wisent 0.7.901__py3-none-any.whl → 0.7.1045__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wisent/__init__.py +1 -1
- wisent/comparison/__init__.py +1 -0
- wisent/comparison/detect_bos_features.py +275 -0
- wisent/comparison/fgaa.py +465 -0
- wisent/comparison/lora.py +669 -0
- wisent/comparison/lora_dpo.py +592 -0
- wisent/comparison/main.py +444 -0
- wisent/comparison/ours.py +76 -0
- wisent/comparison/sae.py +304 -0
- wisent/comparison/utils.py +381 -0
- wisent/core/activations/activations_collector.py +3 -2
- wisent/core/activations/extraction_strategy.py +8 -4
- wisent/core/cli/agent/apply_steering.py +7 -5
- wisent/core/cli/agent/train_classifier.py +4 -3
- wisent/core/cli/generate_vector_from_task.py +11 -20
- wisent/core/cli/get_activations.py +1 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py +20 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py +8 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py +8 -1
- wisent/core/parser_arguments/generate_vector_from_task_parser.py +4 -11
- wisent/core/parser_arguments/get_activations_parser.py +5 -14
- {wisent-0.7.901.dist-info → wisent-0.7.1045.dist-info}/METADATA +5 -1
- {wisent-0.7.901.dist-info → wisent-0.7.1045.dist-info}/RECORD +27 -91
- wisent/examples/contrastive_pairs/humanization_human_vs_ai.json +0 -2112
- wisent/examples/scripts/1/test_basqueglue_evaluation.json +0 -51
- wisent/examples/scripts/1/test_basqueglue_pairs.json +0 -14
- wisent/examples/scripts/1/test_bec2016eu_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bec2016eu_pairs.json +0 -14
- wisent/examples/scripts/1/test_belebele_evaluation.json +0 -51
- wisent/examples/scripts/1/test_belebele_pairs.json +0 -14
- wisent/examples/scripts/1/test_benchmarks_evaluation.json +0 -51
- wisent/examples/scripts/1/test_benchmarks_pairs.json +0 -14
- wisent/examples/scripts/1/test_bertaqa_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bertaqa_pairs.json +0 -14
- wisent/examples/scripts/1/test_bhtc_v2_evaluation.json +0 -30
- wisent/examples/scripts/1/test_bhtc_v2_pairs.json +0 -8
- wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json +0 -30
- wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json +0 -8
- wisent/examples/scripts/1/test_cabreu_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cabreu_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_en_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_en_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catalanqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catalanqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catcola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catcola_pairs.json +0 -8
- wisent/examples/scripts/1/test_chartqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_chartqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json +0 -30
- wisent/examples/scripts/1/test_claim_stance_topic_pairs.json +0 -8
- wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cnn_dailymail_pairs.json +0 -8
- wisent/examples/scripts/1/test_cocoteros_es_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cocoteros_es_pairs.json +0 -8
- wisent/examples/scripts/1/test_coedit_gec_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coedit_gec_pairs.json +0 -8
- wisent/examples/scripts/1/test_cola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cola_pairs.json +0 -8
- wisent/examples/scripts/1/test_coqcat_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coqcat_pairs.json +0 -8
- wisent/examples/scripts/1/test_dbpedia_14_evaluation.json +0 -30
- wisent/examples/scripts/1/test_dbpedia_14_pairs.json +0 -8
- wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json +0 -30
- wisent/examples/scripts/1/test_epec_koref_bin_pairs.json +0 -8
- wisent/examples/scripts/1/test_ethos_binary_evaluation.json +0 -30
- wisent/examples/scripts/1/test_ethos_binary_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_arc_ar_evaluation.json +0 -30
- wisent/examples/scripts/2/test_arc_ar_pairs.json +0 -8
- wisent/examples/scripts/2/test_atis_evaluation.json +0 -30
- wisent/examples/scripts/2/test_atis_pairs.json +0 -8
- wisent/examples/scripts/2/test_babi_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babi_pairs.json +0 -8
- wisent/examples/scripts/2/test_babilong_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babilong_pairs.json +0 -8
- wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json +0 -30
- wisent/examples/scripts/2/test_bangla_mmlu_pairs.json +0 -8
- wisent/examples/scripts/2/test_basque-glue_pairs.json +0 -14
- wisent/examples/scripts/generate_paper_data.py +0 -384
- wisent/examples/scripts/intervention_validation.py +0 -626
- wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_evaluation.json +0 -324
- wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_pairs.json +0 -92
- wisent/examples/scripts/results/test_aexams_IslamicStudies_evaluation.json +0 -324
- wisent/examples/scripts/results/test_aexams_IslamicStudies_pairs.json +0 -92
- wisent/examples/scripts/results/test_afrimgsm_pairs.json +0 -92
- wisent/examples/scripts/results/test_afrimmlu_evaluation.json +0 -324
- wisent/examples/scripts/results/test_afrimmlu_pairs.json +0 -92
- wisent/examples/scripts/threshold_analysis.py +0 -434
- wisent/examples/scripts/visualization_gallery.py +0 -582
- {wisent-0.7.901.dist-info → wisent-0.7.1045.dist-info}/WHEEL +0 -0
- {wisent-0.7.901.dist-info → wisent-0.7.1045.dist-info}/entry_points.txt +0 -0
- {wisent-0.7.901.dist-info → wisent-0.7.1045.dist-info}/licenses/LICENSE +0 -0
- {wisent-0.7.901.dist-info → wisent-0.7.1045.dist-info}/top_level.txt +0 -0
|
@@ -101,8 +101,9 @@ class ExtractionStrategy(str, Enum):
|
|
|
101
101
|
Returns:
|
|
102
102
|
Appropriate strategy for the tokenizer type
|
|
103
103
|
"""
|
|
104
|
-
has_chat = hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
|
|
105
|
-
|
|
104
|
+
has_chat = (hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
|
|
105
|
+
and hasattr(tokenizer, "chat_template") and tokenizer.chat_template is not None)
|
|
106
|
+
|
|
106
107
|
if has_chat:
|
|
107
108
|
return cls.MC_BALANCED if prefer_mc else cls.CHAT_LAST
|
|
108
109
|
else:
|
|
@@ -128,7 +129,8 @@ class ExtractionStrategy(str, Enum):
|
|
|
128
129
|
Returns:
|
|
129
130
|
The appropriate strategy for the tokenizer
|
|
130
131
|
"""
|
|
131
|
-
has_chat = hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
|
|
132
|
+
has_chat = (hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
|
|
133
|
+
and hasattr(tokenizer, "chat_template") and tokenizer.chat_template is not None)
|
|
132
134
|
is_base_strategy = cls.is_base_model_strategy(strategy)
|
|
133
135
|
|
|
134
136
|
if has_chat and is_base_strategy:
|
|
@@ -158,7 +160,9 @@ class ExtractionStrategy(str, Enum):
|
|
|
158
160
|
|
|
159
161
|
def tokenizer_has_chat_template(tokenizer) -> bool:
|
|
160
162
|
"""Check if tokenizer supports chat template."""
|
|
161
|
-
|
|
163
|
+
has_method = hasattr(tokenizer, "apply_chat_template") and callable(getattr(tokenizer, "apply_chat_template"))
|
|
164
|
+
has_template = hasattr(tokenizer, "chat_template") and tokenizer.chat_template is not None
|
|
165
|
+
return has_method and has_template
|
|
162
166
|
|
|
163
167
|
|
|
164
168
|
# Random tokens for role_play strategy (deterministic based on prompt hash)
|
|
@@ -19,7 +19,7 @@ def _map_token_aggregation(aggregation_str: str):
|
|
|
19
19
|
|
|
20
20
|
def _map_prompt_strategy(strategy_str: str):
|
|
21
21
|
"""Map string prompt strategy to ExtractionStrategy."""
|
|
22
|
-
|
|
22
|
+
|
|
23
23
|
|
|
24
24
|
mapping = {
|
|
25
25
|
"chat_template": ExtractionStrategy.CHAT_LAST,
|
|
@@ -111,8 +111,9 @@ def apply_steering_and_evaluate(
|
|
|
111
111
|
|
|
112
112
|
updated_pair = collector.collect(
|
|
113
113
|
pair, strategy=aggregation_strategy,
|
|
114
|
-
|
|
115
|
-
|
|
114
|
+
return_full_sequence=return_full_sequence,
|
|
115
|
+
normalize_layers=normalize_layers,
|
|
116
|
+
prompt_strategy=prompt_construction_strategy
|
|
116
117
|
)
|
|
117
118
|
enriched_pairs.append(updated_pair)
|
|
118
119
|
|
|
@@ -173,8 +174,9 @@ def apply_steering_and_evaluate(
|
|
|
173
174
|
|
|
174
175
|
steered_evaluated_pair = collector.collect(
|
|
175
176
|
steered_dummy_pair, strategy=aggregation_strategy,
|
|
176
|
-
|
|
177
|
-
|
|
177
|
+
return_full_sequence=return_full_sequence,
|
|
178
|
+
normalize_layers=normalize_layers,
|
|
179
|
+
prompt_strategy=prompt_construction_strategy
|
|
178
180
|
)
|
|
179
181
|
|
|
180
182
|
steered_quality = 0.0
|
|
@@ -33,7 +33,7 @@ def _map_token_aggregation(aggregation_str: str):
|
|
|
33
33
|
|
|
34
34
|
def _map_prompt_strategy(strategy_str: str):
|
|
35
35
|
"""Map string prompt strategy to ExtractionStrategy."""
|
|
36
|
-
|
|
36
|
+
|
|
37
37
|
|
|
38
38
|
mapping = {
|
|
39
39
|
"chat_template": ExtractionStrategy.CHAT_LAST,
|
|
@@ -120,8 +120,9 @@ def train_classifier_on_pairs(
|
|
|
120
120
|
|
|
121
121
|
updated_pair = collector.collect(
|
|
122
122
|
pair, strategy=aggregation_strategy,
|
|
123
|
-
|
|
124
|
-
|
|
123
|
+
return_full_sequence=return_full_sequence,
|
|
124
|
+
normalize_layers=normalize_layers,
|
|
125
|
+
prompt_strategy=prompt_construction_strategy
|
|
125
126
|
)
|
|
126
127
|
enriched_training_pairs.append(updated_pair)
|
|
127
128
|
|
|
@@ -30,8 +30,7 @@ def _load_optimal_defaults(model_name: str, task_name: str, args):
|
|
|
30
30
|
"layer": result.layer,
|
|
31
31
|
"strength": result.strength,
|
|
32
32
|
"strategy": result.strategy,
|
|
33
|
-
"
|
|
34
|
-
"prompt_strategy": result.prompt_strategy,
|
|
33
|
+
"extraction_strategy": getattr(result, 'extraction_strategy', None),
|
|
35
34
|
"score": result.score,
|
|
36
35
|
}
|
|
37
36
|
|
|
@@ -89,31 +88,24 @@ def execute_generate_vector_from_task(args):
|
|
|
89
88
|
print(f" Method: {optimal_config['method']}")
|
|
90
89
|
print(f" Layer: {optimal_config['layer']}")
|
|
91
90
|
print(f" Strength: {optimal_config['strength']}")
|
|
92
|
-
|
|
91
|
+
if optimal_config.get('extraction_strategy'):
|
|
92
|
+
print(f" Extraction Strategy: {optimal_config['extraction_strategy']}")
|
|
93
93
|
print(f" Score: {optimal_config['score']:.3f}")
|
|
94
94
|
print(f"{'='*60}")
|
|
95
|
-
|
|
95
|
+
|
|
96
96
|
# Apply optimal defaults if user didn't explicitly override
|
|
97
97
|
if not getattr(args, '_layers_set_by_user', False) and args.layers is None:
|
|
98
98
|
args.layers = str(optimal_config['layer'])
|
|
99
99
|
print(f" → Using optimal layer: {args.layers}")
|
|
100
|
-
|
|
101
|
-
if not getattr(args, '
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
"mean_pooling": "average",
|
|
106
|
-
"first_token": "first",
|
|
107
|
-
"max_pooling": "max",
|
|
108
|
-
}
|
|
109
|
-
mapped_agg = token_agg_map.get(optimal_config['token_aggregation'], args.token_aggregation)
|
|
110
|
-
args.token_aggregation = mapped_agg
|
|
111
|
-
print(f" → Using optimal token aggregation: {args.token_aggregation}")
|
|
112
|
-
|
|
100
|
+
|
|
101
|
+
if not getattr(args, '_extraction_strategy_set_by_user', False) and optimal_config.get('extraction_strategy'):
|
|
102
|
+
args.extraction_strategy = optimal_config['extraction_strategy']
|
|
103
|
+
print(f" → Using optimal extraction strategy: {args.extraction_strategy}")
|
|
104
|
+
|
|
113
105
|
if not getattr(args, '_method_set_by_user', False):
|
|
114
106
|
args.method = optimal_config['method'].lower()
|
|
115
107
|
print(f" → Using optimal method: {args.method}")
|
|
116
|
-
|
|
108
|
+
|
|
117
109
|
# Store optimal config for later use
|
|
118
110
|
args._optimal_config = optimal_config
|
|
119
111
|
print()
|
|
@@ -176,8 +168,7 @@ def execute_generate_vector_from_task(args):
|
|
|
176
168
|
model=args.model,
|
|
177
169
|
device=args.device,
|
|
178
170
|
layers=args.layers,
|
|
179
|
-
|
|
180
|
-
prompt_strategy=args.prompt_strategy,
|
|
171
|
+
extraction_strategy=args.extraction_strategy,
|
|
181
172
|
verbose=args.verbose,
|
|
182
173
|
timing=args.timing,
|
|
183
174
|
)
|
|
@@ -114,7 +114,7 @@ def execute_get_activations(args):
|
|
|
114
114
|
'trait_label': trait_label,
|
|
115
115
|
'model': args.model,
|
|
116
116
|
'layers': layers,
|
|
117
|
-
'
|
|
117
|
+
'extraction_strategy': extraction_strategy.value,
|
|
118
118
|
'num_pairs': len(enriched_pairs),
|
|
119
119
|
'pairs': []
|
|
120
120
|
}
|
|
@@ -85,8 +85,8 @@ class BoolQExtractor(LMEvalBenchmarkExtractor):
|
|
|
85
85
|
)
|
|
86
86
|
return None
|
|
87
87
|
|
|
88
|
-
correct = "
|
|
89
|
-
incorrect = "
|
|
88
|
+
correct = "yes" if label == 1 else "no"
|
|
89
|
+
incorrect = "no" if label == 1 else "yes"
|
|
90
90
|
|
|
91
91
|
prompt = f"{passage}\nQuestion: {question}?\nAnswer:"
|
|
92
92
|
|
|
@@ -114,4 +114,21 @@ class BoolQExtractor(LMEvalBenchmarkExtractor):
|
|
|
114
114
|
) -> ContrastivePair:
|
|
115
115
|
positive_response = PositiveResponse(model_response=correct)
|
|
116
116
|
negative_response = NegativeResponse(model_response=incorrect)
|
|
117
|
-
return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
|
|
117
|
+
return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
|
|
118
|
+
|
|
119
|
+
@staticmethod
|
|
120
|
+
def extract_choices_and_answer(task, doc: dict[str, Any]) -> tuple[list[str], str]:
|
|
121
|
+
"""
|
|
122
|
+
Extract choices and expected answer from a BoolQ document.
|
|
123
|
+
|
|
124
|
+
Args:
|
|
125
|
+
task: lm-eval task instance (has doc_to_choice, doc_to_target methods)
|
|
126
|
+
doc: BoolQ document
|
|
127
|
+
|
|
128
|
+
Returns:
|
|
129
|
+
Tuple of (choices, expected_answer)
|
|
130
|
+
"""
|
|
131
|
+
choices = task.doc_to_choice(doc)
|
|
132
|
+
target_idx = task.doc_to_target(doc)
|
|
133
|
+
expected = choices[target_idx]
|
|
134
|
+
return choices, expected
|
|
@@ -114,4 +114,11 @@ class CBExtractor(LMEvalBenchmarkExtractor):
|
|
|
114
114
|
) -> ContrastivePair:
|
|
115
115
|
positive_response = PositiveResponse(model_response=correct)
|
|
116
116
|
negative_response = NegativeResponse(model_response=incorrect)
|
|
117
|
-
return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
|
|
117
|
+
return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
|
|
118
|
+
|
|
119
|
+
@staticmethod
|
|
120
|
+
def extract_choices_and_answer(task, doc: dict[str, Any]) -> tuple[list[str], str]:
|
|
121
|
+
choices = task.doc_to_choice(doc)
|
|
122
|
+
target_idx = task.doc_to_target(doc)
|
|
123
|
+
expected = choices[target_idx]
|
|
124
|
+
return choices, expected
|
|
@@ -115,4 +115,11 @@ class TruthfulQAMC1Extractor(LMEvalBenchmarkExtractor):
|
|
|
115
115
|
) -> ContrastivePair:
|
|
116
116
|
positive_response = PositiveResponse(model_response=correct)
|
|
117
117
|
negative_response = NegativeResponse(model_response=incorrect)
|
|
118
|
-
return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
|
|
118
|
+
return ContrastivePair(prompt=question, positive_response=positive_response, negative_response=negative_response, label=metadata.get("label"))
|
|
119
|
+
|
|
120
|
+
@staticmethod
|
|
121
|
+
def extract_choices_and_answer(task, doc: dict[str, Any]) -> tuple[list[str], str]:
|
|
122
|
+
choices = task.doc_to_choice(doc)
|
|
123
|
+
target_idx = task.doc_to_target(doc)
|
|
124
|
+
expected = choices[target_idx]
|
|
125
|
+
return choices, expected
|
|
@@ -66,18 +66,11 @@ def setup_generate_vector_from_task_parser(parser: argparse.ArgumentParser) -> N
|
|
|
66
66
|
help="Comma-separated layer indices (e.g., '8,12,16') or 'all' (default: all layers)"
|
|
67
67
|
)
|
|
68
68
|
parser.add_argument(
|
|
69
|
-
"--
|
|
69
|
+
"--extraction-strategy",
|
|
70
70
|
type=str,
|
|
71
|
-
choices=["
|
|
72
|
-
default="
|
|
73
|
-
help="
|
|
74
|
-
)
|
|
75
|
-
parser.add_argument(
|
|
76
|
-
"--prompt-strategy",
|
|
77
|
-
type=str,
|
|
78
|
-
choices=["chat_template", "direct_completion", "instruction_following", "multiple_choice", "role_playing"],
|
|
79
|
-
default="chat_template",
|
|
80
|
-
help="Prompt construction strategy (default: chat_template)"
|
|
71
|
+
choices=["chat_mean", "chat_first", "chat_last", "chat_gen_point", "chat_max_norm", "chat_weighted", "role_play", "mc_balanced", "completion_last", "completion_mean", "mc_completion"],
|
|
72
|
+
default="chat_mean",
|
|
73
|
+
help="Extraction strategy. Chat models: chat_mean, chat_first, chat_last, chat_max_norm, chat_weighted, role_play, mc_balanced. Base models: completion_last, completion_mean, mc_completion"
|
|
81
74
|
)
|
|
82
75
|
|
|
83
76
|
# Steering vector creation
|
|
@@ -45,22 +45,13 @@ def setup_get_activations_parser(parser: argparse.ArgumentParser) -> None:
|
|
|
45
45
|
help="Comma-separated layer indices (e.g., '8,12,15') or 'all' for all layers"
|
|
46
46
|
)
|
|
47
47
|
|
|
48
|
-
#
|
|
48
|
+
# Extraction strategy (combines prompt format and token selection)
|
|
49
49
|
parser.add_argument(
|
|
50
|
-
"--
|
|
50
|
+
"--extraction-strategy",
|
|
51
51
|
type=str,
|
|
52
|
-
choices=["
|
|
53
|
-
default="
|
|
54
|
-
help="
|
|
55
|
-
)
|
|
56
|
-
|
|
57
|
-
# Prompt construction strategy
|
|
58
|
-
parser.add_argument(
|
|
59
|
-
"--prompt-strategy",
|
|
60
|
-
type=str,
|
|
61
|
-
choices=["chat_template", "direct_completion", "instruction_following", "multiple_choice", "role_playing"],
|
|
62
|
-
default="chat_template",
|
|
63
|
-
help="Prompt construction strategy (default: chat_template)"
|
|
52
|
+
choices=["chat_mean", "chat_first", "chat_last", "chat_gen_point", "chat_max_norm", "chat_weighted", "role_play", "mc_balanced", "completion_last", "completion_mean", "mc_completion"],
|
|
53
|
+
default="chat_mean",
|
|
54
|
+
help="Extraction strategy. Chat models: chat_mean, chat_first, chat_last, chat_max_norm, chat_weighted, role_play, mc_balanced. Base models: completion_last, completion_mean, mc_completion"
|
|
64
55
|
)
|
|
65
56
|
|
|
66
57
|
# Processing options
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: wisent
|
|
3
|
-
Version: 0.7.
|
|
3
|
+
Version: 0.7.1045
|
|
4
4
|
Summary: Monitor and influence AI Brains
|
|
5
5
|
Home-page: https://github.com/wisent-ai/wisent
|
|
6
6
|
Author: Lukasz Bartoszcze and the Wisent Team
|
|
@@ -27,10 +27,14 @@ Requires-Dist: faiss-cpu>=1.7.0
|
|
|
27
27
|
Requires-Dist: uncensorbench>=0.2.0
|
|
28
28
|
Requires-Dist: pebble>=5.0.0
|
|
29
29
|
Requires-Dist: latex2sympy2_extended>=1.0.0
|
|
30
|
+
Requires-Dist: sae_lens>=0.1.0
|
|
31
|
+
Requires-Dist: trl>=0.7.0
|
|
30
32
|
Provides-Extra: harness
|
|
31
33
|
Requires-Dist: lm-eval==0.4.8; extra == "harness"
|
|
32
34
|
Provides-Extra: cuda
|
|
33
35
|
Requires-Dist: flash-attn>=2.5.0; extra == "cuda"
|
|
36
|
+
Provides-Extra: sparsify
|
|
37
|
+
Requires-Dist: sparsify>=0.1.0; extra == "sparsify"
|
|
34
38
|
Dynamic: author
|
|
35
39
|
Dynamic: author-email
|
|
36
40
|
Dynamic: classifier
|
|
@@ -1,5 +1,14 @@
|
|
|
1
|
-
wisent/__init__.py,sha256=
|
|
1
|
+
wisent/__init__.py,sha256=oKtv5teWo_CHXelrihedQJtVKHc28HLqOA7-Vsehafg,1230
|
|
2
2
|
wisent/cli.py,sha256=XKzGIGstr38EowHYpr821c6YuV9Eaw3I1I3NvLztTO0,3960
|
|
3
|
+
wisent/comparison/__init__.py,sha256=DD_QZfE8XrEEbVTd_l6D5kjxnkOJ-BTQ-mvlu8WPmew,56
|
|
4
|
+
wisent/comparison/detect_bos_features.py,sha256=T5ewM_eY1Sqic9xr30fU0nmd_ZF6Kj477G4UxNo4w5Y,9799
|
|
5
|
+
wisent/comparison/fgaa.py,sha256=la1Qs8GUfKB7FGI-WgaCMc24KOVEpDnD5fNdntp3-Q4,15576
|
|
6
|
+
wisent/comparison/lora.py,sha256=j-m1ulhu_MA3YB9N-hcitixzXsSDsskL1kIjbzF0uRo,23702
|
|
7
|
+
wisent/comparison/lora_dpo.py,sha256=zG3MB77kAC_vIo30OjwKlmC0zqcg_lnteSqauW4usBY,20885
|
|
8
|
+
wisent/comparison/main.py,sha256=7jWBXPfvLszDHcWHdCO4hV7v_jB8B9UfjE545pMyf4w,17625
|
|
9
|
+
wisent/comparison/ours.py,sha256=aMwd4v5Gx-4fLzsA5JI-qHXDvOPBKeUk--5dpbHubfU,1951
|
|
10
|
+
wisent/comparison/sae.py,sha256=3wU7NLkWm3FMlWV9dCdzc5EcpxecelizNyQh65yHE10,9663
|
|
11
|
+
wisent/comparison/utils.py,sha256=7bundfls_zD1WnMjrLLbyf60WuO9nsV0hs5pPt9VvzY,10679
|
|
3
12
|
wisent/core/__init__.py,sha256=x1MX4vKpKP3c2FuIHcFly-UkoZwGVnRPbzcFaxr_Jdo,1340
|
|
4
13
|
wisent/core/autonomous_agent.py,sha256=rtJ5XlWqPys7c1PBFkUBHGg9Ox6_LDjeoiNPEph6NA4,48667
|
|
5
14
|
wisent/core/benchmark_extractors.py,sha256=BtGoL23n9EzSGoywymSh8uIhlr8T_LU8y-hp7et1vIk,13616
|
|
@@ -38,9 +47,9 @@ wisent/core/wisent.py,sha256=yglyOL-10ptlTVTshgjuXle3PXo-fdWJiZPx8oLyabM,21076
|
|
|
38
47
|
wisent/core/activations/__init__.py,sha256=KjKMOPbPMmi1iMQMH6ALkcwa8pZLK8dpbz0cHGVjl_M,1352
|
|
39
48
|
wisent/core/activations/activation_cache.py,sha256=Tc-qH26Ht_E9wtQYJHnEMtea3dvB8x9XWaZOAQ2oPtA,13784
|
|
40
49
|
wisent/core/activations/activations.py,sha256=ljDkyCPiFyIt-SA43m-vJh3U2pcYIMenYxm46Vy4B1I,3200
|
|
41
|
-
wisent/core/activations/activations_collector.py,sha256=
|
|
50
|
+
wisent/core/activations/activations_collector.py,sha256=Ms-ekj5VorbOsJePwi3NO_x1jji5kP8ibkaPN-7kaNk,10575
|
|
42
51
|
wisent/core/activations/classifier_inference_strategy.py,sha256=Nw7xz08vgxJoMAUbCOT-vY118815STjh8iOZGbiBBU8,7054
|
|
43
|
-
wisent/core/activations/extraction_strategy.py,sha256=
|
|
52
|
+
wisent/core/activations/extraction_strategy.py,sha256=MZHHlPhGFboQyycvGiM-lS4K7kStcpUtzDqcWmQnvmU,20156
|
|
44
53
|
wisent/core/activations/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
45
54
|
wisent/core/activations/core/atoms.py,sha256=wfPhgSt7NP_4xkyYZA6T62KTM2DUkq1Jj-FJeRd9Kko,5383
|
|
46
55
|
wisent/core/adapters/__init__.py,sha256=UZkssKYL4-Jl_F29x29MQr6L4899lpK-eFvFa_qGa8Y,712
|
|
@@ -94,9 +103,9 @@ wisent/core/cli/generate_pairs.py,sha256=KT88DaRMv5UcQwkLY9hf8uF3vuq9i3pWSnAL6Ne
|
|
|
94
103
|
wisent/core/cli/generate_pairs_from_task.py,sha256=OfxO-JpiYncUvRZL6AEbGzHNJm7QhGGZ3d9YxShXq2Q,2130
|
|
95
104
|
wisent/core/cli/generate_responses.py,sha256=nPEwQ8_EVjRbr0lhsCl8sacQzvt5XgDUOONSwRyI--U,5238
|
|
96
105
|
wisent/core/cli/generate_vector_from_synthetic.py,sha256=Fc9vcd7-1VTqHy8-gjTuPiCC7FIP1rxTajZf8TFSIi8,8868
|
|
97
|
-
wisent/core/cli/generate_vector_from_task.py,sha256=
|
|
106
|
+
wisent/core/cli/generate_vector_from_task.py,sha256=9U-Z6aB7KnNhTR1Tdq8FBJngJskUqB0ClD2QkSycHmg,9755
|
|
98
107
|
wisent/core/cli/geometry_search.py,sha256=DOXjzEspdcnLNhjZKf_Mapi33mMVi2LMXpQNLQkE5zI,5503
|
|
99
|
-
wisent/core/cli/get_activations.py,sha256=
|
|
108
|
+
wisent/core/cli/get_activations.py,sha256=FLUT9jIG686IDtjS5d3-ML0ZGxb91nZqaG1yOuJ88s0,6597
|
|
100
109
|
wisent/core/cli/inference_config.py,sha256=iIZa0_ciBbM0Fqat0DJNd-mlWd0ANuYoeZ1v1V4jduc,3148
|
|
101
110
|
wisent/core/cli/inference_config_cli.py,sha256=CKvD3TpFYDSNtm9HdRFv0uMGInaR6iSHP8aLWYPhrfs,1786
|
|
102
111
|
wisent/core/cli/method_optimizer.py,sha256=oDfS80biqK8DsuB387KgzehoILebZ2m1_7_aL8eqgpQ,32903
|
|
@@ -114,11 +123,11 @@ wisent/core/cli/steering_search_space.py,sha256=4iGf7vTHPEE4JW1mQdq_P1vLYWyGlUek
|
|
|
114
123
|
wisent/core/cli/tasks.py,sha256=ckQ3NW8DDrHSpmxm3HZ27e6j9ex_lqKKIMTXQ97Np8k,39717
|
|
115
124
|
wisent/core/cli/train_unified_goodness.py,sha256=fOcw-9yD2tcCwUTdxqxFsfuSsCuEPZ8x7nth1gN9lnE,29079
|
|
116
125
|
wisent/core/cli/agent/__init__.py,sha256=tWH634YZVFfHmaEEQPgOn1LILIXwdpyJg5nj9tsdFz8,591
|
|
117
|
-
wisent/core/cli/agent/apply_steering.py,sha256=
|
|
126
|
+
wisent/core/cli/agent/apply_steering.py,sha256=HDeX6nhhO87z1BzNdZeaAH-1B-K4twvRNIkoQEKlQRE,6729
|
|
118
127
|
wisent/core/cli/agent/evaluate_response.py,sha256=Xk-nKSeGxTqMX7IF6tjYdTUkc_EITVIUg8XEYqZBSnk,4522
|
|
119
128
|
wisent/core/cli/agent/generate_synthetic_pairs.py,sha256=QnMuJvunEB3Icmx9TrFeMklh1fjpTMLeu8mkV_dx46w,4723
|
|
120
129
|
wisent/core/cli/agent/main.py,sha256=aZ7SIuzTmYkFTaygjTf76Fgho9CiRMIOooes5Vd7ueI,5457
|
|
121
|
-
wisent/core/cli/agent/train_classifier.py,sha256=
|
|
130
|
+
wisent/core/cli/agent/train_classifier.py,sha256=YOssusRFKIhgcEaJEYyesptGxao8LURzHS9GFl8z8ww,6967
|
|
122
131
|
wisent/core/contrastive_pairs/__init__.py,sha256=AbaAf-t_nyVVy_vLjp8WAlMDmNun3KNp_GMWAK25r9g,429
|
|
123
132
|
wisent/core/contrastive_pairs/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
124
133
|
wisent/core/contrastive_pairs/core/atoms.py,sha256=_zghw6c8iisW_SqBIUCoAnzhc5q7t5EgZ4zzTPxeLwQ,1129
|
|
@@ -475,7 +484,7 @@ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhtc.py,sha256=Vz
|
|
|
475
484
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bigbench.py,sha256=Yww82fQuUbEANLotw7vP7m_EDoA9CNRWPvgrB6B-wvM,6613
|
|
476
485
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp.py,sha256=FWLTaIqd4TuTBkLSLyu_ygHoPkbmvQhB-06mTJ6alDg,6656
|
|
477
486
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp_nl.py,sha256=LlLs75FCg2sbxbULNiiCAGbU8GZrkZNXOXEiHGQ_EK4,5865
|
|
478
|
-
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py,sha256=
|
|
487
|
+
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py,sha256=N1__j2ZxwA2_aoZPwoTr_Z7RipEDiRXZbK48Vm7a5W8,4519
|
|
479
488
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq_seq2seq.py,sha256=-B7CD59m5m7WmL6ed3Ior9Zt57kl4jTOlbOkv9p_iFY,3998
|
|
480
489
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/c4.py,sha256=gangKka_3u7PoivPFCpa_iCSk2TfO86XcGD2ysUwiWs,5684
|
|
481
490
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cabbq.py,sha256=9qX7C6QfAmaepqc89FLkaXlCinNk7W1iiphSlfurZco,5840
|
|
@@ -486,7 +495,7 @@ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench_gen
|
|
|
486
495
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench_mc.py,sha256=U27A3A9nSYqKmqSPWeVBU66eIDiw4Y7UjA0YttcELEc,4150
|
|
487
496
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalanqa.py,sha256=7GigYh1OrjB29b8E5UAbRZlWT2_IuS-ZZc8JyukRxgk,7158
|
|
488
497
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catcola.py,sha256=Q2zzNtKybvSQAQlyAJusubSur64W1eFEVyqO5e0vFRs,5411
|
|
489
|
-
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py,sha256=
|
|
498
|
+
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py,sha256=OmURgHZUND2SaZTSUhuhgKBG_d0HzHnJXin7p3Df-oE,4292
|
|
490
499
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval.py,sha256=Gx3Iw_TwdT_QK7i4iW0anY5IRjRMa5N09a1UlpKDXbM,8542
|
|
491
500
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval_valid.py,sha256=EDuO2CXJAeOE8CQylKY2MTKhH8NCwJFnP9WMZPyNskw,6224
|
|
492
501
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chain.py,sha256=b0b7oclVtf9sqxlVODN76UFG5Skua1zxfyBs_bXy1_8,4249
|
|
@@ -720,7 +729,7 @@ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/toxigen.py,sha256
|
|
|
720
729
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/translation.py,sha256=rHNpXKyLCl5qUtTw0nMjg0jW4sFOK9SOKkawc0UBH3g,5167
|
|
721
730
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/triviaqa.py,sha256=6Hc1IkZXfBtDAN7qrcFtsLcssnPnKdCXZRa6c1HHHWM,4360
|
|
722
731
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa.py,sha256=nO4LRVeTJXKkjXvDRZJ3WK4onJSYRNKx-kmYqXSIdvo,4382
|
|
723
|
-
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py,sha256=
|
|
732
|
+
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py,sha256=cRj5Uk9MKOR9FdEa64smcxpsIYcUKAaHLirxdT9RR_U,4270
|
|
724
733
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc2.py,sha256=PW686J9_AAdPyLBlsYeMQ6XROczPb1IcEjeTP_f6g6Q,4998
|
|
725
734
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_multi.py,sha256=oCWC6hY3RI9Nj04Rij71fDZCT-L17kXirkGE9fyob-I,4945
|
|
726
735
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turblimp_core.py,sha256=Cg3edq6WfVd6444Ap6YUEmKNiU4mnaqFv_HzZ3g4QEQ,5910
|
|
@@ -868,10 +877,10 @@ wisent/core/parser_arguments/generate_pairs_from_task_parser.py,sha256=wEZLIXocq
|
|
|
868
877
|
wisent/core/parser_arguments/generate_pairs_parser.py,sha256=nDTQ63bvjl-GcSrMdtcR_Pdh1dzbqtRnGaSCFhPO-4Q,1918
|
|
869
878
|
wisent/core/parser_arguments/generate_responses_parser.py,sha256=LnjIx7gOdysEMGwUIHFHlaEOE306qr4rXto9gzBSjkg,1345
|
|
870
879
|
wisent/core/parser_arguments/generate_vector_from_synthetic_parser.py,sha256=MvwLJYm-23pAwAocJqrjWS12RlAMW70ATCEWa2VfJ2w,4225
|
|
871
|
-
wisent/core/parser_arguments/generate_vector_from_task_parser.py,sha256=
|
|
880
|
+
wisent/core/parser_arguments/generate_vector_from_task_parser.py,sha256=LweAwx14bdchW_Z5GKVAenBPsMMcmTjAajYtwcvFef0,4849
|
|
872
881
|
wisent/core/parser_arguments/generate_vector_parser.py,sha256=bf2PHAdvNZetXaSe3sKarvK6McIODPdmRSNRQN_rHto,3622
|
|
873
882
|
wisent/core/parser_arguments/geometry_search_parser.py,sha256=-ytDrseoIRJnjMq8pvh6jE9fxn5IXDCVmZB_5wlub8Q,1739
|
|
874
|
-
wisent/core/parser_arguments/get_activations_parser.py,sha256=
|
|
883
|
+
wisent/core/parser_arguments/get_activations_parser.py,sha256=GcPXhSRXhcsXKl7zeW3IXi7yF-5eUe_68xOfQVD8tME,2379
|
|
875
884
|
wisent/core/parser_arguments/inference_config_parser.py,sha256=-TAcjy8yTzDKWFc42JCmVtGq1MowQI-IauRNFNj_se0,1853
|
|
876
885
|
wisent/core/parser_arguments/main_parser.py,sha256=6RPGpcf5eXqMpSK4adVVU_vJit3pICZMoAzgjpcb29c,12789
|
|
877
886
|
wisent/core/parser_arguments/model_config_parser.py,sha256=RlcSyQkj0uDlmJJE8sMq_CjvJ1VdCcjf8_BqspsSHd0,3210
|
|
@@ -966,14 +975,11 @@ wisent/core/weight_modification/export.py,sha256=zikHU9dGDswa61ZPd_xo61kAdNt46O1
|
|
|
966
975
|
wisent/core/weight_modification/multi_direction.py,sha256=tpnEG54GHIzWmytt3ajUmwTbl2_ClpZS7AebJHHrkfA,12858
|
|
967
976
|
wisent/core/weight_modification/utils.py,sha256=h6QM5FrpvOu29_6YZNvs5bwBuJBvVgtBo18RQ_MW3_o,6907
|
|
968
977
|
wisent/examples/__init__.py,sha256=gaDcawBaga7CMOkxnu9cTGP2-Xq0bN1IkWZiDEPPCoM,18
|
|
969
|
-
wisent/examples/contrastive_pairs/humanization_human_vs_ai.json,sha256=7D6GpW-B99nXnhLj2q7WYZp5DWu8AMFzk3uyq7ambV0,247507
|
|
970
978
|
wisent/examples/scripts/__init__.py,sha256=HmFOUP_4AjzolMRK2FXhLzz_u29L-GxpppYUjW7M-Kw,30
|
|
971
979
|
wisent/examples/scripts/benchmark_tags.json,sha256=JjZGitGdgbJPXxk6PXGDsEaQBvAKlwJOAcET4rucRWA,29279
|
|
972
980
|
wisent/examples/scripts/count_all_benchmarks.py,sha256=WjgyFCV07QgOQfxV0_04GcQYi7eRaEfb3CipPYjAcHM,3913
|
|
973
981
|
wisent/examples/scripts/discover_directions.py,sha256=3KJjksYda9UB_GrFV3pNmgTfTi3u_Gxz0zpgZkncyD8,17532
|
|
974
982
|
wisent/examples/scripts/extract_benchmark_info.py,sha256=3JME-s-6UUBuQRBOlM5TgVyMu9pkLbF4jdm_QB9Dfuk,2243
|
|
975
|
-
wisent/examples/scripts/generate_paper_data.py,sha256=zKHG54r-gYtqvdhJJONXjtBsGtVeMpOEu2RbFOG-74I,14467
|
|
976
|
-
wisent/examples/scripts/intervention_validation.py,sha256=mrxM2E0DZgtxMuXi_LPJ0NFyGDSU0ZMwC1qk4I65Pv4,21962
|
|
977
983
|
wisent/examples/scripts/lm_eval_readme.json,sha256=X5bYjQrAUw031rjjFlrTlxxnllWGBSlqywF5kjh4mOw,89869
|
|
978
984
|
wisent/examples/scripts/search_all_short_names.py,sha256=brLUqAKTnmo4KA3v3vnou0BWOXUK2M0qpofPSXC0du0,1191
|
|
979
985
|
wisent/examples/scripts/test_all_benchmarks.py,sha256=oKwCgbSPQcQwRrjRjWdWn6Cz-JRBrRiWu7svwnWJc-g,4207
|
|
@@ -982,76 +988,6 @@ wisent/examples/scripts/test_contrastive_pairs_all_supported.py,sha256=FIQ6P6hXf
|
|
|
982
988
|
wisent/examples/scripts/test_nonsense_baseline.py,sha256=spdWAUb7sViAGpHOJyu3HThABcsJ_eolDxyhV5fkdBY,10254
|
|
983
989
|
wisent/examples/scripts/test_one_benchmark.py,sha256=_2iy1GB2CYXooZCuSo7vJ0sKBtjLZofsWSIO0lkEtu4,13624
|
|
984
990
|
wisent/examples/scripts/test_one_coding_benchmark.py,sha256=AXoD_E6kaNnTnI4Czi9ZYhd6aLrmjZP1PKDhKIUXb_A,10427
|
|
985
|
-
wisent/examples/scripts/threshold_analysis.py,sha256=Ugp5Whn7L_7C8S8JrskfdtOXIRz31Lt1232Uva77hgM,14906
|
|
986
|
-
wisent/examples/scripts/visualization_gallery.py,sha256=DP025fuVXEJ8-CPOB0O88IGQfek__TuHFo56Y-zfNv4,20243
|
|
987
|
-
wisent/examples/scripts/1/test_basqueglue_evaluation.json,sha256=4dmo2Mu7zZ_mFhrn1EWn5grPkOhNI4XjKUYmhCoICl0,1898
|
|
988
|
-
wisent/examples/scripts/1/test_basqueglue_pairs.json,sha256=yCLswgp9q3SDzhso-pB5jbIlTHzqS_GEBtwCQgVwlXo,650
|
|
989
|
-
wisent/examples/scripts/1/test_bec2016eu_evaluation.json,sha256=rVRPrb-pot0bCu1p69ks2ltQiW_grUtRvxZonYupUY4,1897
|
|
990
|
-
wisent/examples/scripts/1/test_bec2016eu_pairs.json,sha256=yCLswgp9q3SDzhso-pB5jbIlTHzqS_GEBtwCQgVwlXo,650
|
|
991
|
-
wisent/examples/scripts/1/test_belebele_evaluation.json,sha256=xxQkvL-kBvLKhhsNsSCEni7Dw7BFoEaUMY69uJO99w0,2214
|
|
992
|
-
wisent/examples/scripts/1/test_belebele_pairs.json,sha256=h9RypNbw7geXsg7fWcBUwgJB5bS5gy0eDPGDizbouPQ,944
|
|
993
|
-
wisent/examples/scripts/1/test_benchmarks_evaluation.json,sha256=MAOCk2IdwkhJ_uDtTSNl1CrO2HxhXLwNSMTAUgZZ9Lc,1812
|
|
994
|
-
wisent/examples/scripts/1/test_benchmarks_pairs.json,sha256=KlTcdNMmXAlwArOmV3qLdfjTTSygO8Elu_eZWK3k-5A,1086
|
|
995
|
-
wisent/examples/scripts/1/test_bertaqa_evaluation.json,sha256=kto40P6Jo5UuPWvxjjLvTr_bN7MRSbATwIoWHff4BbY,1604
|
|
996
|
-
wisent/examples/scripts/1/test_bertaqa_pairs.json,sha256=7OtQCoFqK1_29r4zL8FSsF2c91KUKN4FYBeomdwfPL4,391
|
|
997
|
-
wisent/examples/scripts/1/test_bhtc_v2_evaluation.json,sha256=izOv-P-hWlmm-d27yPmscDSVLZ9UzLnX3E5nztZK10Q,904
|
|
998
|
-
wisent/examples/scripts/1/test_bhtc_v2_pairs.json,sha256=KZRti9y-wFKygQkcTM7LuimkUhcHd4qpgEGwCgPuw_0,427
|
|
999
|
-
wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json,sha256=T4qMKma5AtYicG6xFccx03GLYnLAyA-Wa-qmvACbIc4,872
|
|
1000
|
-
wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json,sha256=YZiJJSLsFTIRMfctwiXSEStI3YaznaWTbF58-eGE8OQ,1583
|
|
1001
|
-
wisent/examples/scripts/1/test_cabreu_evaluation.json,sha256=mR963WuUoU0qoC4o_-3ZvLDPfwiN_kkv5QxU4WQcSj0,7307
|
|
1002
|
-
wisent/examples/scripts/1/test_cabreu_pairs.json,sha256=RJT13aObmZiWP5f6dptqoRVM8_sznJxY8QEHH_iVeBY,6895
|
|
1003
|
-
wisent/examples/scripts/1/test_careqa_en_evaluation.json,sha256=cngnpcX1UOUEyQo9DNx519jPjtiuN7uC946sish4AB4,1675
|
|
1004
|
-
wisent/examples/scripts/1/test_careqa_en_pairs.json,sha256=Of0zuMtBLEafqCEKR5ffqC-PghQCzykMCT9N3Rp4NwI,731
|
|
1005
|
-
wisent/examples/scripts/1/test_careqa_evaluation.json,sha256=B8C75kicOK3quYBZCDhFkh-LHJV7hkINoI_6NwGu-g4,1672
|
|
1006
|
-
wisent/examples/scripts/1/test_careqa_pairs.json,sha256=Of0zuMtBLEafqCEKR5ffqC-PghQCzykMCT9N3Rp4NwI,731
|
|
1007
|
-
wisent/examples/scripts/1/test_catalanqa_evaluation.json,sha256=bomYcxWdkdabZ7ptvrPWpugAJcVNpSbKtHlfW-JXuLs,918
|
|
1008
|
-
wisent/examples/scripts/1/test_catalanqa_pairs.json,sha256=9zue9ntmKjFwKJetuLz3BX0HpBCL72000sjWT4IdkjA,952
|
|
1009
|
-
wisent/examples/scripts/1/test_catcola_evaluation.json,sha256=w2zfhB6YQ7l8szinoIni_zi8ncbIGiUuIolXa9JDrDA,918
|
|
1010
|
-
wisent/examples/scripts/1/test_catcola_pairs.json,sha256=DES1F-Bavgy_-7fl420bSb32fuSa-JQBjBwKuv1hMmE,240
|
|
1011
|
-
wisent/examples/scripts/1/test_chartqa_evaluation.json,sha256=V9Yr1qLmw3BFtnTSet3DUXaIVZAgYq431mP4doqXB1g,819
|
|
1012
|
-
wisent/examples/scripts/1/test_chartqa_pairs.json,sha256=bficR5iHawdvC465Gu2-26200Gd-4nT_MRn9Q57JVtY,163
|
|
1013
|
-
wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json,sha256=r43kMchm9NeoBqvrwRGSmdf_RQ8DkR8k-CiPnpu_COY,917
|
|
1014
|
-
wisent/examples/scripts/1/test_claim_stance_topic_pairs.json,sha256=Q4DP2sKyGgPqnerSfkLpmjGeYjUuEqdkaHLbs6GfADM,1910
|
|
1015
|
-
wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json,sha256=2xdFLCuLrI7Jhqu04QyhSPSjXPrwjKbPGhMV4kSjEl8,1710
|
|
1016
|
-
wisent/examples/scripts/1/test_cnn_dailymail_pairs.json,sha256=S1c_5HNR7YMIRy7z0fjMsRlCd5KhbPpmYXdgbl1WUIs,4727
|
|
1017
|
-
wisent/examples/scripts/1/test_cocoteros_es_evaluation.json,sha256=0EyWwlC_uDBECFVMxilzkx3fYwCrXDw-15nQjFChcS4,1181
|
|
1018
|
-
wisent/examples/scripts/1/test_cocoteros_es_pairs.json,sha256=ZzoRs2NiHtKditYWvCrR-udBw9ROFfEqKs1ZUrTp2r8,385
|
|
1019
|
-
wisent/examples/scripts/1/test_coedit_gec_evaluation.json,sha256=oNucJ-YJW0OrWf8Jmlbf6ie3lCvM_HcYY1nddcvpIN4,1762
|
|
1020
|
-
wisent/examples/scripts/1/test_coedit_gec_pairs.json,sha256=80t6Cfu9be8TpPNaF0WOsRME6YbfLVyIBJyLGEuqM9o,687
|
|
1021
|
-
wisent/examples/scripts/1/test_cola_evaluation.json,sha256=4TOycnPImbfXliX05dKc8CUTW2MR8cKihmH0DRKR7OY,915
|
|
1022
|
-
wisent/examples/scripts/1/test_cola_pairs.json,sha256=8a5Dd84Qbeuy2a3CVpNfDwX4PGhYuw60j7YsM_5YwYE,249
|
|
1023
|
-
wisent/examples/scripts/1/test_coqcat_evaluation.json,sha256=i5pKT9mUk6iS2ubiq_mkW4utZIP15oVFqCK76a-adpE,978
|
|
1024
|
-
wisent/examples/scripts/1/test_coqcat_pairs.json,sha256=GWzqrA3XI7CK6VElef36IanFOOS7uJU-uKJSQ_8lQgg,1414
|
|
1025
|
-
wisent/examples/scripts/1/test_dbpedia_14_evaluation.json,sha256=9IKJ7skQ9IChdGin5YH2C8FD4dRZwb6zYG4IypiZ4eA,889
|
|
1026
|
-
wisent/examples/scripts/1/test_dbpedia_14_pairs.json,sha256=5DCuHnpY4v9-JNSoQwOh-UG9bFBNF2CJi9RBqVTIyBc,443
|
|
1027
|
-
wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json,sha256=uptYxyqdNCvVAMXKVBzOe7MD-iagHcaPDDHzBPkeIJU,875
|
|
1028
|
-
wisent/examples/scripts/1/test_epec_koref_bin_pairs.json,sha256=_D4-SAq-KYq4Dh7Sz4Je_grkJs2A16XhYRcjWHMDBfM,395
|
|
1029
|
-
wisent/examples/scripts/1/test_ethos_binary_evaluation.json,sha256=XeHT77YVOvGVUtIqu73B6FuxkxsdtWh8-C_U-5dYhsQ,939
|
|
1030
|
-
wisent/examples/scripts/1/test_ethos_binary_pairs.json,sha256=mfqI7rEbpZlnyMCufGG5QcCyq4iOSEJHZiKEbY7Mm7M,449
|
|
1031
|
-
wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json,sha256=bDPS5GxmsmKRb6sAxErR4nogXmgSOxzIP_BOzzf9EQ8,1271
|
|
1032
|
-
wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json,sha256=xtGe0bshz2iLAbIuI12IUeOI-6LpugfhSbXUWi8dYfQ,1000
|
|
1033
|
-
wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json,sha256=eM0Rp54yfE6xswWrx4CCXRHj7Wo7ZJA5Q8i0V0lOz-0,1190
|
|
1034
|
-
wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json,sha256=DLJ7qHdvIdpzAFTDDlGqdFqYQLmdjHsVbq5PgjnrrjU,669
|
|
1035
|
-
wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json,sha256=qNsSpTnnRG8yVEfYeYV4sixnxg1XrSzrj0I0Rkkesag,1080
|
|
1036
|
-
wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json,sha256=BKbzJUR8HjFLi7IGYudSXIx94pGh9x4AvO-ZkOndsRc,386
|
|
1037
|
-
wisent/examples/scripts/2/test_arc_ar_evaluation.json,sha256=siu_sO29iLp7Dz_K475pps8TPYTwBfmxr7bPzfG6zXw,2358
|
|
1038
|
-
wisent/examples/scripts/2/test_arc_ar_pairs.json,sha256=dN5eXC6lL2WF3cpuZKOJEtTXM7P7EpFHvSkheFrMw8M,1188
|
|
1039
|
-
wisent/examples/scripts/2/test_atis_evaluation.json,sha256=pv1lWUOHOPfQUxhu8S5dvfoypxSBTPxaknMv2D9baNc,1365
|
|
1040
|
-
wisent/examples/scripts/2/test_atis_pairs.json,sha256=EieW893xtNjVBpJrJxJuTy1OvHnnZzJKPctnH1TevVE,1916
|
|
1041
|
-
wisent/examples/scripts/2/test_babi_evaluation.json,sha256=2O0czob2UoLANSIBO0BEAVNe4-gTOPdPH3sFcDA3u0k,899
|
|
1042
|
-
wisent/examples/scripts/2/test_babi_pairs.json,sha256=SjxpSXlWLOHx26XEozN6rTiYfwrkBG8rqies72sekLw,222
|
|
1043
|
-
wisent/examples/scripts/2/test_babilong_evaluation.json,sha256=sBiv35EeORDv4TOQRx3yd_SoB99LblbsTznrFbeEWUk,1454
|
|
1044
|
-
wisent/examples/scripts/2/test_babilong_pairs.json,sha256=OOWUdyqtMXUv2_WWIqTTEYX9okJXGVzIgnSYgAGljuc,41866
|
|
1045
|
-
wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json,sha256=OtR2JvARwR99QphQDprHiyv7wjLPK9583gR_rCM9RQU,2073
|
|
1046
|
-
wisent/examples/scripts/2/test_bangla_mmlu_pairs.json,sha256=GR9eXDwYdp0CBOyOZ9XF_yHv07KlDcpv8BpPF5wovXw,1340
|
|
1047
|
-
wisent/examples/scripts/2/test_basque-glue_pairs.json,sha256=yCLswgp9q3SDzhso-pB5jbIlTHzqS_GEBtwCQgVwlXo,650
|
|
1048
|
-
wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_evaluation.json,sha256=fcQJbCj5AxAT0mHqSXH6M8stbp54KpWyKJw92qaPq8E,14062
|
|
1049
|
-
wisent/examples/scripts/results/test_AraDiCE_ArabicMMLU_lev_pairs.json,sha256=inaWlBB2zpzRyO7-YB1VYH0AGsduByBJ3_kwN4yTac4,6024
|
|
1050
|
-
wisent/examples/scripts/results/test_aexams_IslamicStudies_evaluation.json,sha256=zXXxnIR6Qb7y-Qh0WE-mrS7Oq2cZ082dUlEx6KG86bs,21734
|
|
1051
|
-
wisent/examples/scripts/results/test_aexams_IslamicStudies_pairs.json,sha256=XtRDKooN-Ht9Vqf8RRQPVdOyGmh1ZAODoxmQhLHNto8,8668
|
|
1052
|
-
wisent/examples/scripts/results/test_afrimgsm_pairs.json,sha256=qNbvIDdJ7Dss-T5bmSCxuUZ-e7UpjPStq7MbTjE-Sqc,6400
|
|
1053
|
-
wisent/examples/scripts/results/test_afrimmlu_evaluation.json,sha256=skwDyoaU4zTpk_Qg-HFAcSKR3R2OEERRi20xFKy0CmM,12575
|
|
1054
|
-
wisent/examples/scripts/results/test_afrimmlu_pairs.json,sha256=uOQ6MK9iXNt4c4h5S3-RI1KdBCV38T2FMPBWhqb4FEc,4851
|
|
1055
991
|
wisent/parameters/__init__.py,sha256=dwyW8F6LSMPM-H4zQX6gn7x5qPs78oNAMYRiRPJ8UCk,36
|
|
1056
992
|
wisent/parameters/lm_eval/all_lm_eval_task_families.json,sha256=MAFcazf3UoDplgaeWdkcKpAOzFRHyc5yLoXLqOwyFvc,2555
|
|
1057
993
|
wisent/parameters/lm_eval/broken_in_lm_eval.json,sha256=v1sON6hTeKxORXVNrW_WJsIyFWhdIkOWwEXX2V5u2XE,3223
|
|
@@ -1114,9 +1050,9 @@ wisent/tests/nosense/__init__.py,sha256=sH3x4jRPzFM3YmQkdrwJoz-BdOQ1Bh6F95G5HWyI
|
|
|
1114
1050
|
wisent/tests/nosense/base_nosense.py,sha256=a18dBv1378nHly7OCIuk-bCcLnubss3XXDC1ex0zCK8,2633
|
|
1115
1051
|
wisent/tests/nosense/math500_nosense.py,sha256=My0dHsr4OFOiTxb_VDKmGzpoMyzAtqXlHhA0oPfaG7s,2389
|
|
1116
1052
|
wisent/tests/nosense/test_robustness.py,sha256=eeKji-_ls6tx7tuXqUO4BXxFRK-giJVihENAJVOvzSs,12546
|
|
1117
|
-
wisent-0.7.
|
|
1118
|
-
wisent-0.7.
|
|
1119
|
-
wisent-0.7.
|
|
1120
|
-
wisent-0.7.
|
|
1121
|
-
wisent-0.7.
|
|
1122
|
-
wisent-0.7.
|
|
1053
|
+
wisent-0.7.1045.dist-info/licenses/LICENSE,sha256=wy0iaw8b2tyqZAfKHib3lP3PJ9o88FDCg92oUHh3sDQ,1073
|
|
1054
|
+
wisent-0.7.1045.dist-info/METADATA,sha256=67956g1w6g1tTTNWWXl8qtGrXSIbMqvoEbFG13qldOM,2260
|
|
1055
|
+
wisent-0.7.1045.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
1056
|
+
wisent-0.7.1045.dist-info/entry_points.txt,sha256=BM76j3xjtIcVZGk24iDf5w18s6SuqeOpaiAxfZhpnY8,49
|
|
1057
|
+
wisent-0.7.1045.dist-info/top_level.txt,sha256=2Ts9Iyldnb3auIN2HBBaHPknRy7nSRDm2f6RGzYgr8A,7
|
|
1058
|
+
wisent-0.7.1045.dist-info/RECORD,,
|