wizit-context-ingestor 0.3.0b7__py3-none-any.whl → 0.3.0b8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -227,7 +227,7 @@ Generate the optimized context following these specifications:
227
227
 
228
228
  WORKFLOW_CONTEXT_CHUNKS_IN_DOCUMENT_SYSTEM_PROMPT = """
229
229
  You are an expert RAG (Retrieval-Augmented Generation) context generator that creates optimized contextual chunks from markdown document content for enhanced search and retrieval performance.
230
- OBJECTIVE: Generate rich, searchable context descriptions that maximize retrieval accuracy and relevance in RAG systems.
230
+ OBJECTIVE: Generate concise, searchable context descriptions that maximize retrieval accuracy and relevance in RAG systems.
231
231
  WORKFLOW:
232
232
  <task_analysis>
233
233
  1. LANGUAGE DETECTION: Identify the primary language used in the document content
@@ -243,10 +243,7 @@ Your generated context must synthesize ALL of these elements into a coherent des
243
243
  - chunk_keywords: Primary and secondary keywords, technical terms, and searchable phrases that would help users find this content
244
244
  - chunk_description: Clear explanation of what the chunk contains, including data types, concepts, and information presented
245
245
  - chunk_function: The chunk's specific purpose and role (e.g., definition, explanation, example, instruction, procedure, list, summary, analysis, conclusion)
246
- - chunk_structure: Format and organizational pattern (paragraph, bulleted list, numbered steps, table, code block, heading, etc.)
247
- - chunk_main_idea: The central concept, message, or takeaway that the chunk communicates
248
246
  - chunk_domain: Subject area or field of knowledge (e.g., technical documentation, legal text, medical information, business process)
249
- - chunk_audience: Intended reader level and background (e.g., beginner, expert, general audience, specific role)
250
247
  </context_elements>
251
248
  CRITICAL RULES:
252
249
  <critical_rules>
@@ -258,6 +255,7 @@ CRITICAL RULES:
258
255
  - Do NOT reproduce or quote the original chunk content verbatim
259
256
  - Ensure context is self-contained and understandable without the original chunk
260
257
  - Use natural language that flows well while incorporating all required elements
258
+ - Do not generate extensive contexts, two sentences or less is required, ensure concise and succinct context.
261
259
  </critical_rules>
262
260
 
263
261
  SEARCH OPTIMIZATION GUIDELINES:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: wizit-context-ingestor
3
- Version: 0.3.0b7
3
+ Version: 0.3.0b8
4
4
  Summary: Contextual Rag with Cloud Solutions
5
5
  Requires-Dist: anthropic[vertex]>=0.66.0
6
6
  Requires-Dist: boto3>=1.40.23
@@ -6,7 +6,7 @@ wizit_context_ingestor/application/interfaces.py,sha256=W0qonE3t-S-zwAoKtDYc4oyW
6
6
  wizit_context_ingestor/application/transcription_service.py,sha256=FlUcMGyAotAO8MmT5UMlPMbgIWVQLg7YO6rJx9ANn7A,8567
7
7
  wizit_context_ingestor/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  wizit_context_ingestor/data/kdb.py,sha256=GCkXQmnk2JCXV_VJ-h0k55AOIX8qohzBJN2v-9D1dlU,194
9
- wizit_context_ingestor/data/prompts.py,sha256=EnocoriDjPcFPd6Af9G6TUTB8NkO4EFN4AUHfpRVqYU,14406
9
+ wizit_context_ingestor/data/prompts.py,sha256=bzgLdjINtXGQVTy4ZZktdcNItbtDQpM7maAQ2UBGdnY,14187
10
10
  wizit_context_ingestor/data/storage.py,sha256=aanXY1AV696cShHtDDhlJDhKPouZ1dq2lo_57yhTd20,198
11
11
  wizit_context_ingestor/domain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
12
  wizit_context_ingestor/domain/models.py,sha256=DV83PArMyh-VoUqnVF_ohcgStsk549ixdYw98B8o2GI,381
@@ -39,6 +39,6 @@ wizit_context_ingestor/workflows/transcription_schemas.py,sha256=CQCl7LXD5voxhJO
39
39
  wizit_context_ingestor/workflows/transcription_state.py,sha256=2Z_t2aZFEH_nAjdEO6RFBEmi_fwvr9cV0aLS1eIxiCQ,590
40
40
  wizit_context_ingestor/workflows/transcription_tools.py,sha256=FtIfWFITn8_Rr5SEobCeR55aJGZoHRMgF2UxRT5vJ-E,1373
41
41
  wizit_context_ingestor/workflows/transcription_workflow.py,sha256=77cLsYGdv01Py2GaKYpACuifPeSxH7tkVodvLv97sdg,1621
42
- wizit_context_ingestor-0.3.0b7.dist-info/WHEEL,sha256=eh7sammvW2TypMMMGKgsM83HyA_3qQ5Lgg3ynoecH3M,79
43
- wizit_context_ingestor-0.3.0b7.dist-info/METADATA,sha256=TgGrLDa3aRGw2o2PlZW28TVLzi0gm9Mx3H9gka9W6rg,3768
44
- wizit_context_ingestor-0.3.0b7.dist-info/RECORD,,
42
+ wizit_context_ingestor-0.3.0b8.dist-info/WHEEL,sha256=eh7sammvW2TypMMMGKgsM83HyA_3qQ5Lgg3ynoecH3M,79
43
+ wizit_context_ingestor-0.3.0b8.dist-info/METADATA,sha256=7pmXei8lCU0BAPl2m7T9k7nlZFAEOAANgndG3OPbIHY,3768
44
+ wizit_context_ingestor-0.3.0b8.dist-info/RECORD,,