceptability/func.py,sha256=z4CI2OYtVa1vfC_v5dEhgG3uA1IijppfwewJMBDPt6g,61192
66
65
  wolfhece/apps/ManageParams.py,sha256=heg5L4fMn0ettR7Bad_Q680o_JWnTbe3WFkL_9IziAk,312
67
66
  wolfhece/apps/Optimisation_hydro.py,sha256=mHazBazTUGyxPbHPXhaQim8vqIeOOuKPjH0B48VWduA,374
68
67
  wolfhece/apps/WolfPython.png,sha256=K3dcbeZUiJCFNwOAAlGMaRGLJ56yM8WD2I_0bk0xT1g,104622
@@ -72,8 +71,8 @@ wolfhece/apps/__init__.py,sha256=OzzKItATWV0mDkz_LC2L3w5sgT2rt8ExXXCbR_FwvlY,24
72
71
  wolfhece/apps/check_install.py,sha256=jrKR-njqnpIh6ZJqvP6KbDUPVCfwTNQj4glQhcyzs9o,630
73
72
  wolfhece/apps/curvedigitizer.py,sha256=avWERHuVxPnJBOD_ibczwW_XG4vAenqWS8W1zjhBox8,4898
74
73
  wolfhece/apps/isocurrent.py,sha256=4XnNWPa8mYUK7V4zdDRFrHFIXNG2AN2og3TqWKKcqjY,3811
75
- wolfhece/apps/splashscreen.py,sha256=LkEVMK0eCc84NeCWD3CGja7fuQ_k1PrZdyqD3GQk_8c,2118
76
- wolfhece/apps/version.py,sha256=QLSk_f340_pnubYC3LzPucHpjfHthXJURv8frE1CoG0,388
74
+ wolfhece/apps/splashscreen.py,sha256=EjEjZGuWV-8ZfHhnFH4XLrrtB-YpzPDVhFzRrjgFUzI,2624
75
+ wolfhece/apps/version.py,sha256=DOnhV0acM8wlohylXhs6wwbgGzeJWQwuSC3SgXqFsRg,388
77
76
  wolfhece/apps/wolf.py,sha256=gqfm-ZaUJqNsfCzmdtemSeqLw-GVdSVix-evg5WArJI,293
78
77
  wolfhece/apps/wolf2D.py,sha256=gWD9ee2-1pw_nUxjgRaJMuSe4kUT-RWhOeoTt_Lh1mM,267
79
78
  wolfhece/apps/wolf_logo.bmp,sha256=ruJ4MA51CpGO_AYUp_dB4SWKHelvhOvd7Q8NrVOjDJk,3126
@@ -173,8 +172,8 @@ wolfhece/lazviewer/viewer/viewer.exe,sha256=pF5nwE8vMWlEzkk-SOekae9zpOsPhTWhZbqa
173
172
  wolfhece/lazviewer/viewer/viewer.py,sha256=8_MQCaQOS0Z_oRPiGoRy1lq-aCirReX3hWEBjQID0ig,24665
174
173
  wolfhece/libs/MSVCP140.dll,sha256=2GrBWBI6JFuSdZLIDMAg_qKcjErdwURGbEYloAypx3o,565640
175
174
  wolfhece/libs/WolfDll.dll,sha256=E8SeV0AHVXW5ikAQuVtijqIvaYx7UIMeqvnnsmTMCT8,132934144
176
- wolfhece/libs/WolfOGL.c,sha256=U5MoH32x0_ATheof5svcZ30ATQPayEo1UYl4v64FsPc,1721506
177
- wolfhece/libs/WolfOGL.pyx,sha256=ECS7mYga0-FYJ56lOY9hQTL1x7ir2449HAZtDuyFoHI,79947
175
+ wolfhece/libs/WolfOGL.c,sha256=Dm_4cI9NHFAMhs4cskjcQStpeIYjedOrHPqlcHeQVAk,1753700
176
+ wolfhece/libs/WolfOGL.pyx,sha256=YmA3NPLt9zPo-UarGnz33dFdSmAc2Vaul5I1_0EWYKo,80278
178
177
  wolfhece/libs/api-ms-win-crt-heap-l1-1-0.dll,sha256=r0euvgZa8vBFoZ8g7H5Upuc8DD6aUQimMJWnIyt1OBo,19720
179
178
  wolfhece/libs/api-ms-win-crt-math-l1-1-0.dll,sha256=ol0GVN6wzqGu8Ym6IXTQ8TvfUvCY06nsNtFeS_swxJk,27912
180
179
  wolfhece/libs/api-ms-win-crt-runtime-l1-1-0.dll,sha256=NxpEq5FhSowm0Vm-uHKntD9WnLX6yK2pms6Y8mSjtQM,23304
@@ -201,7 +200,8 @@ wolfhece/libs/svml_dispmd.dll,sha256=GdwVZSC_XYiNpVVUqTqxAcYAf4zP6tr-E1N-3skVS7s
201
200
  wolfhece/libs/vcomp100.dll,sha256=NKvXc8hc4MrFa9k8ErALA6OmldGfR3zidaZPCZhMVJI,57168
202
201
  wolfhece/libs/vcruntime140.dll,sha256=YYMpkONk3KW_osYdkw8ArKrm0aqjEwOSQDRVrpoRJaU,89880
203
202
  wolfhece/libs/vcruntime140_1.dll,sha256=FVS1gClo_bJwWmfLthWF6VYLnkKdBDpap0LvPJu_tr8,37240
204
- wolfhece/libs/wolfogl.cp310-win_amd64.pyd,sha256=fKAeBkH1xH1rUZfjG9tHqf8rnlI-7CMq7ZPnoeSlXbw,280064
203
+ wolfhece/libs/verify_license.cp310-win_amd64.pyd,sha256=-lobNXvqiN7vNl7zzrZWOBPsGW13qT77JWiSy2D3FCk,92672
204
+ wolfhece/libs/wolfogl.cp310-win_amd64.pyd,sha256=K6HTq5bFSRv9y-k6wbdO4qMPJcZQKvozCYThsltx6Yk,286720
205
205
  wolfhece/libs/wolfpy.cp310-win_amd64.pyd,sha256=6omqEaxmQll-Gg24e90wVomAB9rO_tyyOES2FewXn58,36457472
206
206
  wolfhece/libs/zlib1.dll,sha256=E9a0e62VgmG1A8ohZzhVCmmfGtbyXxXu4aFeADTNJ30,77824
207
207
  wolfhece/libs/GL/gl.h,sha256=IhsS_fOLa8GW9MpiLZebe9QYRy6uIB_qK_uQMWMOoeg,46345
@@ -234,6 +234,7 @@ wolfhece/models/diff3.pal,sha256=qk-yGgJr_FHdW7p7i93GFsH9ClT0dl5nqa9G1lLh7Z0,50
234
234
  wolfhece/models/red.pal,sha256=W6oeIjDCoGCsJDZPH2K4jfyfPmCMlH9rfRi4PTs-n28,33
235
235
  wolfhece/models/shields.pal,sha256=TwPhfaly2j3ZRM5ahlz7xH19NArZlalxYNy1L_UnJoA,166
236
236
  wolfhece/models/shields_cst.pal,sha256=zUGFI6HiL0bsHeOzcWNih3F9cxXKXLLZYA5rtqRbzcs,90
237
+ wolfhece/models/vulnerability.pal,sha256=Fevrc_9owywLhbPMBunXDcrGXPJhARo9iSV1eOq3roA,106
237
238
  wolfhece/models/walous_niv1.pal,sha256=mHMjCB-ja47mV3ZsvDOhS2CEK8YN6ewOkf1W7l7JQ8k,138
238
239
  wolfhece/models/walous_niv2.pal,sha256=B5wt5-O88dpaiA6yR4uriOy0tfDVU_cms0Xr6Dw9ZGg,377
239
240
  wolfhece/models/waterdepths.pal,sha256=8rcQfuZOeLKzYv5sARPkhpvZYc1OToj3ZukcbuRUgIY,136
@@ -279,8 +280,8 @@ wolfhece/ui/wolf_multiselection_collapsiblepane.py,sha256=yGbU_JsF56jsmms0gh7mxa
279
280
  wolfhece/ui/wolf_times_selection_comparison_models.py,sha256=wCxGRnE3kzEkWlWA6-3X8ADOFux_B0a5QWJ2GnXTgJw,4709
280
281
  wolfhece/wintab/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
281
282
  wolfhece/wintab/wintab.py,sha256=8A-JNONV6ujgsgG3lM5Uw-pVgglPATwKs86oBzzljoc,7179
282
- wolfhece-2.1.28.dist-info/METADATA,sha256=h_mkaZJwq29PG6UesnWcQYnBewET8t47eBJvEMI3WJQ,2327
283
- wolfhece-2.1.28.dist-info/WHEEL,sha256=YiKiUUeZQGmGJoR_0N1Y933DOBowq4AIvDe2-UIy8E4,91
284
- wolfhece-2.1.28.dist-info/entry_points.txt,sha256=MAG6NrF64fcxiVNb2g1JPYPGcn9C0HWtqqNurB83oX0,330
285
- wolfhece-2.1.28.dist-info/top_level.txt,sha256=EfqZXMVCn7eILUzx9xsEu2oBbSo9liWPFWjIHik0iCI,9
286
- wolfhece-2.1.28.dist-info/RECORD,,
283
+ wolfhece-2.1.30.dist-info/METADATA,sha256=3IcGhCz-MaGj4jP2HATNkudS-Ae869L61Ec7nyjt5rE,2356
284
+ wolfhece-2.1.30.dist-info/WHEEL,sha256=rWxmBtp7hEUqVLOnTaDOPpR-cZpCDkzhhcBce-Zyd5k,91
285
+ wolfhece-2.1.30.dist-info/entry_points.txt,sha256=MAG6NrF64fcxiVNb2g1JPYPGcn9C0HWtqqNurB83oX0,330
286
+ wolfhece-2.1.30.dist-info/top_level.txt,sha256=EfqZXMVCn7eILUzx9xsEu2oBbSo9liWPFWjIHik0iCI,9
287
+ wolfhece-2.1.30.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (71.0.2)
2
+ Generator: setuptools (71.0.4)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,211 +0,0 @@
1
- # import pandas as pd
2
- # import Parallels
3
- # import os
4
- # import func
5
- # from osgeo import gdal
6
- # import fiona
7
- # import glob
8
- # import numpy as np
9
- # import geopandas as gpd
10
-
11
- # def Vulnerability2(main_dir, resolution):
12
- # os.chdir(main_dir)
13
- # print("STEP2: convert vectors to raster based on their vulnerability values")
14
- # layer = fiona.listlayers(os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg")
15
- # database = os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg"
16
- # extent = os.getcwd()+"//INPUT//STUDY_AREA//Bassin_SA.shp"
17
- # pixel=resolution
18
- # attribute = "Vulne"
19
- # parallel_v2r(layer, database, extent, attribute, pixel)
20
- # attribute = "Code"
21
- # parallel_v2r(layer, database, extent, attribute, pixel)
22
-
23
- # def base_data_creation(main_dir, Original_gdb, Study_Area, CaPa_Walloon, PICC_Walloon):
24
- # #Change the directory
25
- # os.chdir(main_dir)
26
- # # Step 1, Clip GDB data
27
- # file_path=os.getcwd()+"//INPUT//DATABASE//"+str(Original_gdb)
28
- # Study_Area=os.getcwd()+"//INPUT//STUDY_AREA//"+str(Study_Area)
29
- # data_type="OpenfileGDB"
30
- # number_procs = 8
31
- # output_gpkg = os.getcwd()+"//TEMP//DATABASES//SA_database.gpkg"
32
- # paths = pd.read_csv(os.getcwd()+"//INPUT//CSVs//Vulnerability_matrix_new1.csv", sep=",", encoding='latin-1')
33
- # paths["subfolder"]=None
34
- # x, y = paths.shape
35
- # for i in range(x):
36
- # a=paths["Path"][i].split('/')
37
- # paths["subfolder"][i]=a[1]
38
- # layers = paths["subfolder"].to_list()
39
- # Parallels.parallel_gpd_clip(layers, file_path, Study_Area, output_gpkg, data_type, number_procs)
40
- # # Step 2, Clip Cadaster data
41
- # file_path=os.getcwd()+"//INPUT//DATABASE//"+str(CaPa_Walloon)
42
- # data_type='GPKG'
43
- # number_procs = 8
44
- # output_gpkg = os.getcwd()+"//TEMP//DATABASES//SA_CaPa.gpkg"
45
- # layers = ["CaBu", "CaPa"]
46
- # Parallels.parallel_gpd_clip(layers, file_path, Study_Area, output_gpkg, data_type, number_procs)
47
- # # Step 3, Clip PICC data
48
- # file_path=os.getcwd()+"//INPUT//DATABASE//"+str(PICC_Walloon)
49
- # data_type='OpenfileGDB'
50
- # number_procs = 8
51
- # output_gpkg = os.getcwd()+"//TEMP//DATABASES//SA_PICC.gpkg"
52
- # layers=['CONSTR_BATIEMPRISE']
53
- # Parallels.parallel_gpd_clip(layers, file_path, Study_Area, output_gpkg, data_type, number_procs)
54
- # #Step 4, create database based on changes in report
55
- # input_database=os.getcwd()+"//TEMP//DATABASES//SA_database.gpkg"
56
- # layers = fiona.listlayers(os.getcwd()+"//TEMP//DATABASES//SA_database.gpkg")
57
- # walous = ["WALOUS_2018_LB72_112", "WALOUS_2018_LB72_31", "WALOUS_2018_LB72_32", "WALOUS_2018_LB72_331",
58
- # "WALOUS_2018_LB72_332", "WALOUS_2018_LB72_333", "WALOUS_2018_LB72_34"]
59
- # data_type="GPKG"
60
- # PICC = gpd.read_file(os.getcwd()+"//TEMP//DATABASES//SA_PICC.gpkg", driver="GPKG", layer = 'CONSTR_BATIEMPRISE')
61
- # CaPa = gpd.read_file(os.getcwd()+"//TEMP//DATABASES//SA_CaPa.gpkg", driver='GPKG', layer= 'CaPa')
62
- # output_database = os.getcwd()+"//TEMP//DATABASES//SA_database_final.gpkg"
63
- # for i in range(len(layers)):
64
- # print(i)
65
- # func.data_modification(input_database, data_type, layers[i], walous, output_database, PICC, CaPa)
66
- # func.shp_to_raster(os.getcwd()+"//INPUT//DATABASE//CE_IGN_TOP10V/CE_IGN_TOP10V.shp", os.getcwd()+"//TEMP//DATABASES//CE_IGN_TOP10V.tiff")
67
- # #Pre-processing for Vulnerability
68
- # layers = fiona.listlayers(os.getcwd()+"//TEMP//DATABASES//SA_database_final.gpkg")
69
- # paths = pd.read_csv(os.getcwd()+"//INPUT//CSVs//Vulnerability_matrix_new1.csv", sep=",", encoding='latin-1')
70
- # paths[["name", "name1"]] = paths["Path"].str.split("/", expand=True)
71
- # names = paths["name1"].to_list()
72
- # list_shp = list(set(names).difference(layers))
73
- # print("Excluded layers due to no features in shapefiles:")
74
- # print(list_shp)
75
- # paths1 =paths[~paths["name1"].isin(list_shp)]
76
- # a,b = paths1.shape
77
- # print("STEP1: Saving the database for Vulnerability with attributes Vulne and Code")
78
- # for i in range(a):
79
- # shp = gpd.read_file(os.getcwd()+"//TEMP//DATABASES//SA_database_final.gpkg",
80
- # driver='GPKG',
81
- # layer=paths1["name1"][i])
82
- # x, y = shp.shape
83
- # if x > 0:
84
- # shp["Path"] = paths["name1"][i]
85
- # shp["Vulne"] = paths["Vulne"][i]
86
- # shp["Code"] = paths["Code"][i]
87
- # shp = shp[["geometry", "Path", "Vulne","Code"]]
88
- # shp.to_file(os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg",
89
- # driver='GPKG',
90
- # layer=paths["name1"][i])
91
- # print("STEP2: convert vectors to raster based on their vulnerability values")
92
- # layer = fiona.listlayers(os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg")
93
- # database = os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg"
94
- # extent = os.getcwd()+"//INPUT//STUDY_AREA//Bassin_SA.shp"
95
- # attribute = "Vulne"
96
- # Parallels.parallel_v2r(layer, database, extent, attribute)
97
- # attribute = "Code"
98
- # Parallels.parallel_v2r(layer, database, extent, attribute)
99
- # #
100
- # def Vulnerability(main_dir,sc,AOI):
101
- # print("Starting VULNERABILITY computations at 1 m resolution")
102
- # os.chdir(main_dir)
103
- # # layers = fiona.listlayers(os.getcwd()+"//TEMP//DATABASES//SA_database_final.gpkg")
104
- # # # load the paths from csv with Vulne values
105
- # # paths = pd.read_csv(os.getcwd()+"//INPUT//CSVs//Vulnerability_matrix_new1.csv", sep=",", encoding='latin-1')
106
- # # paths[["name", "name1"]] = paths["Path"].str.split("/", expand=True)
107
- # # #names = paths["name1"].to_list()
108
- # # # loop for loading all shapefiles with the names matching with vulnerability matrix
109
- # # names = paths["name1"].to_list()
110
- # # list_shp = list(set(names).difference(layers))
111
- # # print("Excluded layers due to no features in shapefiles:")
112
- # # print(list_shp)
113
- # # paths1 =paths[~paths["name1"].isin(list_shp)]
114
- # # a,b = paths1.shape
115
- # # print("STEP1: Saving the database for Vulnerability with attributes Vulne and Code")
116
- # # for i in range(a):
117
- # # shp = gpd.read_file(os.getcwd()+"//TEMP//DATABASES//SA_database_final.gpkg",
118
- # # driver='GPKG',
119
- # # layer=paths1["name1"][i])
120
- # # x, y = shp.shape
121
- # # if x > 0:
122
- # # shp["Path"] = paths["name1"][i]
123
- # # shp["Vulne"] = paths["Vulne"][i]
124
- # # shp["Code"] = paths["Code"][i]
125
- # # shp = shp[["geometry", "Path", "Vulne","Code"]]
126
- # # shp.to_file(os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg",
127
- # # driver='GPKG',
128
- # # layer=paths["name1"][i])
129
- # # print("STEP2: convert vectors to raster based on their vulnerability values")
130
- # # layer = fiona.listlayers(os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg")
131
- # # database = os.getcwd()+"//TEMP//DATABASES//SA_database_final_V.gpkg"
132
- # # extent = os.getcwd()+"//INPUT//STUDY_AREA//Bassin_SA.shp"
133
- # # attribute = "Vulne"
134
- # # Parallels.parallel_v2r(layer, database, extent, attribute)
135
- # # attribute = "Code"
136
- # # Parallels.parallel_v2r(layer, database, extent, attribute)
137
- # bu = glob.glob(os.getcwd()+"//INPUT//REMOVED_BUILDINGS//Scenario"+str(sc)+"//*.shp")
138
- # if len(bu)>0:
139
- # bu_PICC = os.getcwd()+"//INPUT//REMOVED_BUILDINGS//Scenario"+str(sc)+"//Removed_Buildings_PICC.shp"
140
- # bu_CaBu = os.getcwd()+"//INPUT//REMOVED_BUILDINGS//Scenario"+str(sc)+"//Removed_Buildings_CaBu.shp"
141
- # func.shp_to_raster(bu_PICC, os.getcwd()+"//TEMP//REMOVED_BUILDINGS//Scenario"+str(sc)+"//Removed_Buildings_PICC.tiff")
142
- # func.shp_to_raster(bu_CaBu, os.getcwd()+"//TEMP//REMOVED_BUILDINGS//Scenario"+str(sc)+"//Removed_Buildings_CaBu.tiff")
143
- # else:
144
- # print("No buildings were removed in water depth analysis OR No shapefiles in INPUT/REMOVED_BUILDINGS/Scenario"+str(sc))
145
- # print("STEP3: Generate Vulnerability rasters 1m")
146
- # attribute="Vulne"
147
- # Output_tiff = os.getcwd()+"//TEMP//VULNERABILITY//Scenario"+str(sc)+"//Vulnerability_SA.tiff"
148
- # func.Comp_Vulnerability(Output_tiff, attribute,sc)
149
- # attribute = "Code"
150
- # Output_tiff = os.getcwd()+"//TEMP//VULNERABILITY//Scenario"+str(sc)+"//Vulnerability_Code_SA.tiff"
151
- # print(Output_tiff)
152
- # func.Comp_Vulnerability(Output_tiff, attribute,sc)
153
- # print("STEP4: Save Vulnerability files for the area of interest")
154
- # func.match_vuln_modrec(os.getcwd() + "//TEMP//DATABASES//CE_IGN_TOP10V/CE_IGN_TOP10V.tiff",
155
- # os.getcwd() + "//TEMP//Masked/River_extent.tiff", os.getcwd()+"//INPUT//WATER_DEPTH//Scenario"+str(sc)+"//T1000.tif")
156
- # func.match_vuln_modrec(os.getcwd() + "//TEMP//VULNERABILITY//Scenario"+str(sc)+"//Vulnerability_SA.tiff",
157
- # os.getcwd() + "//OUTPUT//VULNERABILITY//Scenario"+str(sc)+"Vulnerability_"+str(AOI)+".tiff", os.getcwd()+"//INPUT//WATER_DEPTH//Scenario"+str(sc)+"//T1000.tif")
158
- # func.match_vuln_modrec(os.getcwd() + "//TEMP//VULNERABILITY//Scenario"+str(sc)+"//Vulnerability_Code_SA.tiff",
159
- # os.getcwd() + "//OUTPUT//VULNERABILITY//Scenario"+str(sc)+"//Vulnerability_Code"+str(AOI)+".tiff", os.getcwd()+"//INPUT//WATER_DEPTH//Scenario"+str(sc)+"//T1000.tif")
160
-
161
- # def Vulnerability2(main_dir, attribute):
162
- # os.chdir(main_dir)
163
- # Output_tiff = os.getcwd()+"//OUTPUT//VULNERABILITY//Vulnerability_Code.tiff"
164
- # func.Comp_Vulnerability(Output_tiff, attribute)
165
- # #func.match_vuln_modrec(os.getcwd() + "//TEMP//DATABASES//CE_IGN_TOP10V/CE_IGN_TOP10V.tiff",
166
- # # os.getcwd() + "//TEMP//Masked/River_extent.tiff")
167
- # #func.match_vuln_modrec(os.getcwd() + "//OUTPUT//VULNERABILITY//Vulnerability.tiff",
168
- # # os.getcwd() + "//TEMP//Masked/Vulnerability_extent.tiff")
169
- # #func.match_vuln_modrec(os.getcwd() + "//OUTPUT//VULNERABILITY//Vulnerability_Code.tiff",
170
- # # os.getcwd() + "//TEMP//Masked/Vulnerability_Code_extent.tiff")
171
-
172
- # def acceptability(main_dir,area_of_interest):
173
- # os.chdir(main_dir)
174
- # Vulne = gdal.Open(os.getcwd() + "//TEMP//Masked/Vulnerability_extent.tiff")
175
- # Vulne = Vulne.GetRasterBand(1).ReadAsArray()
176
- # riv = gdal.Open(os.getcwd() + "//TEMP//Masked/River_extent.tiff")
177
- # riv = riv.GetRasterBand(1).ReadAsArray()
178
- # list1 = ["2", "5", "15", "25", "50", "100", "1000"]
179
- # # sample for saving the raster
180
- # # mod1 = rasterio.open("G://00_GT_Resilience//Simulations_Theux//Scen_"+str(scen)+"//Theux_1.3K_sim_T1000_h.tif")
181
- # Qfile = pd.read_csv(os.getcwd() + "//INPUT//CSVs//Book2.csv")
182
- # # run vul-mod for 4 return intervals
183
- # x = glob.glob(os.getcwd() + "//INPUT//WATER_DEPTH//*.tiff")
184
- # Area_interest = area_of_interest
185
- # for i in range(len(list1)):
186
- # mod = gdal.Open(x[i])
187
- # mod = mod.GetRasterBand(1).ReadAsArray()
188
- # mod[mod == 0] = np.nan
189
- # mod[riv == 1] = np.nan
190
- # func.VulMod(Qfile, mod, Vulne, list1[i], Area_interest)
191
- # ax=locals()
192
- # list1=["2","5", "15","25", "50", "100", "1000"]
193
- # qs= glob.glob(os.getcwd()+"//TEMP//Q_files//*.tiff")
194
- # for i in range(len(list1)):
195
- # ax["vm"+str(i)] = gdal.Open(qs[i])
196
- # ax["vm"+str(i)] = ax["vm"+str(i)].GetRasterBand(1).ReadAsArray()
197
- # #Remove nans from other Q files for final acceptability computation
198
- # for i in range(len(list1)-1):
199
- # ax["vm"+str(i)+str(1)] = np.nan_to_num(ax["vm"+str(i)], nan=0)
200
- # ax["vm"+str(i)+str(1)][np.isnan(ax["vm"+str(len(list1))])] = np.nan
201
- # pond = pd.read_csv(os.getcwd()+"//INPUT//CSVs//Ponderation.csv")
202
- # comb = vm6*float(pond.iloc[6,1]) + vm51*float(pond.iloc[5,1]) + vm41*float(pond.iloc[4,1]) + vm31*float(pond.iloc[3,1]) + vm21*float(pond.iloc[2,1]) + vm11*float(pond.iloc[1,1]) +vm01*float(pond.iloc[0,1])
203
- # dst_filename = os.getcwd()+"//OUTPUT//ACCEPTABILITY//Acceptability"+str(area_of_interest)+".tiff"
204
- # y_pixels, x_pixels = comb.shape # number of pixels in x
205
- # driver = gdal.GetDriverByName('GTiff')
206
- # dataset = driver.Create(dst_filename, x_pixels, y_pixels, gdal.GDT_Float32, 1, options=["COMPRESS=LZW"])
207
- # dataset.GetRasterBand(1).WriteArray(comb.astype(np.float32))
208
- # input_raster = os.getcwd()+"//OUTPUT//ACCEPTABILITY//Acceptability"+str(area_of_interest)+".tiff"
209
- # output_raster = os.getcwd()+"//OUTPUT//ACCEPTABILITY//Acceptability"+str(area_of_interest)+"_100m.tiff"
210
- # Agg = gdal.Warp(output_raster, input_raster, xRes=100, yRes=100, resampleAlg='Average')
211
- # Agg = None