wisent 0.7.901__py3-none-any.whl → 0.7.1116__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. wisent/__init__.py +1 -1
  2. wisent/comparison/__init__.py +1 -0
  3. wisent/comparison/detect_bos_features.py +275 -0
  4. wisent/comparison/fgaa.py +465 -0
  5. wisent/comparison/lora.py +663 -0
  6. wisent/comparison/lora_dpo.py +604 -0
  7. wisent/comparison/main.py +444 -0
  8. wisent/comparison/ours.py +76 -0
  9. wisent/comparison/reft.py +690 -0
  10. wisent/comparison/sae.py +304 -0
  11. wisent/comparison/utils.py +381 -0
  12. wisent/core/activations/activations_collector.py +3 -2
  13. wisent/core/activations/extraction_strategy.py +8 -4
  14. wisent/core/cli/agent/apply_steering.py +7 -5
  15. wisent/core/cli/agent/train_classifier.py +4 -3
  16. wisent/core/cli/generate_vector_from_task.py +11 -20
  17. wisent/core/cli/get_activations.py +1 -1
  18. wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py +20 -3
  19. wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py +8 -1
  20. wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py +8 -1
  21. wisent/core/parser_arguments/generate_vector_from_task_parser.py +4 -11
  22. wisent/core/parser_arguments/get_activations_parser.py +5 -14
  23. {wisent-0.7.901.dist-info → wisent-0.7.1116.dist-info}/METADATA +5 -1
  24. {wisent-0.7.901.dist-info → wisent-0.7.1116.dist-info}/RECORD +28 -91
  25. wisent/examples/contrastive_pairs/humanization_human_vs_ai.json +0 -2112
  26. wisent/examples/scripts/1/test_basqueglue_evaluation.json +0 -51
  27. wisent/examples/scripts/1/test_basqueglue_pairs.json +0 -14
  28. wisent/examples/scripts/1/test_bec2016eu_evaluation.json +0 -51
  29. wisent/examples/scripts/1/test_bec2016eu_pairs.json +0 -14
  30. wisent/examples/scripts/1/test_belebele_evaluation.json +0 -51
  31. wisent/examples/scripts/1/test_belebele_pairs.json +0 -14
  32. wisent/examples/scripts/1/test_benchmarks_evaluation.json +0 -51
  33. wisent/examples/scripts/1/test_benchmarks_pairs.json +0 -14
  34. wisent/examples/scripts/1/test_bertaqa_evaluation.json +0 -51
  35. wisent/examples/scripts/1/test_bertaqa_pairs.json +0 -14
  36. wisent/examples/scripts/1/test_bhtc_v2_evaluation.json +0 -30
  37. wisent/examples/scripts/1/test_bhtc_v2_pairs.json +0 -8
  38. wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json +0 -30
  39. wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json +0 -8
  40. wisent/examples/scripts/1/test_cabreu_evaluation.json +0 -30
  41. wisent/examples/scripts/1/test_cabreu_pairs.json +0 -8
  42. wisent/examples/scripts/1/test_careqa_en_evaluation.json +0 -30
  43. wisent/examples/scripts/1/test_careqa_en_pairs.json +0 -8
  44. wisent/examples/scripts/1/test_careqa_evaluation.json +0 -30
  45. wisent/examples/scripts/1/test_careqa_pairs.json +0 -8
  46. wisent/examples/scripts/1/test_catalanqa_evaluation.json +0 -30
  47. wisent/examples/scripts/1/test_catalanqa_pairs.json +0 -8
  48. wisent/examples/scripts/1/test_catcola_evaluation.json +0 -30
  49. wisent/examples/scripts/1/test_catcola_pairs.json +0 -8
  50. wisent/examples/scripts/1/test_chartqa_evaluation.json +0 -30
  51. wisent/examples/scripts/1/test_chartqa_pairs.json +0 -8
  52. wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json +0 -30
  53. wisent/examples/scripts/1/test_claim_stance_topic_pairs.json +0 -8
  54. wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json +0 -30
  55. wisent/examples/scripts/1/test_cnn_dailymail_pairs.json +0 -8
  56. wisent/examples/scripts/1/test_cocoteros_es_evaluation.json +0 -30
  57. wisent/examples/scripts/1/test_cocoteros_es_pairs.json +0 -8
  58. wisent/examples/scripts/1/test_coedit_gec_evaluation.json +0 -30
  59. wisent/examples/scripts/1/test_coedit_gec_pairs.json +0 -8
  60. wisent/examples/scripts/1/test_cola_evaluation.json +0 -30
  61. wisent/examples/scripts/1/test_cola_pairs.json +0 -8
  62. wisent/examples/scripts/1/test_coqcat_evaluation.json +0 -30
  63. wisent/examples/scripts/1/test_coqcat_pairs.json +0 -8
  64. wisent/examples/scripts/1/test_dbpedia_14_evaluation.json +0 -30
  65. wisent/examples/scripts/1/test_dbpedia_14_pairs.json +0 -8
  66. wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json +0 -30
  67. wisent/examples/scripts/1/test_epec_koref_bin_pairs.json +0 -8
  68. wisent/examples/scripts/1/test_ethos_binary_evaluation.json +0 -30
  69. wisent/examples/scripts/1/test_ethos_binary_pairs.json +0 -8
  70. wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json +0 -30
  71. wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json +0 -8
  72. wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json +0 -30
  73. wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json +0 -8
  74. wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json +0 -30
  75. wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json +0 -8
  76. wisent/examples/scripts/2/test_arc_ar_evaluation.json +0 -30
  77. wisent/examples/scripts/2/test_arc_ar_pairs.json +0 -8
  78. wisent/examples/scripts/2/test_atis_evaluation.json +0 -30
  79. wisent/examples/scripts/2/test_atis_pairs.json +0 -8
  80. wisent/examples/scripts/2/test_babi_evaluation.json +0 -30
  81. wisent/examples/scripts/2/test_babi_pairs.json +0 -8
  82. wisent/examples/scripts/2/test_babilong_evaluation.json +0 -30
  83. wisent/examples/scripts/2/test_babilong_pairs.json +0 -8
  84. wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json +0 -30
  85. wisent/examples/scripts/2/test_bangla_mmlu_pairs.json +0 -8
  86. wisent/examples/scripts/2/test_basque-glue_pairs.json +0 -14
  87. wisent/examples/scripts/generate_paper_data.py +0 -384
  88. wisent/examples/scripts/intervention_validation.py +0 -626
  89. wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_evaluation.json +0 -324
  90. wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_pairs.json +0 -92
  91. wisent/examples/scripts/results/test_aexams_IslamicStudies_evaluation.json +0 -324
  92. wisent/examples/scripts/results/test_aexams_IslamicStudies_pairs.json +0 -92
  93. wisent/examples/scripts/results/test_afrimgsm_pairs.json +0 -92
  94. wisent/examples/scripts/results/test_afrimmlu_evaluation.json +0 -324
  95. wisent/examples/scripts/results/test_afrimmlu_pairs.json +0 -92
  96. wisent/examples/scripts/threshold_analysis.py +0 -434
  97. wisent/examples/scripts/visualization_gallery.py +0 -582
  98. {wisent-0.7.901.dist-info → wisent-0.7.1116.dist-info}/WHEEL +0 -0
  99. {wisent-0.7.901.dist-info → wisent-0.7.1116.dist-info}/entry_points.txt +0 -0
  100. {wisent-0.7.901.dist-info → wisent-0.7.1116.dist-info}/licenses/LICENSE +0 -0
  101. {wisent-0.7.901.dist-info → wisent-0.7.1116.dist-info}/top_level.txt +0 -0
@@ -101,8 +101,9 @@ class ExtractionStrategy(str, Enum):
101
101
  Returns:
102
102
  Appropriate strategy for the tokenizer type
103
103
  """
104
- has_chat = hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
105
-
104
+ has_chat = (hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
105
+ and hasattr(tokenizer, "chat_template") and tokenizer.chat_template is not None)
106
+
106
107
  if has_chat:
107
108
  return cls.MC_BALANCED if prefer_mc else cls.CHAT_LAST
108
109
  else:
@@ -128,7 +129,8 @@ class ExtractionStrategy(str, Enum):
128
129
  Returns:
129
130
  The appropriate strategy for the tokenizer
130
131
  """
131
- has_chat = hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
132
+ has_chat = (hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
133
+ and hasattr(tokenizer, "chat_template") and tokenizer.chat_template is not None)
132
134
  is_base_strategy = cls.is_base_model_strategy(strategy)
133
135
 
134
136
  if has_chat and is_base_strategy:
@@ -158,7 +160,9 @@ class ExtractionStrategy(str, Enum):
158
160
 
159
161
  def tokenizer_has_chat_template(tokenizer) -> bool:
160
162
  """Check if tokenizer supports chat template."""
161
- return hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
163
+ has_method = hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
164
+ has_template = hasattr(tokenizer, "chat_template") and tokenizer.chat_template is not None
165
+ return has_method and has_template
162
166
 
163
167
 
164
168
  # Random tokens for role_play strategy (deterministic based on prompt hash)
@@ -19,7 +19,7 @@ def _map_token_aggregation(aggregation_str: str):
19
19
 
20
20
  def _map_prompt_strategy(strategy_str: str):
21
21
  """Map string prompt strategy to ExtractionStrategy."""
22
- from wisent.core.activations.extraction_strategy import ExtractionStrategy
22
+
23
23
 
24
24
  mapping = {
25
25
  "chat_template": ExtractionStrategy.CHAT_LAST,
@@ -111,8 +111,9 @@ def apply_steering_and_evaluate(
111
111
 
112
112
  updated_pair = collector.collect(
113
113
  pair, strategy=aggregation_strategy,
114
- layers=target_layers,
115
- normalize=normalize_layers
114
+ return_full_sequence=return_full_sequence,
115
+ normalize_layers=normalize_layers,
116
+ prompt_strategy=prompt_construction_strategy
116
117
  )
117
118
  enriched_pairs.append(updated_pair)
118
119
 
@@ -173,8 +174,9 @@ def apply_steering_and_evaluate(
173
174
 
174
175
  steered_evaluated_pair = collector.collect(
175
176
  steered_dummy_pair, strategy=aggregation_strategy,
176
- layers=target_layers,
177
- normalize=normalize_layers
177
+ return_full_sequence=return_full_sequence,
178
+ normalize_layers=normalize_layers,
179
+ prompt_strategy=prompt_construction_strategy
178
180
  )
179
181
 
180
182
  steered_quality = 0.0
@@ -33,7 +33,7 @@ def _map_token_aggregation(aggregation_str: str):
33
33
 
34
34
  def _map_prompt_strategy(strategy_str: str):
35
35
  """Map string prompt strategy to ExtractionStrategy."""
36
- from wisent.core.activations.extraction_strategy import ExtractionStrategy
36
+
37
37
 
38
38
  mapping = {
39
39
  "chat_template": ExtractionStrategy.CHAT_LAST,
@@ -120,8 +120,9 @@ def train_classifier_on_pairs(
120
120
 
121
121
  updated_pair = collector.collect(
122
122
  pair, strategy=aggregation_strategy,
123
- layers=[str(target_layer)],
124
- normalize=normalize_layers
123
+ return_full_sequence=return_full_sequence,
124
+ normalize_layers=normalize_layers,
125
+ prompt_strategy=prompt_construction_strategy
125
126
  )
126
127
  enriched_training_pairs.append(updated_pair)
127
128
 
@@ -30,8 +30,7 @@ def _load_optimal_defaults(model_name: str, task_name: str, args):
30
30
  "layer": result.layer,
31
31
  "strength": result.strength,
32
32
  "strategy": result.strategy,
33
- "token_aggregation": result.token_aggregation,
34
- "prompt_strategy": result.prompt_strategy,
33
+ "extraction_strategy": getattr(result, 'extraction_strategy', None),
35
34
  "score": result.score,
36
35
  }
37
36
 
@@ -89,31 +88,24 @@ def execute_generate_vector_from_task(args):
89
88
  print(f" Method: {optimal_config['method']}")
90
89
  print(f" Layer: {optimal_config['layer']}")
91
90
  print(f" Strength: {optimal_config['strength']}")
92
- print(f" Token Aggregation: {optimal_config['token_aggregation']}")
91
+ if optimal_config.get('extraction_strategy'):
92
+ print(f" Extraction Strategy: {optimal_config['extraction_strategy']}")
93
93
  print(f" Score: {optimal_config['score']:.3f}")
94
94
  print(f"{'='*60}")
95
-
95
+
96
96
  # Apply optimal defaults if user didn't explicitly override
97
97
  if not getattr(args, '_layers_set_by_user', False) and args.layers is None:
98
98
  args.layers = str(optimal_config['layer'])
99
99
  print(f" → Using optimal layer: {args.layers}")
100
-
101
- if not getattr(args, '_token_aggregation_set_by_user', False):
102
- # Map stored format to CLI format
103
- token_agg_map = {
104
- "last_token": "final",
105
- "mean_pooling": "average",
106
- "first_token": "first",
107
- "max_pooling": "max",
108
- }
109
- mapped_agg = token_agg_map.get(optimal_config['token_aggregation'], args.token_aggregation)
110
- args.token_aggregation = mapped_agg
111
- print(f" → Using optimal token aggregation: {args.token_aggregation}")
112
-
100
+
101
+ if not getattr(args, '_extraction_strategy_set_by_user', False) and optimal_config.get('extraction_strategy'):
102
+ args.extraction_strategy = optimal_config['extraction_strategy']
103
+ print(f" → Using optimal extraction strategy: {args.extraction_strategy}")
104
+
113
105
  if not getattr(args, '_method_set_by_user', False):
114
106
  args.method = optimal_config['method'].lower()
115
107
  print(f" → Using optimal method: {args.method}")
116
-
108
+
117
109
  # Store optimal config for later use
118
110
  args._optimal_config = optimal_config
119
111
  print()
@@ -176,8 +168,7 @@ def execute_generate_vector_from_task(args):
176
168
  model=args.model,
177
169
  device=args.device,
178
170
  layers=args.layers,
179
- token_aggregation=args.token_aggregation,
180
- prompt_strategy=args.prompt_strategy,
171
+ extraction_strategy=args.extraction_strategy,
181
172
  verbose=args.verbose,
182
173
  timing=args.timing,
183
174
  )
@@ -114,7 +114,7 @@ def execute_get_activations(args):
114
114
  'trait_label': trait_label,
115
115
  'model': args.model,
116
116
  'layers': layers,
117
- 'token_aggregation': args.token_aggregation,
117
+ 'extraction_strategy': extraction_strategy.value,
118
118
  'num_pairs': len(enriched_pairs),
119
119
  'pairs': []
120
120
  }
@@ -85,8 +85,8 @@ class BoolQExtractor(LMEvalBenchmarkExtractor):
85
85
  )
86
86
  return None
87
87
 
88
- correct = "Yes" if label == 1 else "No"
89
- incorrect = "No" if label == 1 else "Yes"
88
+ correct = "yes" if label == 1 else "no"
89
+ incorrect = "no" if label == 1 else "yes"
90
90
 
91
91
  prompt = f"{passage}\nQuestion: {question}?\nAnswer:"
92
92
 
@@ -114,4 +114,21 @@ class BoolQExtractor(LMEvalBenchmarkExtractor):
114
114
  ) -> ContrastivePair:
115
115
  positive_response = PositiveResponse(model_response=correct)
116
116
  negative_response = NegativeResponse(model_response=incorrect)
117
- return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
117
+ return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
118
+
119
+ @staticmethod
120
+ def extract_choices_and_answer(task, doc: dict[str, Any]) -> tuple[list[str], str]:
121
+ """
122
+ Extract choices and expected answer from a BoolQ document.
123
+
124
+ Args:
125
+ task: lm-eval task instance (has doc_to_choice, doc_to_target methods)
126
+ doc: BoolQ document
127
+
128
+ Returns:
129
+ Tuple of (choices, expected_answer)
130
+ """
131
+ choices = task.doc_to_choice(doc)
132
+ target_idx = task.doc_to_target(doc)
133
+ expected = choices[target_idx]
134
+ return choices, expected
@@ -114,4 +114,11 @@ class CBExtractor(LMEvalBenchmarkExtractor):
114
114
  ) -> ContrastivePair:
115
115
  positive_response = PositiveResponse(model_response=correct)
116
116
  negative_response = NegativeResponse(model_response=incorrect)
117
- return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
117
+ return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
118
+
119
+ @staticmethod
120
+ def extract_choices_and_answer(task, doc: dict[str, Any]) -> tuple[list[str], str]:
121
+ choices = task.doc_to_choice(doc)
122
+ target_idx = task.doc_to_target(doc)
123
+ expected = choices[target_idx]
124
+ return choices, expected
@@ -115,4 +115,11 @@ class TruthfulQAMC1Extractor(LMEvalBenchmarkExtractor):
115
115
  ) -> ContrastivePair:
116
116
  positive_response = PositiveResponse(model_response=correct)
117
117
  negative_response = NegativeResponse(model_response=incorrect)
118
- return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
118
+ return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
119
+
120
+ @staticmethod
121
+ def extract_choices_and_answer(task, doc: dict[str, Any]) -> tuple[list[str], str]:
122
+ choices = task.doc_to_choice(doc)
123
+ target_idx = task.doc_to_target(doc)
124
+ expected = choices[target_idx]
125
+ return choices, expected
@@ -66,18 +66,11 @@ def setup_generate_vector_from_task_parser(parser: argparse.ArgumentParser) -> N
66
66
  help="Comma-separated layer indices (e.g., '8,12,16') or 'all' (default: all layers)"
67
67
  )
68
68
  parser.add_argument(
69
- "--token-aggregation",
69
+ "--extraction-strategy",
70
70
  type=str,
71
- choices=["average", "final", "first", "max", "continuation"],
72
- default="average",
73
- help="How to aggregate token activations (default: average)"
74
- )
75
- parser.add_argument(
76
- "--prompt-strategy",
77
- type=str,
78
- choices=["chat_template", "direct_completion", "instruction_following", "multiple_choice", "role_playing"],
79
- default="chat_template",
80
- help="Prompt construction strategy (default: chat_template)"
71
+ choices=["chat_mean", "chat_first", "chat_last", "chat_gen_point", "chat_max_norm", "chat_weighted", "role_play", "mc_balanced", "completion_last", "completion_mean", "mc_completion"],
72
+ default="chat_mean",
73
+ help="Extraction strategy. Chat models: chat_mean, chat_first, chat_last, chat_max_norm, chat_weighted, role_play, mc_balanced. Base models: completion_last, completion_mean, mc_completion"
81
74
  )
82
75
 
83
76
  # Steering vector creation
@@ -45,22 +45,13 @@ def setup_get_activations_parser(parser: argparse.ArgumentParser) -> None:
45
45
  help="Comma-separated layer indices (e.g., '8,12,15') or 'all' for all layers"
46
46
  )
47
47
 
48
- # Token aggregation
48
+ # Extraction strategy (combines prompt format and token selection)
49
49
  parser.add_argument(
50
- "--token-aggregation",
50
+ "--extraction-strategy",
51
51
  type=str,
52
- choices=["average", "final", "first", "max", "min", "max_score"],
53
- default="average",
54
- help="How to aggregate token activations. 'max_score' uses highest token hallucination score"
55
- )
56
-
57
- # Prompt construction strategy
58
- parser.add_argument(
59
- "--prompt-strategy",
60
- type=str,
61
- choices=["chat_template", "direct_completion", "instruction_following", "multiple_choice", "role_playing"],
62
- default="chat_template",
63
- help="Prompt construction strategy (default: chat_template)"
52
+ choices=["chat_mean", "chat_first", "chat_last", "chat_gen_point", "chat_max_norm", "chat_weighted", "role_play", "mc_balanced", "completion_last", "completion_mean", "mc_completion"],
53
+ default="chat_mean",
54
+ help="Extraction strategy. Chat models: chat_mean, chat_first, chat_last, chat_max_norm, chat_weighted, role_play, mc_balanced. Base models: completion_last, completion_mean, mc_completion"
64
55
  )
65
56
 
66
57
  # Processing options
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: wisent
3
- Version: 0.7.901
3
+ Version: 0.7.1116
4
4
  Summary: Monitor and influence AI Brains
5
5
  Home-page: https://github.com/wisent-ai/wisent
6
6
  Author: Lukasz Bartoszcze and the Wisent Team
@@ -27,10 +27,14 @@ Requires-Dist: faiss-cpu>=1.7.0
27
27
  Requires-Dist: uncensorbench>=0.2.0
28
28
  Requires-Dist: pebble>=5.0.0
29
29
  Requires-Dist: latex2sympy2_extended>=1.0.0
30
+ Requires-Dist: sae_lens>=0.1.0
31
+ Requires-Dist: trl>=0.7.0
30
32
  Provides-Extra: harness
31
33
  Requires-Dist: lm-eval==0.4.8; extra == "harness"
32
34
  Provides-Extra: cuda
33
35
  Requires-Dist: flash-attn>=2.5.0; extra == "cuda"
36
+ Provides-Extra: sparsify
37
+ Requires-Dist: sparsify>=0.1.0; extra == "sparsify"
34
38
  Dynamic: author
35
39
  Dynamic: author-email
36
40
  Dynamic: classifier
@@ -1,5 +1,15 @@
1
- wisent/__init__.py,sha256=_tapv1VtSsFzxXjtnrr2XXezxkMMdt4Me1YSKo_fSKc,1229
1
+ wisent/__init__.py,sha256=JumWUOHz2LVTGDdRwwjT7GOTdbOxeisuqgQ1tZu7KuM,1230
2
2
  wisent/cli.py,sha256=XKzGIGstr38EowHYpr821c6YuV9Eaw3I1I3NvLztTO0,3960
3
+ wisent/comparison/__init__.py,sha256=DD_QZfE8XrEEbVTd_l6D5kjxnkOJ-BTQ-mvlu8WPmew,56
4
+ wisent/comparison/detect_bos_features.py,sha256=T5ewM_eY1Sqic9xr30fU0nmd_ZF6Kj477G4UxNo4w5Y,9799
5
+ wisent/comparison/fgaa.py,sha256=la1Qs8GUfKB7FGI-WgaCMc24KOVEpDnD5fNdntp3-Q4,15576
6
+ wisent/comparison/lora.py,sha256=-p0C2jMpQbbitLI2at8qvW08mIhK_baAT1fziY2jnbM,23609
7
+ wisent/comparison/lora_dpo.py,sha256=8mAV114g-2lN22HljSJ6RC34cjTrYZ0tjuY4fA8FmzQ,21577
8
+ wisent/comparison/main.py,sha256=7jWBXPfvLszDHcWHdCO4hV7v_jB8B9UfjE545pMyf4w,17625
9
+ wisent/comparison/ours.py,sha256=aMwd4v5Gx-4fLzsA5JI-qHXDvOPBKeUk--5dpbHubfU,1951
10
+ wisent/comparison/reft.py,sha256=YdIsdSAWfxWg4hX4xeQqvWqb_BLhH_t_P0uaPt2BK5k,24511
11
+ wisent/comparison/sae.py,sha256=3wU7NLkWm3FMlWV9dCdzc5EcpxecelizNyQh65yHE10,9663
12
+ wisent/comparison/utils.py,sha256=7bundfls_zD1WnMjrLLbyf60WuO9nsV0hs5pPt9VvzY,10679
3
13
  wisent/core/__init__.py,sha256=x1MX4vKpKP3c2FuIHcFly-UkoZwGVnRPbzcFaxr_Jdo,1340
4
14
  wisent/core/autonomous_agent.py,sha256=rtJ5XlWqPys7c1PBFkUBHGg9Ox6_LDjeoiNPEph6NA4,48667
5
15
  wisent/core/benchmark_extractors.py,sha256=BtGoL23n9EzSGoywymSh8uIhlr8T_LU8y-hp7et1vIk,13616
@@ -38,9 +48,9 @@ wisent/core/wisent.py,sha256=yglyOL-10ptlTVTshgjuXle3PXo-fdWJiZPx8oLyabM,21076
38
48
  wisent/core/activations/__init__.py,sha256=KjKMOPbPMmi1iMQMH6ALkcwa8pZLK8dpbz0cHGVjl_M,1352
39
49
  wisent/core/activations/activation_cache.py,sha256=Tc-qH26Ht_E9wtQYJHnEMtea3dvB8x9XWaZOAQ2oPtA,13784
40
50
  wisent/core/activations/activations.py,sha256=ljDkyCPiFyIt-SA43m-vJh3U2pcYIMenYxm46Vy4B1I,3200
41
- wisent/core/activations/activations_collector.py,sha256=3aY6VxWVErnWOLdTLY6bapjR9e5kzHOoSV2OaOsDlYE,10536
51
+ wisent/core/activations/activations_collector.py,sha256=Ms-ekj5VorbOsJePwi3NO_x1jji5kP8ibkaPN-7kaNk,10575
42
52
  wisent/core/activations/classifier_inference_strategy.py,sha256=Nw7xz08vgxJoMAUbCOT-vY118815STjh8iOZGbiBBU8,7054
43
- wisent/core/activations/extraction_strategy.py,sha256=AkbVZ5TyF3bST4ZOw33HVNVlrbGAb8XrhAxoeDtRPNY,19820
53
+ wisent/core/activations/extraction_strategy.py,sha256=MZHHlPhGFboQyycvGiM-lS4K7kStcpUtzDqcWmQnvmU,20156
44
54
  wisent/core/activations/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
55
  wisent/core/activations/core/atoms.py,sha256=wfPhgSt7NP_4xkyYZA6T62KTM2DUkq1Jj-FJeRd9Kko,5383
46
56
  wisent/core/adapters/__init__.py,sha256=UZkssKYL4-Jl_F29x29MQr6L4899lpK-eFvFa_qGa8Y,712
@@ -94,9 +104,9 @@ wisent/core/cli/generate_pairs.py,sha256=KT88DaRMv5UcQwkLY9hf8uF3vuq9i3pWSnAL6Ne
94
104
  wisent/core/cli/generate_pairs_from_task.py,sha256=OfxO-JpiYncUvRZL6AEbGzHNJm7QhGGZ3d9YxShXq2Q,2130
95
105
  wisent/core/cli/generate_responses.py,sha256=nPEwQ8_EVjRbr0lhsCl8sacQzvt5XgDUOONSwRyI--U,5238
96
106
  wisent/core/cli/generate_vector_from_synthetic.py,sha256=Fc9vcd7-1VTqHy8-gjTuPiCC7FIP1rxTajZf8TFSIi8,8868
97
- wisent/core/cli/generate_vector_from_task.py,sha256=O619eALpDrTWMq4Milih_IC3eDViXz46EP6D1A6uduE,10121
107
+ wisent/core/cli/generate_vector_from_task.py,sha256=9U-Z6aB7KnNhTR1Tdq8FBJngJskUqB0ClD2QkSycHmg,9755
98
108
  wisent/core/cli/geometry_search.py,sha256=DOXjzEspdcnLNhjZKf_Mapi33mMVi2LMXpQNLQkE5zI,5503
99
- wisent/core/cli/get_activations.py,sha256=dAvlhRIWg9p5Z_9_G7UQmgUB3HjsmBbEADSGwPYGEDA,6592
109
+ wisent/core/cli/get_activations.py,sha256=FLUT9jIG686IDtjS5d3-ML0ZGxb91nZqaG1yOuJ88s0,6597
100
110
  wisent/core/cli/inference_config.py,sha256=iIZa0_ciBbM0Fqat0DJNd-mlWd0ANuYoeZ1v1V4jduc,3148
101
111
  wisent/core/cli/inference_config_cli.py,sha256=CKvD3TpFYDSNtm9HdRFv0uMGInaR6iSHP8aLWYPhrfs,1786
102
112
  wisent/core/cli/method_optimizer.py,sha256=oDfS80biqK8DsuB387KgzehoILebZ2m1_7_aL8eqgpQ,32903
@@ -114,11 +124,11 @@ wisent/core/cli/steering_search_space.py,sha256=4iGf7vTHPEE4JW1mQdq_P1vLYWyGlUek
114
124
  wisent/core/cli/tasks.py,sha256=ckQ3NW8DDrHSpmxm3HZ27e6j9ex_lqKKIMTXQ97Np8k,39717
115
125
  wisent/core/cli/train_unified_goodness.py,sha256=fOcw-9yD2tcCwUTdxqxFsfuSsCuEPZ8x7nth1gN9lnE,29079
116
126
  wisent/core/cli/agent/__init__.py,sha256=tWH634YZVFfHmaEEQPgOn1LILIXwdpyJg5nj9tsdFz8,591
117
- wisent/core/cli/agent/apply_steering.py,sha256=hLjsA7B9Y7t1AHvrs1QhDZm3v_Tqo4NYMCCtW2Yo66c,6635
127
+ wisent/core/cli/agent/apply_steering.py,sha256=HDeX6nhhO87z1BzNdZeaAH-1B-K4twvRNIkoQEKlQRE,6729
118
128
  wisent/core/cli/agent/evaluate_response.py,sha256=Xk-nKSeGxTqMX7IF6tjYdTUkc_EITVIUg8XEYqZBSnk,4522
119
129
  wisent/core/cli/agent/generate_synthetic_pairs.py,sha256=QnMuJvunEB3Icmx9TrFeMklh1fjpTMLeu8mkV_dx46w,4723
120
130
  wisent/core/cli/agent/main.py,sha256=aZ7SIuzTmYkFTaygjTf76Fgho9CiRMIOooes5Vd7ueI,5457
121
- wisent/core/cli/agent/train_classifier.py,sha256=qhJlHy0AKdmWJsVg_ZZwLjNL-G8rd6_oSfWtNyx85R0,6961
131
+ wisent/core/cli/agent/train_classifier.py,sha256=YOssusRFKIhgcEaJEYyesptGxao8LURzHS9GFl8z8ww,6967
122
132
  wisent/core/contrastive_pairs/__init__.py,sha256=AbaAf-t_nyVVy_vLjp8WAlMDmNun3KNp_GMWAK25r9g,429
123
133
  wisent/core/contrastive_pairs/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
124
134
  wisent/core/contrastive_pairs/core/atoms.py,sha256=_zghw6c8iisW_SqBIUCoAnzhc5q7t5EgZ4zzTPxeLwQ,1129
@@ -475,7 +485,7 @@ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhtc.py,sha256=Vz
475
485
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bigbench.py,sha256=Yww82fQuUbEANLotw7vP7m_EDoA9CNRWPvgrB6B-wvM,6613
476
486
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp.py,sha256=FWLTaIqd4TuTBkLSLyu_ygHoPkbmvQhB-06mTJ6alDg,6656
477
487
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp_nl.py,sha256=LlLs75FCg2sbxbULNiiCAGbU8GZrkZNXOXEiHGQ_EK4,5865
478
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py,sha256=NA7TnsMmr887DKQoCRwgq84-veJ-VQdXPPfg09_IkdA,3966
488
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py,sha256=N1__j2ZxwA2_aoZPwoTr_Z7RipEDiRXZbK48Vm7a5W8,4519
479
489
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq_seq2seq.py,sha256=-B7CD59m5m7WmL6ed3Ior9Zt57kl4jTOlbOkv9p_iFY,3998
480
490
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/c4.py,sha256=gangKka_3u7PoivPFCpa_iCSk2TfO86XcGD2ysUwiWs,5684
481
491
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cabbq.py,sha256=9qX7C6QfAmaepqc89FLkaXlCinNk7W1iiphSlfurZco,5840
@@ -486,7 +496,7 @@ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench_gen
486
496
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench_mc.py,sha256=U27A3A9nSYqKmqSPWeVBU66eIDiw4Y7UjA0YttcELEc,4150
487
497
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalanqa.py,sha256=7GigYh1OrjB29b8E5UAbRZlWT2_IuS-ZZc8JyukRxgk,7158
488
498
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catcola.py,sha256=Q2zzNtKybvSQAQlyAJusubSur64W1eFEVyqO5e0vFRs,5411
489
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py,sha256=25a1mv3hRta1zna4r34nbUcaygCWLMXLm88XEa98Cis,4026
499
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py,sha256=OmURgHZUND2SaZTSUhuhgKBG_d0HzHnJXin7p3Df-oE,4292
490
500
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval.py,sha256=Gx3Iw_TwdT_QK7i4iW0anY5IRjRMa5N09a1UlpKDXbM,8542
491
501
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval_valid.py,sha256=EDuO2CXJAeOE8CQylKY2MTKhH8NCwJFnP9WMZPyNskw,6224
492
502
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chain.py,sha256=b0b7oclVtf9sqxlVODN76UFG5Skua1zxfyBs_bXy1_8,4249
@@ -720,7 +730,7 @@ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/toxigen.py,sha256
720
730
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/translation.py,sha256=rHNpXKyLCl5qUtTw0nMjg0jW4sFOK9SOKkawc0UBH3g,5167
721
731
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/triviaqa.py,sha256=6Hc1IkZXfBtDAN7qrcFtsLcssnPnKdCXZRa6c1HHHWM,4360
722
732
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa.py,sha256=nO4LRVeTJXKkjXvDRZJ3WK4onJSYRNKx-kmYqXSIdvo,4382
723
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py,sha256=70Tuawb5FTrhWOKeAezoWthVf81A5FrATeiIX-_AhGM,4004
733
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py,sha256=cRj5Uk9MKOR9FdEa64smcxpsIYcUKAaHLirxdT9RR_U,4270
724
734
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc2.py,sha256=PW686J9_AAdPyLBlsYeMQ6XROczPb1IcEjeTP_f6g6Q,4998
725
735
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_multi.py,sha256=oCWC6hY3RI9Nj04Rij71fDZCT-L17kXirkGE9fyob-I,4945
726
736
  wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turblimp_core.py,sha256=Cg3edq6WfVd6444Ap6YUEmKNiU4mnaqFv_HzZ3g4QEQ,5910
@@ -868,10 +878,10 @@ wisent/core/parser_arguments/generate_pairs_from_task_parser.py,sha256=wEZLIXocq
868
878
  wisent/core/parser_arguments/generate_pairs_parser.py,sha256=nDTQ63bvjl-GcSrMdtcR_Pdh1dzbqtRnGaSCFhPO-4Q,1918
869
879
  wisent/core/parser_arguments/generate_responses_parser.py,sha256=LnjIx7gOdysEMGwUIHFHlaEOE306qr4rXto9gzBSjkg,1345
870
880
  wisent/core/parser_arguments/generate_vector_from_synthetic_parser.py,sha256=MvwLJYm-23pAwAocJqrjWS12RlAMW70ATCEWa2VfJ2w,4225
871
- wisent/core/parser_arguments/generate_vector_from_task_parser.py,sha256=95jOVRH22aFcngJJYrLvpj-SFAPZaTSlAeh277NuWbg,4889
881
+ wisent/core/parser_arguments/generate_vector_from_task_parser.py,sha256=LweAwx14bdchW_Z5GKVAenBPsMMcmTjAajYtwcvFef0,4849
872
882
  wisent/core/parser_arguments/generate_vector_parser.py,sha256=bf2PHAdvNZetXaSe3sKarvK6McIODPdmRSNRQN_rHto,3622
873
883
  wisent/core/parser_arguments/geometry_search_parser.py,sha256=-ytDrseoIRJnjMq8pvh6jE9fxn5IXDCVmZB_5wlub8Q,1739
874
- wisent/core/parser_arguments/get_activations_parser.py,sha256=pCBET7CsFz-8WFE3mb677o4W-vVa09wz-3YDMx-8ukA,2445
884
+ wisent/core/parser_arguments/get_activations_parser.py,sha256=GcPXhSRXhcsXKl7zeW3IXi7yF-5eUe_68xOfQVD8tME,2379
875
885
  wisent/core/parser_arguments/inference_config_parser.py,sha256=-TAcjy8yTzDKWFc42JCmVtGq1MowQI-IauRNFNj_se0,1853
876
886
  wisent/core/parser_arguments/main_parser.py,sha256=6RPGpcf5eXqMpSK4adVVU_vJit3pICZMoAzgjpcb29c,12789
877
887
  wisent/core/parser_arguments/model_config_parser.py,sha256=RlcSyQkj0uDlmJJE8sMq_CjvJ1VdCcjf8_BqspsSHd0,3210
@@ -966,14 +976,11 @@ wisent/core/weight_modification/export.py,sha256=zikHU9dGDswa61ZPd_xo61kAdNt46O1
966
976
  wisent/core/weight_modification/multi_direction.py,sha256=tpnEG54GHIzWmytt3ajUmwTbl2_ClpZS7AebJHHrkfA,12858
967
977
  wisent/core/weight_modification/utils.py,sha256=h6QM5FrpvOu29_6YZNvs5bwBuJBvVgtBo18RQ_MW3_o,6907
968
978
  wisent/examples/__init__.py,sha256=gaDcawBaga7CMOkxnu9cTGP2-Xq0bN1IkWZiDEPPCoM,18
969
- wisent/examples/contrastive_pairs/humanization_human_vs_ai.json,sha256=7D6GpW-B99nXnhLj2q7WYZp5DWu8AMFzk3uyq7ambV0,247507
970
979
  wisent/examples/scripts/__init__.py,sha256=HmFOUP_4AjzolMRK2FXhLzz_u29L-GxpppYUjW7M-Kw,30
971
980
  wisent/examples/scripts/benchmark_tags.json,sha256=JjZGitGdgbJPXxk6PXGDsEaQBvAKlwJOAcET4rucRWA,29279
972
981
  wisent/examples/scripts/count_all_benchmarks.py,sha256=WjgyFCV07QgOQfxV0_04GcQYi7eRaEfb3CipPYjAcHM,3913
973
982
  wisent/examples/scripts/discover_directions.py,sha256=3KJjksYda9UB_GrFV3pNmgTfTi3u_Gxz0zpgZkncyD8,17532
974
983
  wisent/examples/scripts/extract_benchmark_info.py,sha256=3JME-s-6UUBuQRBOlM5TgVyMu9pkLbF4jdm_QB9Dfuk,2243
975
- wisent/examples/scripts/generate_paper_data.py,sha256=zKHG54r-gYtqvdhJJONXjtBsGtVeMpOEu2RbFOG-74I,14467
976
- wisent/examples/scripts/intervention_validation.py,sha256=mrxM2E0DZgtxMuXi_LPJ0NFyGDSU0ZMwC1qk4I65Pv4,21962
977
984
  wisent/examples/scripts/lm_eval_readme.json,sha256=X5bYjQrAUw031rjjFlrTlxxnllWGBSlqywF5kjh4mOw,89869
978
985
  wisent/examples/scripts/search_all_short_names.py,sha256=brLUqAKTnmo4KA3v3vnou0BWOXUK2M0qpofPSXC0du0,1191
979
986
  wisent/examples/scripts/test_all_benchmarks.py,sha256=oKwCgbSPQcQwRrjRjWdWn6Cz-JRBrRiWu7svwnWJc-g,4207
@@ -982,76 +989,6 @@ wisent/examples/scripts/test_contrastive_pairs_all_supported.py,sha256=FIQ6P6hXf
982
989
  wisent/examples/scripts/test_nonsense_baseline.py,sha256=spdWAUb7sViAGpHOJyu3HThABcsJ_eolDxyhV5fkdBY,10254
983
990
  wisent/examples/scripts/test_one_benchmark.py,sha256=_2iy1GB2CYXooZCuSo7vJ0sKBtjLZofsWSIO0lkEtu4,13624
984
991
  wisent/examples/scripts/test_one_coding_benchmark.py,sha256=AXoD_E6kaNnTnI4Czi9ZYhd6aLrmjZP1PKDhKIUXb_A,10427
985
- wisent/examples/scripts/threshold_analysis.py,sha256=Ugp5Whn7L_7C8S8JrskfdtOXIRz31Lt1232Uva77hgM,14906
986
- wisent/examples/scripts/visualization_gallery.py,sha256=DP025fuVXEJ8-CPOB0O88IGQfek__TuHFo56Y-zfNv4,20243
987
- wisent/examples/scripts/1/test_basqueglue_evaluation.json,sha256=4dmo2Mu7zZ_mFhrn1EWn5grPkOhNI4XjKUYmhCoICl0,1898
988
- wisent/examples/scripts/1/test_basqueglue_pairs.json,sha256=yCLswgp9q3SDzhso-pB5jbIlTHzqS_GEBtwCQgVwlXo,650
989
- wisent/examples/scripts/1/test_bec2016eu_evaluation.json,sha256=rVRPrb-pot0bCu1p69ks2ltQiW_grUtRvxZonYupUY4,1897
990
- wisent/examples/scripts/1/test_bec2016eu_pairs.json,sha256=yCLswgp9q3SDzhso-pB5jbIlTHzqS_GEBtwCQgVwlXo,650
991
- wisent/examples/scripts/1/test_belebele_evaluation.json,sha256=xxQkvL-kBvLKhhsNsSCEni7Dw7BFoEaUMY69uJO99w0,2214
992
- wisent/examples/scripts/1/test_belebele_pairs.json,sha256=h9RypNbw7geXsg7fWcBUwgJB5bS5gy0eDPGDizbouPQ,944
993
- wisent/examples/scripts/1/test_benchmarks_evaluation.json,sha256=MAOCk2IdwkhJ_uDtTSNl1CrO2HxhXLwNSMTAUgZZ9Lc,1812
994
- wisent/examples/scripts/1/test_benchmarks_pairs.json,sha256=KlTcdNMmXAlwArOmV3qLdfjTTSygO8Elu_eZWK3k-5A,1086
995
- wisent/examples/scripts/1/test_bertaqa_evaluation.json,sha256=kto40P6Jo5UuPWvxjjLvTr_bN7MRSbATwIoWHff4BbY,1604
996
- wisent/examples/scripts/1/test_bertaqa_pairs.json,sha256=7OtQCoFqK1_29r4zL8FSsF2c91KUKN4FYBeomdwfPL4,391
997
- wisent/examples/scripts/1/test_bhtc_v2_evaluation.json,sha256=izOv-P-hWlmm-d27yPmscDSVLZ9UzLnX3E5nztZK10Q,904
998
- wisent/examples/scripts/1/test_bhtc_v2_pairs.json,sha256=KZRti9y-wFKygQkcTM7LuimkUhcHd4qpgEGwCgPuw_0,427
999
- wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json,sha256=T4qMKma5AtYicG6xFccx03GLYnLAyA-Wa-qmvACbIc4,872
1000
- wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json,sha256=YZiJJSLsFTIRMfctwiXSEStI3YaznaWTbF58-eGE8OQ,1583
1001
- wisent/examples/scripts/1/test_cabreu_evaluation.json,sha256=mR963WuUoU0qoC4o_-3ZvLDPfwiN_kkv5QxU4WQcSj0,7307
1002
- wisent/examples/scripts/1/test_cabreu_pairs.json,sha256=RJT13aObmZiWP5f6dptqoRVM8_sznJxY8QEHH_iVeBY,6895
1003
- wisent/examples/scripts/1/test_careqa_en_evaluation.json,sha256=cngnpcX1UOUEyQo9DNx519jPjtiuN7uC946sish4AB4,1675
1004
- wisent/examples/scripts/1/test_careqa_en_pairs.json,sha256=Of0zuMtBLEafqCEKR5ffqC-PghQCzykMCT9N3Rp4NwI,731
1005
- wisent/examples/scripts/1/test_careqa_evaluation.json,sha256=B8C75kicOK3quYBZCDhFkh-LHJV7hkINoI_6NwGu-g4,1672
1006
- wisent/examples/scripts/1/test_careqa_pairs.json,sha256=Of0zuMtBLEafqCEKR5ffqC-PghQCzykMCT9N3Rp4NwI,731
1007
- wisent/examples/scripts/1/test_catalanqa_evaluation.json,sha256=bomYcxWdkdabZ7ptvrPWpugAJcVNpSbKtHlfW-JXuLs,918
1008
- wisent/examples/scripts/1/test_catalanqa_pairs.json,sha256=9zue9ntmKjFwKJetuLz3BX0HpBCL72000sjWT4IdkjA,952
1009
- wisent/examples/scripts/1/test_catcola_evaluation.json,sha256=w2zfhB6YQ7l8szinoIni_zi8ncbIGiUuIolXa9JDrDA,918
1010
- wisent/examples/scripts/1/test_catcola_pairs.json,sha256=DES1F-Bavgy_-7fl420bSb32fuSa-JQBjBwKuv1hMmE,240
1011
- wisent/examples/scripts/1/test_chartqa_evaluation.json,sha256=V9Yr1qLmw3BFtnTSet3DUXaIVZAgYq431mP4doqXB1g,819
1012
- wisent/examples/scripts/1/test_chartqa_pairs.json,sha256=bficR5iHawdvC465Gu2-26200Gd-4nT_MRn9Q57JVtY,163
1013
- wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json,sha256=r43kMchm9NeoBqvrwRGSmdf_RQ8DkR8k-CiPnpu_COY,917
1014
- wisent/examples/scripts/1/test_claim_stance_topic_pairs.json,sha256=Q4DP2sKyGgPqnerSfkLpmjGeYjUuEqdkaHLbs6GfADM,1910
1015
- wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json,sha256=2xdFLCuLrI7Jhqu04QyhSPSjXPrwjKbPGhMV4kSjEl8,1710
1016
- wisent/examples/scripts/1/test_cnn_dailymail_pairs.json,sha256=S1c_5HNR7YMIRy7z0fjMsRlCd5KhbPpmYXdgbl1WUIs,4727
1017
- wisent/examples/scripts/1/test_cocoteros_es_evaluation.json,sha256=0EyWwlC_uDBECFVMxilzkx3fYwCrXDw-15nQjFChcS4,1181
1018
- wisent/examples/scripts/1/test_cocoteros_es_pairs.json,sha256=ZzoRs2NiHtKditYWvCrR-udBw9ROFfEqKs1ZUrTp2r8,385
1019
- wisent/examples/scripts/1/test_coedit_gec_evaluation.json,sha256=oNucJ-YJW0OrWf8Jmlbf6ie3lCvM_HcYY1nddcvpIN4,1762
1020
- wisent/examples/scripts/1/test_coedit_gec_pairs.json,sha256=80t6Cfu9be8TpPNaF0WOsRME6YbfLVyIBJyLGEuqM9o,687
1021
- wisent/examples/scripts/1/test_cola_evaluation.json,sha256=4TOycnPImbfXliX05dKc8CUTW2MR8cKihmH0DRKR7OY,915
1022
- wisent/examples/scripts/1/test_cola_pairs.json,sha256=8a5Dd84Qbeuy2a3CVpNfDwX4PGhYuw60j7YsM_5YwYE,249
1023
- wisent/examples/scripts/1/test_coqcat_evaluation.json,sha256=i5pKT9mUk6iS2ubiq_mkW4utZIP15oVFqCK76a-adpE,978
1024
- wisent/examples/scripts/1/test_coqcat_pairs.json,sha256=GWzqrA3XI7CK6VElef36IanFOOS7uJU-uKJSQ_8lQgg,1414
1025
- wisent/examples/scripts/1/test_dbpedia_14_evaluation.json,sha256=9IKJ7skQ9IChdGin5YH2C8FD4dRZwb6zYG4IypiZ4eA,889
1026
- wisent/examples/scripts/1/test_dbpedia_14_pairs.json,sha256=5DCuHnpY4v9-JNSoQwOh-UG9bFBNF2CJi9RBqVTIyBc,443
1027
- wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json,sha256=uptYxyqdNCvVAMXKVBzOe7MD-iagHcaPDDHzBPkeIJU,875
1028
- wisent/examples/scripts/1/test_epec_koref_bin_pairs.json,sha256=_D4-SAq-KYq4Dh7Sz4Je_grkJs2A16XhYRcjWHMDBfM,395
1029
- wisent/examples/scripts/1/test_ethos_binary_evaluation.json,sha256=XeHT77YVOvGVUtIqu73B6FuxkxsdtWh8-C_U-5dYhsQ,939
1030
- wisent/examples/scripts/1/test_ethos_binary_pairs.json,sha256=mfqI7rEbpZlnyMCufGG5QcCyq4iOSEJHZiKEbY7Mm7M,449
1031
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json,sha256=bDPS5GxmsmKRb6sAxErR4nogXmgSOxzIP_BOzzf9EQ8,1271
1032
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json,sha256=xtGe0bshz2iLAbIuI12IUeOI-6LpugfhSbXUWi8dYfQ,1000
1033
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json,sha256=eM0Rp54yfE6xswWrx4CCXRHj7Wo7ZJA5Q8i0V0lOz-0,1190
1034
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json,sha256=DLJ7qHdvIdpzAFTDDlGqdFqYQLmdjHsVbq5PgjnrrjU,669
1035
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json,sha256=qNsSpTnnRG8yVEfYeYV4sixnxg1XrSzrj0I0Rkkesag,1080
1036
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json,sha256=BKbzJUR8HjFLi7IGYudSXIx94pGh9x4AvO-ZkOndsRc,386
1037
- wisent/examples/scripts/2/test_arc_ar_evaluation.json,sha256=siu_sO29iLp7Dz_K475pps8TPYTwBfmxr7bPzfG6zXw,2358
1038
- wisent/examples/scripts/2/test_arc_ar_pairs.json,sha256=dN5eXC6lL2WF3cpuZKOJEtTXM7P7EpFHvSkheFrMw8M,1188
1039
- wisent/examples/scripts/2/test_atis_evaluation.json,sha256=pv1lWUOHOPfQUxhu8S5dvfoypxSBTPxaknMv2D9baNc,1365
1040
- wisent/examples/scripts/2/test_atis_pairs.json,sha256=EieW893xtNjVBpJrJxJuTy1OvHnnZzJKPctnH1TevVE,1916
1041
- wisent/examples/scripts/2/test_babi_evaluation.json,sha256=2O0czob2UoLANSIBO0BEAVNe4-gTOPdPH3sFcDA3u0k,899
1042
- wisent/examples/scripts/2/test_babi_pairs.json,sha256=SjxpSXlWLOHx26XEozN6rTiYfwrkBG8rqies72sekLw,222
1043
- wisent/examples/scripts/2/test_babilong_evaluation.json,sha256=sBiv35EeORDv4TOQRx3yd_SoB99LblbsTznrFbeEWUk,1454
1044
- wisent/examples/scripts/2/test_babilong_pairs.json,sha256=OOWUdyqtMXUv2_WWIqTTEYX9okJXGVzIgnSYgAGljuc,41866
1045
- wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json,sha256=OtR2JvARwR99QphQDprHiyv7wjLPK9583gR_rCM9RQU,2073
1046
- wisent/examples/scripts/2/test_bangla_mmlu_pairs.json,sha256=GR9eXDwYdp0CBOyOZ9XF_yHv07KlDcpv8BpPF5wovXw,1340
1047
- wisent/examples/scripts/2/test_basque-glue_pairs.json,sha256=yCLswgp9q3SDzhso-pB5jbIlTHzqS_GEBtwCQgVwlXo,650
1048
- wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_evaluation.json,sha256=fcQJbCj5AxAT0mHqSXH6M8stbp54KpWyKJw92qaPq8E,14062
1049
- wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_pairs.json,sha256=inaWlBB2zpzRyO7-YB1VYH0AGsduByBJ3_kwN4yTac4,6024
1050
- wisent/examples/scripts/results/test_aexams_IslamicStudies_evaluation.json,sha256=zXXxnIR6Qb7y-Qh0WE-mrS7Oq2cZ082dUlEx6KG86bs,21734
1051
- wisent/examples/scripts/results/test_aexams_IslamicStudies_pairs.json,sha256=XtRDKooN-Ht9Vqf8RRQPVdOyGmh1ZAODoxmQhLHNto8,8668
1052
- wisent/examples/scripts/results/test_afrimgsm_pairs.json,sha256=qNbvIDdJ7Dss-T5bmSCxuUZ-e7UpjPStq7MbTjE-Sqc,6400
1053
- wisent/examples/scripts/results/test_afrimmlu_evaluation.json,sha256=skwDyoaU4zTpk_Qg-HFAcSKR3R2OEERRi20xFKy0CmM,12575
1054
- wisent/examples/scripts/results/test_afrimmlu_pairs.json,sha256=uOQ6MK9iXNt4c4h5S3-RI1KdBCV38T2FMPBWhqb4FEc,4851
1055
992
  wisent/parameters/__init__.py,sha256=dwyW8F6LSMPM-H4zQX6gn7x5qPs78oNAMYRiRPJ8UCk,36
1056
993
  wisent/parameters/lm_eval/all_lm_eval_task_families.json,sha256=MAFcazf3UoDplgaeWdkcKpAOzFRHyc5yLoXLqOwyFvc,2555
1057
994
  wisent/parameters/lm_eval/broken_in_lm_eval.json,sha256=v1sON6hTeKxORXVNrW_WJsIyFWhdIkOWwEXX2V5u2XE,3223
@@ -1114,9 +1051,9 @@ wisent/tests/nosense/__init__.py,sha256=sH3x4jRPzFM3YmQkdrwJoz-BdOQ1Bh6F95G5HWyI
1114
1051
  wisent/tests/nosense/base_nosense.py,sha256=a18dBv1378nHly7OCIuk-bCcLnubss3XXDC1ex0zCK8,2633
1115
1052
  wisent/tests/nosense/math500_nosense.py,sha256=My0dHsr4OFOiTxb_VDKmGzpoMyzAtqXlHhA0oPfaG7s,2389
1116
1053
  wisent/tests/nosense/test_robustness.py,sha256=eeKji-_ls6tx7tuXqUO4BXxFRK-giJVihENAJVOvzSs,12546
1117
- wisent-0.7.901.dist-info/licenses/LICENSE,sha256=wy0iaw8b2tyqZAfKHib3lP3PJ9o88FDCg92oUHh3sDQ,1073
1118
- wisent-0.7.901.dist-info/METADATA,sha256=gA_lnwxajFyuc_Dr9wFJ7v9cLeQc27KELDeDiDX4ugo,2125
1119
- wisent-0.7.901.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1120
- wisent-0.7.901.dist-info/entry_points.txt,sha256=BM76j3xjtIcVZGk24iDf5w18s6SuqeOpaiAxfZhpnY8,49
1121
- wisent-0.7.901.dist-info/top_level.txt,sha256=2Ts9Iyldnb3auIN2HBBaHPknRy7nSRDm2f6RGzYgr8A,7
1122
- wisent-0.7.901.dist-info/RECORD,,
1054
+ wisent-0.7.1116.dist-info/licenses/LICENSE,sha256=wy0iaw8b2tyqZAfKHib3lP3PJ9o88FDCg92oUHh3sDQ,1073
1055
+ wisent-0.7.1116.dist-info/METADATA,sha256=cqzQybnciKNc9kdk5CANYsUeztRR75AX-AKOArfAN8g,2260
1056
+ wisent-0.7.1116.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1057
+ wisent-0.7.1116.dist-info/entry_points.txt,sha256=BM76j3xjtIcVZGk24iDf5w18s6SuqeOpaiAxfZhpnY8,49
1058
+ wisent-0.7.1116.dist-info/top_level.txt,sha256=2Ts9Iyldnb3auIN2HBBaHPknRy7nSRDm2f6RGzYgr8A,7
1059
+ wisent-0.7.1116.dist-info/RECORD,,