wisent 0.7.379__py3-none-any.whl → 0.7.701__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wisent/__init__.py +1 -1
- wisent/core/activations/__init__.py +22 -6
- wisent/core/activations/activations.py +21 -39
- wisent/core/activations/activations_collector.py +141 -373
- wisent/core/activations/classifier_inference_strategy.py +194 -0
- wisent/core/activations/core/atoms.py +8 -92
- wisent/core/activations/extraction_strategy.py +308 -0
- wisent/core/agent/diagnose/response_diagnostics.py +3 -3
- wisent/core/agent/diagnose.py +3 -3
- wisent/core/autonomous_agent.py +2 -2
- wisent/core/cli/agent/apply_steering.py +23 -27
- wisent/core/cli/agent/evaluate_response.py +18 -20
- wisent/core/cli/agent/train_classifier.py +18 -20
- wisent/core/cli/cluster_benchmarks.py +472 -0
- wisent/core/cli/create_steering_vector.py +13 -5
- wisent/core/cli/generate_vector_from_task.py +4 -0
- wisent/core/cli/get_activations.py +12 -36
- wisent/core/cli/method_optimizer.py +859 -0
- wisent/core/cli/optimize.py +44 -5
- wisent/core/cli/optimize_classification.py +5 -6
- wisent/core/cli/optimize_sample_size.py +8 -22
- wisent/core/cli/optimize_steering.py +429 -153
- wisent/core/cli/optimize_weights.py +65 -6
- wisent/core/cli/steering_method_trainer.py +5 -4
- wisent/core/cli/steering_search_space.py +20 -15
- wisent/core/cli/tasks.py +14 -43
- wisent/core/cli/train_unified_goodness.py +17 -18
- wisent/core/contrastive_pairs/diagnostics/control_vectors.py +1578 -173
- wisent/core/contrastive_pairs/diagnostics/linearity.py +63 -80
- wisent/core/contrastive_pairs/diagnostics/vector_quality.py +6 -5
- wisent/core/contrastive_pairs/huggingface_pairs/hf_extractor_manifest.py +5 -19
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/__init__.py +11 -5
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/apps.py +146 -32
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue.py +2 -2
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/humaneval.py +98 -57
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/code_x_glue.py +8 -8
- wisent/core/contrastive_pairs/lm_eval_pairs/group_task_manifests/freebase.py +1 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_manifest.py +8 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/agieval_aqua_rat.py +129 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/code_x_glue.py +11 -6
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gsm8k.py +1 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mbpp.py +47 -6
- wisent/core/evaluators/benchmark_specific/apps_evaluator.py +133 -0
- wisent/core/evaluators/benchmark_specific/coding/metrics/evaluator.py +6 -1
- wisent/core/evaluators/benchmark_specific/conala_evaluator.py +31 -168
- wisent/core/evaluators/custom/examples/humanization_coherent.py +89 -35
- wisent/core/evaluators/oracles/truthfulqa_gen_evaluator.py +2 -20
- wisent/core/evaluators/personalization/coherence.py +46 -0
- wisent/core/hyperparameter_optimizer.py +13 -13
- wisent/core/lm_eval_harness_ground_truth.py +7 -11
- wisent/core/main.py +3 -0
- wisent/core/models/wisent_model.py +8 -7
- wisent/core/opti/methods/opti_weights.py +29 -2
- wisent/core/optuna/classifier/activation_generator.py +14 -12
- wisent/core/optuna/steering/steering_optimization.py +14 -9
- wisent/core/parser_arguments/cluster_benchmarks_parser.py +31 -0
- wisent/core/parser_arguments/generate_vector_from_task_parser.py +20 -0
- wisent/core/parser_arguments/main_parser.py +8 -0
- wisent/core/parser_arguments/optimize_steering_parser.py +117 -10
- wisent/core/parser_arguments/optimize_weights_parser.py +6 -0
- wisent/core/parser_arguments/tasks_parser.py +7 -19
- wisent/core/steering_methods/core/atoms.py +1 -2
- wisent/core/steering_methods/methods/caa.py +1 -1
- wisent/core/steering_methods/methods/hyperplane.py +74 -0
- wisent/core/steering_methods/methods/prism.py +1 -2
- wisent/core/steering_methods/methods/pulse.py +39 -8
- wisent/core/steering_methods/methods/titan.py +59 -14
- wisent/core/steering_methods/registry.py +52 -12
- wisent/core/steering_optimizer.py +15 -15
- wisent/core/trainers/steering_trainer.py +9 -18
- wisent/parameters/lm_eval/track_progress_not_lm_eval_tasks.json +19 -70
- wisent/scripts/run_quality_metrics_sweep.sh +22 -27
- wisent/tests/test_aggregation_geometry.py +236 -0
- wisent/tests/test_detector_accuracy.py +163 -0
- wisent/tests/test_geometry_exhaustive.py +1202 -0
- wisent/tests/visualize_geometry.py +255 -61
- {wisent-0.7.379.dist-info → wisent-0.7.701.dist-info}/METADATA +1 -1
- {wisent-0.7.379.dist-info → wisent-0.7.701.dist-info}/RECORD +82 -714
- wisent/core/activations/prompt_construction_strategy.py +0 -47
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text.py +0 -15
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_go.py +0 -64
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_java.py +0 -65
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_javascript.py +0 -65
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_php.py +0 -65
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_python.py +0 -65
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codexglue_code_to_text_ruby.py +0 -65
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/freebase.py +0 -99
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/instruct_humaneval.py +0 -180
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/instructhumaneval.py +0 -129
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mbpp.py +0 -142
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/agieval.py +0 -155
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/code2text.py +0 -161
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/codexglue.py +0 -107
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/livemathbench.py +0 -155
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/polymath.py +0 -155
- wisent/examples/scripts/results/benchmark_descriptions.json +0 -1244
- wisent/examples/scripts/results/benchmark_evaluation_methods.json +0 -66
- wisent/examples/scripts/results/benchmark_evaluator_mapping.json +0 -2781
- wisent/examples/scripts/results/benchmark_evaluator_mapping_updated.json +0 -30536
- wisent/examples/scripts/results/benchmark_evaluators_clean.json +0 -469
- wisent/examples/scripts/results/benchmark_methods_summary.json +0 -260
- wisent/examples/scripts/results/benchmark_pair_creation_methods.json +0 -66
- wisent/examples/scripts/results/benchmark_pair_totals.json +0 -269
- wisent/examples/scripts/results/benchmark_tags.json +0 -917
- wisent/examples/scripts/results/benchmark_test_summary_nov4.json +0 -71
- wisent/examples/scripts/results/coding_benchmarks_test_code_status.json +0 -150
- wisent/examples/scripts/results/failing_benchmarks.json +0 -946
- wisent/examples/scripts/results/failing_benchmarks_list.json +0 -41
- wisent/examples/scripts/results/failing_benchmarks_test_results.json +0 -945
- wisent/examples/scripts/results/missing_benchmark_tags.json +0 -341
- wisent/examples/scripts/results/test_20_newsgroups_evaluation.json +0 -30
- wisent/examples/scripts/results/test_20_newsgroups_pairs.json +0 -8
- wisent/examples/scripts/results/test_AraDICE_evaluation.json +0 -51
- wisent/examples/scripts/results/test_AraDICE_pairs.json +0 -14
- wisent/examples/scripts/results/test_AraDiCE_boolq_egy/test_AraDiCE_boolq_egy_evaluation.json +0 -30
- wisent/examples/scripts/results/test_AraDiCE_boolq_egy/test_AraDiCE_boolq_egy_pairs.json +0 -8
- wisent/examples/scripts/results/test_ArabCulture_evaluation.json +0 -51
- wisent/examples/scripts/results/test_ArabCulture_pairs.json +0 -14
- wisent/examples/scripts/results/test_Tag_evaluation.json +0 -30
- wisent/examples/scripts/results/test_Tag_pairs.json +0 -8
- wisent/examples/scripts/results/test_aclue_evaluation.json +0 -51
- wisent/examples/scripts/results/test_aclue_pairs.json +0 -14
- wisent/examples/scripts/results/test_acp_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_acp_bench_hard_evaluation.json +0 -51
- wisent/examples/scripts/results/test_acp_bench_hard_pairs.json +0 -14
- wisent/examples/scripts/results/test_acp_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_advanced_ai_risk_evaluation.json +0 -51
- wisent/examples/scripts/results/test_advanced_ai_risk_pairs.json +0 -14
- wisent/examples/scripts/results/test_aexams_evaluation.json +0 -51
- wisent/examples/scripts/results/test_aexams_pairs.json +0 -14
- wisent/examples/scripts/results/test_afrimgsm_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/results/test_afrimgsm_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/results/test_afrimmlu_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/results/test_afrimmlu_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/results/test_afrixnli_en_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/results/test_afrixnli_en_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/results/test_ag_news_evaluation.json +0 -30
- wisent/examples/scripts/results/test_ag_news_pairs.json +0 -8
- wisent/examples/scripts/results/test_agieval_evaluation.json +0 -51
- wisent/examples/scripts/results/test_agieval_pairs.json +0 -14
- wisent/examples/scripts/results/test_aime2024_evaluation.json +0 -30
- wisent/examples/scripts/results/test_aime2024_pairs.json +0 -8
- wisent/examples/scripts/results/test_aime2025_evaluation.json +0 -30
- wisent/examples/scripts/results/test_aime2025_pairs.json +0 -8
- wisent/examples/scripts/results/test_aime_evaluation.json +0 -30
- wisent/examples/scripts/results/test_aime_pairs.json +0 -8
- wisent/examples/scripts/results/test_anagrams1_evaluation.json +0 -30
- wisent/examples/scripts/results/test_anagrams1_pairs.json +0 -8
- wisent/examples/scripts/results/test_anagrams2_evaluation.json +0 -30
- wisent/examples/scripts/results/test_anagrams2_pairs.json +0 -8
- wisent/examples/scripts/results/test_anli_evaluation.json +0 -30
- wisent/examples/scripts/results/test_anli_pairs.json +0 -8
- wisent/examples/scripts/results/test_apps_evaluation.json +0 -30
- wisent/examples/scripts/results/test_apps_pairs.json +0 -8
- wisent/examples/scripts/results/test_arabic_exams_evaluation.json +0 -30
- wisent/examples/scripts/results/test_arabic_exams_pairs.json +0 -8
- wisent/examples/scripts/results/test_arabic_leaderboard_complete_evaluation.json +0 -51
- wisent/examples/scripts/results/test_arabic_leaderboard_complete_pairs.json +0 -14
- wisent/examples/scripts/results/test_arabic_leaderboard_light_evaluation.json +0 -51
- wisent/examples/scripts/results/test_arabic_leaderboard_light_pairs.json +0 -14
- wisent/examples/scripts/results/test_arabicmmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_arabicmmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_aradice/test_aradice_evaluation.json +0 -51
- wisent/examples/scripts/results/test_aradice/test_aradice_pairs.json +0 -14
- wisent/examples/scripts/results/test_aradice3/test_aradice_evaluation.json +0 -51
- wisent/examples/scripts/results/test_aradice3/test_aradice_pairs.json +0 -14
- wisent/examples/scripts/results/test_arc_ar_evaluation.json +0 -30
- wisent/examples/scripts/results/test_arc_ar_pairs.json +0 -8
- wisent/examples/scripts/results/test_arc_challenge_evaluation.json +0 -30
- wisent/examples/scripts/results/test_arc_challenge_pairs.json +0 -8
- wisent/examples/scripts/results/test_arc_easy_evaluation.json +0 -30
- wisent/examples/scripts/results/test_arc_easy_pairs.json +0 -8
- wisent/examples/scripts/results/test_argument_topic_evaluation.json +0 -30
- wisent/examples/scripts/results/test_argument_topic_pairs.json +0 -8
- wisent/examples/scripts/results/test_arithmetic_evaluation.json +0 -51
- wisent/examples/scripts/results/test_arithmetic_pairs.json +0 -14
- wisent/examples/scripts/results/test_asdiv_evaluation.json +0 -30
- wisent/examples/scripts/results/test_asdiv_pairs.json +0 -8
- wisent/examples/scripts/results/test_assin_entailment_evaluation.json +0 -30
- wisent/examples/scripts/results/test_assin_entailment_pairs.json +0 -8
- wisent/examples/scripts/results/test_atis_evaluation.json +0 -30
- wisent/examples/scripts/results/test_atis_pairs.json +0 -8
- wisent/examples/scripts/results/test_babi_evaluation.json +0 -30
- wisent/examples/scripts/results/test_babi_pairs.json +0 -8
- wisent/examples/scripts/results/test_babilong_evaluation.json +0 -30
- wisent/examples/scripts/results/test_babilong_pairs.json +0 -8
- wisent/examples/scripts/results/test_bangla_mmlu_evaluation.json +0 -30
- wisent/examples/scripts/results/test_bangla_mmlu_pairs.json +0 -8
- wisent/examples/scripts/results/test_banking77_evaluation.json +0 -30
- wisent/examples/scripts/results/test_banking77_pairs.json +0 -8
- wisent/examples/scripts/results/test_basque/test_basque-glue_pairs.json +0 -14
- wisent/examples/scripts/results/test_basque-glue_evaluation.json +0 -51
- wisent/examples/scripts/results/test_basque-glue_pairs.json +0 -14
- wisent/examples/scripts/results/test_basque2/test_basque-glue_evaluation.json +0 -51
- wisent/examples/scripts/results/test_basque2/test_basque-glue_pairs.json +0 -14
- wisent/examples/scripts/results/test_basque_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_basque_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_basque_glue/test_basque-glue_evaluation.json +0 -51
- wisent/examples/scripts/results/test_basque_glue/test_basque-glue_pairs.json +0 -14
- wisent/examples/scripts/results/test_basqueglue_evaluation.json +0 -51
- wisent/examples/scripts/results/test_basqueglue_pairs.json +0 -14
- wisent/examples/scripts/results/test_bbh_evaluation.json +0 -51
- wisent/examples/scripts/results/test_bbh_pairs.json +0 -14
- wisent/examples/scripts/results/test_bbq_evaluation.json +0 -30
- wisent/examples/scripts/results/test_bbq_pairs.json +0 -8
- wisent/examples/scripts/results/test_bec2016eu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_bec2016eu_pairs.json +0 -14
- wisent/examples/scripts/results/test_belebele_evaluation.json +0 -51
- wisent/examples/scripts/results/test_belebele_pairs.json +0 -14
- wisent/examples/scripts/results/test_benchmarks_evaluation.json +0 -51
- wisent/examples/scripts/results/test_benchmarks_pairs.json +0 -14
- wisent/examples/scripts/results/test_bertaqa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_bertaqa_pairs.json +0 -14
- wisent/examples/scripts/results/test_bhtc_v2_evaluation.json +0 -30
- wisent/examples/scripts/results/test_bhtc_v2_pairs.json +0 -8
- wisent/examples/scripts/results/test_bigbench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_bigbench_pairs.json +0 -14
- wisent/examples/scripts/results/test_blimp_evaluation.json +0 -51
- wisent/examples/scripts/results/test_blimp_pairs.json +0 -14
- wisent/examples/scripts/results/test_boolq/test_boolq_evaluation.json +0 -30
- wisent/examples/scripts/results/test_boolq/test_boolq_pairs.json +0 -8
- wisent/examples/scripts/results/test_boolq-seq2seq_evaluation.json +0 -30
- wisent/examples/scripts/results/test_boolq-seq2seq_pairs.json +0 -8
- wisent/examples/scripts/results/test_boolq_evaluation.json +0 -30
- wisent/examples/scripts/results/test_boolq_pairs.json +0 -8
- wisent/examples/scripts/results/test_c4_evaluation.json +0 -30
- wisent/examples/scripts/results/test_c4_pairs.json +0 -8
- wisent/examples/scripts/results/test_cabreu_evaluation.json +0 -30
- wisent/examples/scripts/results/test_cabreu_pairs.json +0 -8
- wisent/examples/scripts/results/test_careqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_careqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_catalan_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_catalan_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_catalanqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_catalanqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_catcola_evaluation.json +0 -30
- wisent/examples/scripts/results/test_catcola_pairs.json +0 -8
- wisent/examples/scripts/results/test_cb_evaluation.json +0 -30
- wisent/examples/scripts/results/test_cb_pairs.json +0 -8
- wisent/examples/scripts/results/test_ceval/test_ceval_evaluation.json +0 -51
- wisent/examples/scripts/results/test_ceval/test_ceval_pairs.json +0 -14
- wisent/examples/scripts/results/test_ceval_accountant/test_ceval-valid_accountant_evaluation.json +0 -30
- wisent/examples/scripts/results/test_ceval_accountant/test_ceval-valid_accountant_pairs.json +0 -8
- wisent/examples/scripts/results/test_ceval_evaluation.json +0 -51
- wisent/examples/scripts/results/test_ceval_pairs.json +0 -14
- wisent/examples/scripts/results/test_ceval_valid/test_ceval_valid_evaluation.json +0 -51
- wisent/examples/scripts/results/test_ceval_valid/test_ceval_valid_pairs.json +0 -14
- wisent/examples/scripts/results/test_chain_of_thought_evaluation.json +0 -51
- wisent/examples/scripts/results/test_chain_of_thought_pairs.json +0 -14
- wisent/examples/scripts/results/test_chartqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_chartqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_claim_stance_topic_evaluation.json +0 -30
- wisent/examples/scripts/results/test_claim_stance_topic_pairs.json +0 -8
- wisent/examples/scripts/results/test_cmmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_cmmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_cnn_dailymail_evaluation.json +0 -30
- wisent/examples/scripts/results/test_cnn_dailymail_pairs.json +0 -8
- wisent/examples/scripts/results/test_cocoteros_es_evaluation.json +0 -30
- wisent/examples/scripts/results/test_cocoteros_es_pairs.json +0 -8
- wisent/examples/scripts/results/test_codexglue_code_to_text_go_evaluation.json +0 -30
- wisent/examples/scripts/results/test_codexglue_code_to_text_go_pairs.json +0 -8
- wisent/examples/scripts/results/test_codexglue_code_to_text_java_evaluation.json +0 -30
- wisent/examples/scripts/results/test_codexglue_code_to_text_java_pairs.json +0 -8
- wisent/examples/scripts/results/test_codexglue_code_to_text_javascript_evaluation.json +0 -30
- wisent/examples/scripts/results/test_codexglue_code_to_text_javascript_pairs.json +0 -8
- wisent/examples/scripts/results/test_codexglue_code_to_text_php_evaluation.json +0 -30
- wisent/examples/scripts/results/test_codexglue_code_to_text_php_pairs.json +0 -8
- wisent/examples/scripts/results/test_codexglue_code_to_text_python_evaluation.json +0 -30
- wisent/examples/scripts/results/test_codexglue_code_to_text_python_pairs.json +0 -8
- wisent/examples/scripts/results/test_codexglue_code_to_text_ruby_evaluation.json +0 -30
- wisent/examples/scripts/results/test_codexglue_code_to_text_ruby_pairs.json +0 -8
- wisent/examples/scripts/results/test_coedit_gec_evaluation.json +0 -30
- wisent/examples/scripts/results/test_coedit_gec_pairs.json +0 -8
- wisent/examples/scripts/results/test_cola_evaluation.json +0 -30
- wisent/examples/scripts/results/test_cola_pairs.json +0 -8
- wisent/examples/scripts/results/test_commonsense_qa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_commonsense_qa_pairs.json +0 -8
- wisent/examples/scripts/results/test_conala_evaluation.json +0 -30
- wisent/examples/scripts/results/test_conala_pairs.json +0 -8
- wisent/examples/scripts/results/test_concode_evaluation.json +0 -30
- wisent/examples/scripts/results/test_concode_pairs.json +0 -8
- wisent/examples/scripts/results/test_copa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_copa_pairs.json +0 -8
- wisent/examples/scripts/results/test_copal_id_evaluation.json +0 -30
- wisent/examples/scripts/results/test_copal_id_pairs.json +0 -8
- wisent/examples/scripts/results/test_coqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_coqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_coqcat_evaluation.json +0 -30
- wisent/examples/scripts/results/test_coqcat_pairs.json +0 -8
- wisent/examples/scripts/results/test_crows_pairs_evaluation.json +0 -51
- wisent/examples/scripts/results/test_crows_pairs_pairs.json +0 -14
- wisent/examples/scripts/results/test_csatqa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_csatqa_pairs.json +0 -14
- wisent/examples/scripts/results/test_cycle_letters_evaluation.json +0 -30
- wisent/examples/scripts/results/test_cycle_letters_pairs.json +0 -8
- wisent/examples/scripts/results/test_darija_bench/test_darija_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_darija_bench/test_darija_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_darija_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_darija_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_darijahellaswag_evaluation.json +0 -30
- wisent/examples/scripts/results/test_darijahellaswag_pairs.json +0 -8
- wisent/examples/scripts/results/test_darijammlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_darijammlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_dbpedia_14_evaluation.json +0 -30
- wisent/examples/scripts/results/test_dbpedia_14_pairs.json +0 -8
- wisent/examples/scripts/results/test_drop_evaluation.json +0 -30
- wisent/examples/scripts/results/test_drop_pairs.json +0 -8
- wisent/examples/scripts/results/test_ds1000_evaluation.json +0 -30
- wisent/examples/scripts/results/test_ds1000_pairs.json +0 -8
- wisent/examples/scripts/results/test_egyhellaswag_evaluation.json +0 -30
- wisent/examples/scripts/results/test_egyhellaswag_pairs.json +0 -8
- wisent/examples/scripts/results/test_egymmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_egymmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_epec_koref_bin_evaluation.json +0 -30
- wisent/examples/scripts/results/test_epec_koref_bin_pairs.json +0 -8
- wisent/examples/scripts/results/test_eq_bench_evaluation.json +0 -30
- wisent/examples/scripts/results/test_eq_bench_pairs.json +0 -8
- wisent/examples/scripts/results/test_escola_evaluation.json +0 -30
- wisent/examples/scripts/results/test_escola_pairs.json +0 -8
- wisent/examples/scripts/results/test_ethics_cm_evaluation.json +0 -30
- wisent/examples/scripts/results/test_ethics_cm_pairs.json +0 -8
- wisent/examples/scripts/results/test_ethos_binary_evaluation.json +0 -30
- wisent/examples/scripts/results/test_ethos_binary_pairs.json +0 -8
- wisent/examples/scripts/results/test_eus_exams/test_eus_exams_evaluation.json +0 -51
- wisent/examples/scripts/results/test_eus_exams/test_eus_exams_pairs.json +0 -14
- wisent/examples/scripts/results/test_eus_exams_es_evaluation.json +0 -51
- wisent/examples/scripts/results/test_eus_exams_es_pairs.json +0 -14
- wisent/examples/scripts/results/test_eus_exams_evaluation.json +0 -51
- wisent/examples/scripts/results/test_eus_exams_pairs.json +0 -14
- wisent/examples/scripts/results/test_eus_proficiency_evaluation.json +0 -30
- wisent/examples/scripts/results/test_eus_proficiency_pairs.json +0 -8
- wisent/examples/scripts/results/test_eus_reading_evaluation.json +0 -30
- wisent/examples/scripts/results/test_eus_reading_pairs.json +0 -8
- wisent/examples/scripts/results/test_eus_trivia_evaluation.json +0 -30
- wisent/examples/scripts/results/test_eus_trivia_pairs.json +0 -8
- wisent/examples/scripts/results/test_evalita-mp_evaluation.json +0 -51
- wisent/examples/scripts/results/test_evalita-mp_pairs.json +0 -14
- wisent/examples/scripts/results/test_evalita-sp_sum_task_fp-small_p1_evaluation.json +0 -30
- wisent/examples/scripts/results/test_evalita-sp_sum_task_fp-small_p1_pairs.json +0 -8
- wisent/examples/scripts/results/test_evalita_LLM_evaluation.json +0 -51
- wisent/examples/scripts/results/test_evalita_LLM_pairs.json +0 -14
- wisent/examples/scripts/results/test_evalita_llm/test_evalita_llm_evaluation.json +0 -51
- wisent/examples/scripts/results/test_evalita_llm/test_evalita_llm_pairs.json +0 -14
- wisent/examples/scripts/results/test_evalita_mp/test_evalita-mp_te_prompt-1_evaluation.json +0 -30
- wisent/examples/scripts/results/test_evalita_mp/test_evalita-mp_te_prompt-1_pairs.json +0 -8
- wisent/examples/scripts/results/test_evalita_mp2/test_evalita_mp_evaluation.json +0 -51
- wisent/examples/scripts/results/test_evalita_mp2/test_evalita_mp_pairs.json +0 -14
- wisent/examples/scripts/results/test_evalita_sp2/test_evalita-sp_sum_task_fp-small_p1_evaluation.json +0 -30
- wisent/examples/scripts/results/test_evalita_sp2/test_evalita-sp_sum_task_fp-small_p1_pairs.json +0 -8
- wisent/examples/scripts/results/test_fda_evaluation.json +0 -30
- wisent/examples/scripts/results/test_fda_pairs.json +0 -8
- wisent/examples/scripts/results/test_financial_tweets_evaluation.json +0 -30
- wisent/examples/scripts/results/test_financial_tweets_pairs.json +0 -8
- wisent/examples/scripts/results/test_fld/test_fld_evaluation.json +0 -30
- wisent/examples/scripts/results/test_fld/test_fld_pairs.json +0 -8
- wisent/examples/scripts/results/test_fld_evaluation.json +0 -30
- wisent/examples/scripts/results/test_fld_fixed/test_fld_evaluation.json +0 -30
- wisent/examples/scripts/results/test_fld_fixed/test_fld_pairs.json +0 -8
- wisent/examples/scripts/results/test_fld_pairs.json +0 -8
- wisent/examples/scripts/results/test_flores_evaluation.json +0 -51
- wisent/examples/scripts/results/test_flores_pairs.json +0 -14
- wisent/examples/scripts/results/test_freebase_evaluation.json +0 -30
- wisent/examples/scripts/results/test_freebase_pairs.json +0 -8
- wisent/examples/scripts/results/test_french_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_french_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_galcola_evaluation.json +0 -30
- wisent/examples/scripts/results/test_galcola_pairs.json +0 -8
- wisent/examples/scripts/results/test_galician_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_galician_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_glianorex_evaluation.json +0 -30
- wisent/examples/scripts/results/test_glianorex_pairs.json +0 -8
- wisent/examples/scripts/results/test_global_mmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_global_mmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_glue_evaluation.json +0 -51
- wisent/examples/scripts/results/test_glue_pairs.json +0 -14
- wisent/examples/scripts/results/test_gpqa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_gpqa_pairs.json +0 -14
- wisent/examples/scripts/results/test_gpt3_translation_benchmarks_evaluation.json +0 -51
- wisent/examples/scripts/results/test_gpt3_translation_benchmarks_pairs.json +0 -14
- wisent/examples/scripts/results/test_groundcocoa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_groundcocoa_pairs.json +0 -8
- wisent/examples/scripts/results/test_gsm8k_evaluation.json +0 -30
- wisent/examples/scripts/results/test_gsm8k_pairs.json +0 -8
- wisent/examples/scripts/results/test_haerae_evaluation.json +0 -51
- wisent/examples/scripts/results/test_haerae_pairs.json +0 -14
- wisent/examples/scripts/results/test_headqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_headqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_hellaswag_evaluation.json +0 -30
- wisent/examples/scripts/results/test_hellaswag_pairs.json +0 -8
- wisent/examples/scripts/results/test_hendrycks_ethics_evaluation.json +0 -51
- wisent/examples/scripts/results/test_hendrycks_ethics_pairs.json +0 -14
- wisent/examples/scripts/results/test_hendrycks_math_evaluation.json +0 -51
- wisent/examples/scripts/results/test_hendrycks_math_pairs.json +0 -14
- wisent/examples/scripts/results/test_histoires_morales_evaluation.json +0 -30
- wisent/examples/scripts/results/test_histoires_morales_pairs.json +0 -8
- wisent/examples/scripts/results/test_hmmt_evaluation.json +0 -30
- wisent/examples/scripts/results/test_hmmt_feb_2025_evaluation.json +0 -30
- wisent/examples/scripts/results/test_hmmt_feb_2025_pairs.json +0 -8
- wisent/examples/scripts/results/test_hmmt_pairs.json +0 -8
- wisent/examples/scripts/results/test_hrm8k_evaluation.json +0 -51
- wisent/examples/scripts/results/test_hrm8k_pairs.json +0 -14
- wisent/examples/scripts/results/test_humaneval_evaluation.json +0 -30
- wisent/examples/scripts/results/test_humaneval_pairs.json +0 -8
- wisent/examples/scripts/results/test_humaneval_plus_evaluation.json +0 -30
- wisent/examples/scripts/results/test_humaneval_plus_pairs.json +0 -8
- wisent/examples/scripts/results/test_ifeval_evaluation.json +0 -30
- wisent/examples/scripts/results/test_ifeval_pairs.json +0 -8
- wisent/examples/scripts/results/test_instruct_humaneval/test_instruct_humaneval_evaluation.json +0 -30
- wisent/examples/scripts/results/test_instruct_humaneval/test_instruct_humaneval_pairs.json +0 -8
- wisent/examples/scripts/results/test_instruct_humaneval_evaluation.json +0 -30
- wisent/examples/scripts/results/test_instruct_humaneval_pairs.json +0 -8
- wisent/examples/scripts/results/test_inverse_scaling_evaluation.json +0 -51
- wisent/examples/scripts/results/test_inverse_scaling_hindsight_neglect_10shot_evaluation.json +0 -30
- wisent/examples/scripts/results/test_inverse_scaling_hindsight_neglect_10shot_pairs.json +0 -8
- wisent/examples/scripts/results/test_inverse_scaling_mc/test_inverse_scaling_mc_evaluation.json +0 -51
- wisent/examples/scripts/results/test_inverse_scaling_mc/test_inverse_scaling_mc_pairs.json +0 -14
- wisent/examples/scripts/results/test_inverse_scaling_pairs.json +0 -14
- wisent/examples/scripts/results/test_iwslt2017-ar-en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_iwslt2017-ar-en_pairs.json +0 -8
- wisent/examples/scripts/results/test_iwslt2017-en-ar_evaluation.json +0 -30
- wisent/examples/scripts/results/test_iwslt2017-en-ar_pairs.json +0 -8
- wisent/examples/scripts/results/test_iwslt2017_ar_en/test_iwslt2017-ar-en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_iwslt2017_ar_en/test_iwslt2017-ar-en_pairs.json +0 -8
- wisent/examples/scripts/results/test_iwslt2017_en_ar/test_iwslt2017-en-ar_evaluation.json +0 -30
- wisent/examples/scripts/results/test_iwslt2017_en_ar/test_iwslt2017-en-ar_pairs.json +0 -8
- wisent/examples/scripts/results/test_iwslt2017_group/test_iwslt2017_evaluation.json +0 -30
- wisent/examples/scripts/results/test_iwslt2017_group/test_iwslt2017_pairs.json +0 -8
- wisent/examples/scripts/results/test_japanese_leaderboard_evaluation.json +0 -51
- wisent/examples/scripts/results/test_japanese_leaderboard_pairs.json +0 -14
- wisent/examples/scripts/results/test_jsonschema_bench/test_jsonschema_bench_evaluation.json +0 -30
- wisent/examples/scripts/results/test_jsonschema_bench/test_jsonschema_bench_pairs.json +0 -8
- wisent/examples/scripts/results/test_jsonschema_bench_evaluation.json +0 -30
- wisent/examples/scripts/results/test_jsonschema_bench_final/test_jsonschema_bench_evaluation.json +0 -30
- wisent/examples/scripts/results/test_jsonschema_bench_final/test_jsonschema_bench_pairs.json +0 -8
- wisent/examples/scripts/results/test_jsonschema_bench_pairs.json +0 -8
- wisent/examples/scripts/results/test_kbl_evaluation.json +0 -51
- wisent/examples/scripts/results/test_kbl_fixed/test_kbl_evaluation.json +0 -51
- wisent/examples/scripts/results/test_kbl_fixed/test_kbl_pairs.json +0 -14
- wisent/examples/scripts/results/test_kbl_pairs.json +0 -14
- wisent/examples/scripts/results/test_kmmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_kmmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_kobest_evaluation.json +0 -51
- wisent/examples/scripts/results/test_kobest_pairs.json +0 -14
- wisent/examples/scripts/results/test_kormedmcqa/test_kormedmcqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_kormedmcqa/test_kormedmcqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_kormedmcqa_dentist/test_kormedmcqa_dentist_evaluation.json +0 -30
- wisent/examples/scripts/results/test_kormedmcqa_dentist/test_kormedmcqa_dentist_pairs.json +0 -8
- wisent/examples/scripts/results/test_kormedmcqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_kormedmcqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_lambada_cloze_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lambada_cloze_pairs.json +0 -8
- wisent/examples/scripts/results/test_lambada_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lambada_final/test_lambada_openai_mt_stablelm_en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lambada_final/test_lambada_openai_mt_stablelm_en_pairs.json +0 -8
- wisent/examples/scripts/results/test_lambada_multilingual/test_lambada_multilingual_evaluation.json +0 -51
- wisent/examples/scripts/results/test_lambada_multilingual/test_lambada_multilingual_pairs.json +0 -14
- wisent/examples/scripts/results/test_lambada_multilingual_evaluation.json +0 -51
- wisent/examples/scripts/results/test_lambada_multilingual_pairs.json +0 -14
- wisent/examples/scripts/results/test_lambada_multilingual_stablelm_evaluation.json +0 -51
- wisent/examples/scripts/results/test_lambada_multilingual_stablelm_pairs.json +0 -14
- wisent/examples/scripts/results/test_lambada_openai_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lambada_openai_pairs.json +0 -8
- wisent/examples/scripts/results/test_lambada_pairs.json +0 -8
- wisent/examples/scripts/results/test_lambada_stablelm_en_fixed/test_lambada_openai_mt_stablelm_en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lambada_stablelm_en_fixed/test_lambada_openai_mt_stablelm_en_pairs.json +0 -8
- wisent/examples/scripts/results/test_lambada_stablelm_fixed/test_lambada_openai_mt_stablelm_en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lambada_stablelm_fixed/test_lambada_openai_mt_stablelm_en_pairs.json +0 -8
- wisent/examples/scripts/results/test_lambada_standard_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lambada_standard_pairs.json +0 -8
- wisent/examples/scripts/results/test_leaderboard_evaluation.json +0 -51
- wisent/examples/scripts/results/test_leaderboard_pairs.json +0 -14
- wisent/examples/scripts/results/test_libra/test_libra_evaluation.json +0 -51
- wisent/examples/scripts/results/test_libra/test_libra_pairs.json +0 -14
- wisent/examples/scripts/results/test_libra_evaluation.json +0 -51
- wisent/examples/scripts/results/test_libra_pairs.json +0 -14
- wisent/examples/scripts/results/test_lingoly_evaluation.json +0 -30
- wisent/examples/scripts/results/test_lingoly_pairs.json +0 -8
- wisent/examples/scripts/results/test_livecodebench_evaluation.json +0 -30
- wisent/examples/scripts/results/test_livecodebench_pairs.json +0 -8
- wisent/examples/scripts/results/test_livemathbench_cnmo_en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_livemathbench_cnmo_en_pairs.json +0 -8
- wisent/examples/scripts/results/test_livemathbench_cnmo_zh_evaluation.json +0 -30
- wisent/examples/scripts/results/test_livemathbench_cnmo_zh_pairs.json +0 -8
- wisent/examples/scripts/results/test_llama_evaluation.json +0 -30
- wisent/examples/scripts/results/test_llama_pairs.json +0 -8
- wisent/examples/scripts/results/test_logiqa2_evaluation.json +0 -30
- wisent/examples/scripts/results/test_logiqa2_pairs.json +0 -8
- wisent/examples/scripts/results/test_logiqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_logiqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_m_mmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_m_mmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_mastermind/test_mastermind_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mastermind/test_mastermind_pairs.json +0 -14
- wisent/examples/scripts/results/test_mastermind_24_easy/test_mastermind_24_easy_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mastermind_24_easy/test_mastermind_24_easy_pairs.json +0 -8
- wisent/examples/scripts/results/test_mastermind_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mastermind_pairs.json +0 -14
- wisent/examples/scripts/results/test_math500_evaluation.json +0 -30
- wisent/examples/scripts/results/test_math500_pairs.json +0 -8
- wisent/examples/scripts/results/test_math_evaluation.json +0 -30
- wisent/examples/scripts/results/test_math_pairs.json +0 -8
- wisent/examples/scripts/results/test_mathqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mathqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_mbpp_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mbpp_pairs.json +0 -8
- wisent/examples/scripts/results/test_mbpp_plus_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mbpp_plus_pairs.json +0 -8
- wisent/examples/scripts/results/test_mc_taco_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mc_taco_pairs.json +0 -8
- wisent/examples/scripts/results/test_med_concepts_qa/test_med_concepts_qa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_med_concepts_qa/test_med_concepts_qa_pairs.json +0 -14
- wisent/examples/scripts/results/test_med_concepts_qa_atc_easy/test_med_concepts_qa_atc_easy_evaluation.json +0 -30
- wisent/examples/scripts/results/test_med_concepts_qa_atc_easy/test_med_concepts_qa_atc_easy_pairs.json +0 -8
- wisent/examples/scripts/results/test_med_concepts_qa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_med_concepts_qa_pairs.json +0 -14
- wisent/examples/scripts/results/test_meddialog_evaluation.json +0 -30
- wisent/examples/scripts/results/test_meddialog_pairs.json +0 -8
- wisent/examples/scripts/results/test_meddialog_raw_perplexity/test_meddialog_raw_perplexity_evaluation.json +0 -30
- wisent/examples/scripts/results/test_meddialog_raw_perplexity/test_meddialog_raw_perplexity_pairs.json +0 -8
- wisent/examples/scripts/results/test_mediqa_qa2019_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mediqa_qa2019_pairs.json +0 -8
- wisent/examples/scripts/results/test_medmcqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_medmcqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_medqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_medqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_medtext_evaluation.json +0 -30
- wisent/examples/scripts/results/test_medtext_pairs.json +0 -8
- wisent/examples/scripts/results/test_mela_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mela_pairs.json +0 -14
- wisent/examples/scripts/results/test_meqsum_evaluation.json +0 -30
- wisent/examples/scripts/results/test_meqsum_pairs.json +0 -8
- wisent/examples/scripts/results/test_mercury_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mercury_pairs.json +0 -8
- wisent/examples/scripts/results/test_metabench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_metabench_pairs.json +0 -14
- wisent/examples/scripts/results/test_mgsm_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mgsm_pairs.json +0 -14
- wisent/examples/scripts/results/test_mimic_repsum_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mimic_repsum_pairs.json +0 -8
- wisent/examples/scripts/results/test_minerva_math_evaluation.json +0 -51
- wisent/examples/scripts/results/test_minerva_math_pairs.json +0 -14
- wisent/examples/scripts/results/test_mlqa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mlqa_pairs.json +0 -14
- wisent/examples/scripts/results/test_mmlu-pro-plus_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mmlu-pro-plus_pairs.json +0 -14
- wisent/examples/scripts/results/test_mmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_mmlu_pro_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mmlu_pro_pairs.json +0 -14
- wisent/examples/scripts/results/test_mmlu_prox_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mmlu_prox_pairs.json +0 -14
- wisent/examples/scripts/results/test_mmlusr_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mmlusr_pairs.json +0 -8
- wisent/examples/scripts/results/test_mmmu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_mmmu_pairs.json +0 -14
- wisent/examples/scripts/results/test_mnli_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mnli_pairs.json +0 -8
- wisent/examples/scripts/results/test_model_written_evals_evaluation.json +0 -51
- wisent/examples/scripts/results/test_model_written_evals_pairs.json +0 -14
- wisent/examples/scripts/results/test_moral_stories_evaluation.json +0 -30
- wisent/examples/scripts/results/test_moral_stories_pairs.json +0 -8
- wisent/examples/scripts/results/test_mts_dialog_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mts_dialog_pairs.json +0 -8
- wisent/examples/scripts/results/test_multiblimp_evaluation.json +0 -51
- wisent/examples/scripts/results/test_multiblimp_pairs.json +0 -14
- wisent/examples/scripts/results/test_multimedqa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_multimedqa_pairs.json +0 -14
- wisent/examples/scripts/results/test_multipl_e_evaluation.json +0 -30
- wisent/examples/scripts/results/test_multipl_e_pairs.json +0 -8
- wisent/examples/scripts/results/test_mutual_evaluation.json +0 -30
- wisent/examples/scripts/results/test_mutual_pairs.json +0 -8
- wisent/examples/scripts/results/test_non_greedy_robustness_agieval_aqua_rat_evaluation.json +0 -30
- wisent/examples/scripts/results/test_non_greedy_robustness_agieval_aqua_rat_pairs.json +0 -8
- wisent/examples/scripts/results/test_noreval_evaluation.json +0 -51
- wisent/examples/scripts/results/test_noreval_pairs.json +0 -14
- wisent/examples/scripts/results/test_noticia_evaluation.json +0 -30
- wisent/examples/scripts/results/test_noticia_pairs.json +0 -8
- wisent/examples/scripts/results/test_nq_open_evaluation.json +0 -30
- wisent/examples/scripts/results/test_nq_open_pairs.json +0 -8
- wisent/examples/scripts/results/test_olaph_evaluation.json +0 -30
- wisent/examples/scripts/results/test_olaph_pairs.json +0 -8
- wisent/examples/scripts/results/test_openbookqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_openbookqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_openllm_evaluation.json +0 -51
- wisent/examples/scripts/results/test_openllm_pairs.json +0 -14
- wisent/examples/scripts/results/test_option_order_robustness_agieval_aqua_rat_evaluation.json +0 -30
- wisent/examples/scripts/results/test_option_order_robustness_agieval_aqua_rat_pairs.json +0 -8
- wisent/examples/scripts/results/test_paloma_evaluation.json +0 -51
- wisent/examples/scripts/results/test_paloma_pairs.json +0 -14
- wisent/examples/scripts/results/test_passkey/test_passkey_evaluation.json +0 -30
- wisent/examples/scripts/results/test_passkey/test_passkey_pairs.json +0 -8
- wisent/examples/scripts/results/test_paws-x_evaluation.json +0 -51
- wisent/examples/scripts/results/test_paws-x_pairs.json +0 -14
- wisent/examples/scripts/results/test_paws_en/test_paws_en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_paws_en/test_paws_en_pairs.json +0 -8
- wisent/examples/scripts/results/test_penn_treebank_evaluation.json +0 -30
- wisent/examples/scripts/results/test_penn_treebank_pairs.json +0 -8
- wisent/examples/scripts/results/test_pile_10k/test_pile_10k_evaluation.json +0 -30
- wisent/examples/scripts/results/test_pile_10k/test_pile_10k_pairs.json +0 -8
- wisent/examples/scripts/results/test_piqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_piqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_polemo2_evaluation.json +0 -30
- wisent/examples/scripts/results/test_polemo2_pairs.json +0 -8
- wisent/examples/scripts/results/test_polymath_en_high_evaluation.json +0 -30
- wisent/examples/scripts/results/test_polymath_en_high_pairs.json +0 -8
- wisent/examples/scripts/results/test_polymath_en_medium_evaluation.json +0 -30
- wisent/examples/scripts/results/test_polymath_en_medium_pairs.json +0 -8
- wisent/examples/scripts/results/test_polymath_zh_high_evaluation.json +0 -30
- wisent/examples/scripts/results/test_polymath_zh_high_pairs.json +0 -8
- wisent/examples/scripts/results/test_polymath_zh_medium_evaluation.json +0 -30
- wisent/examples/scripts/results/test_polymath_zh_medium_pairs.json +0 -8
- wisent/examples/scripts/results/test_portuguese_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_portuguese_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat/test_prompt_robustness_agieval_aqua_rat_evaluation.json +0 -30
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat/test_prompt_robustness_agieval_aqua_rat_pairs.json +0 -8
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat_evaluation.json +0 -30
- wisent/examples/scripts/results/test_prompt_robustness_agieval_aqua_rat_pairs.json +0 -8
- wisent/examples/scripts/results/test_prost_evaluation.json +0 -30
- wisent/examples/scripts/results/test_prost_pairs.json +0 -8
- wisent/examples/scripts/results/test_ptb_evaluation.json +0 -30
- wisent/examples/scripts/results/test_ptb_pairs.json +0 -8
- wisent/examples/scripts/results/test_pubmedqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_pubmedqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_pythia_evaluation.json +0 -51
- wisent/examples/scripts/results/test_pythia_pairs.json +0 -14
- wisent/examples/scripts/results/test_qa4mre_evaluation.json +0 -30
- wisent/examples/scripts/results/test_qa4mre_pairs.json +0 -8
- wisent/examples/scripts/results/test_qasper_evaluation.json +0 -30
- wisent/examples/scripts/results/test_qasper_pairs.json +0 -8
- wisent/examples/scripts/results/test_race_evaluation.json +0 -30
- wisent/examples/scripts/results/test_race_pairs.json +0 -8
- wisent/examples/scripts/results/test_realtoxicityprompts_evaluation.json +0 -30
- wisent/examples/scripts/results/test_realtoxicityprompts_pairs.json +0 -8
- wisent/examples/scripts/results/test_recode_evaluation.json +0 -30
- wisent/examples/scripts/results/test_recode_pairs.json +0 -8
- wisent/examples/scripts/results/test_record_evaluation.json +0 -30
- wisent/examples/scripts/results/test_record_pairs.json +0 -8
- wisent/examples/scripts/results/test_ruler_evaluation.json +0 -51
- wisent/examples/scripts/results/test_ruler_pairs.json +0 -14
- wisent/examples/scripts/results/test_sciq_evaluation.json +0 -30
- wisent/examples/scripts/results/test_sciq_pairs.json +0 -8
- wisent/examples/scripts/results/test_score_evaluation.json +0 -51
- wisent/examples/scripts/results/test_score_pairs.json +0 -14
- wisent/examples/scripts/results/test_self_consistency_evaluation.json +0 -30
- wisent/examples/scripts/results/test_self_consistency_pairs.json +0 -8
- wisent/examples/scripts/results/test_siqa/test_siqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_siqa/test_siqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_siqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_siqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_spanish_bench_evaluation.json +0 -51
- wisent/examples/scripts/results/test_spanish_bench_pairs.json +0 -14
- wisent/examples/scripts/results/test_squad2_evaluation.json +0 -30
- wisent/examples/scripts/results/test_squad2_pairs.json +0 -8
- wisent/examples/scripts/results/test_squadv2_evaluation.json +0 -30
- wisent/examples/scripts/results/test_squadv2_pairs.json +0 -8
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1-seq2seq_evaluation.json +0 -30
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1-seq2seq_pairs.json +0 -8
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1_evaluation.json +0 -51
- wisent/examples/scripts/results/test_super-glue-lm-eval-v1_pairs.json +0 -14
- wisent/examples/scripts/results/test_swag_evaluation.json +0 -30
- wisent/examples/scripts/results/test_swag_pairs.json +0 -8
- wisent/examples/scripts/results/test_tinyBenchmarks_evaluation.json +0 -51
- wisent/examples/scripts/results/test_tinyBenchmarks_pairs.json +0 -14
- wisent/examples/scripts/results/test_tmmluplus_evaluation.json +0 -51
- wisent/examples/scripts/results/test_tmmluplus_pairs.json +0 -14
- wisent/examples/scripts/results/test_translation_evaluation.json +0 -51
- wisent/examples/scripts/results/test_translation_pairs.json +0 -14
- wisent/examples/scripts/results/test_triviaqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_triviaqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_truthfulqa-multi_evaluation.json +0 -51
- wisent/examples/scripts/results/test_truthfulqa-multi_pairs.json +0 -14
- wisent/examples/scripts/results/test_truthfulqa_evaluation.json +0 -30
- wisent/examples/scripts/results/test_truthfulqa_mc1_evaluation.json +0 -30
- wisent/examples/scripts/results/test_truthfulqa_mc1_pairs.json +0 -8
- wisent/examples/scripts/results/test_truthfulqa_mc2_evaluation.json +0 -30
- wisent/examples/scripts/results/test_truthfulqa_mc2_pairs.json +0 -8
- wisent/examples/scripts/results/test_truthfulqa_pairs.json +0 -8
- wisent/examples/scripts/results/test_turkishmmlu_evaluation.json +0 -51
- wisent/examples/scripts/results/test_turkishmmlu_pairs.json +0 -14
- wisent/examples/scripts/results/test_unfair_tos_evaluation.json +0 -30
- wisent/examples/scripts/results/test_unfair_tos_pairs.json +0 -8
- wisent/examples/scripts/results/test_unscramble_evaluation.json +0 -51
- wisent/examples/scripts/results/test_unscramble_pairs.json +0 -14
- wisent/examples/scripts/results/test_webqs_evaluation.json +0 -30
- wisent/examples/scripts/results/test_webqs_pairs.json +0 -8
- wisent/examples/scripts/results/test_wikitext103_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wikitext103_pairs.json +0 -8
- wisent/examples/scripts/results/test_wikitext_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wikitext_pairs.json +0 -8
- wisent/examples/scripts/results/test_winogender_evaluation.json +0 -51
- wisent/examples/scripts/results/test_winogender_pairs.json +0 -14
- wisent/examples/scripts/results/test_winogrande_evaluation.json +0 -30
- wisent/examples/scripts/results/test_winogrande_pairs.json +0 -8
- wisent/examples/scripts/results/test_wmdp_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wmdp_pairs.json +0 -8
- wisent/examples/scripts/results/test_wmt-ro-en-t5-prompt_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wmt-ro-en-t5-prompt_pairs.json +0 -8
- wisent/examples/scripts/results/test_wmt14_en_fr_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wmt14_en_fr_pairs.json +0 -8
- wisent/examples/scripts/results/test_wmt16_en_de_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wmt16_en_de_pairs.json +0 -8
- wisent/examples/scripts/results/test_wmt16_ro_en_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wmt16_ro_en_pairs.json +0 -8
- wisent/examples/scripts/results/test_wsc273_evaluation.json +0 -30
- wisent/examples/scripts/results/test_wsc273_pairs.json +0 -8
- wisent/examples/scripts/results/test_xcopa_evaluation.json +0 -51
- wisent/examples/scripts/results/test_xcopa_pairs.json +0 -14
- wisent/examples/scripts/results/test_xnli_eu_evaluation.json +0 -30
- wisent/examples/scripts/results/test_xnli_eu_pairs.json +0 -8
- wisent/examples/scripts/results/test_xnli_evaluation.json +0 -51
- wisent/examples/scripts/results/test_xnli_pairs.json +0 -14
- wisent/examples/scripts/results/test_xquad_evaluation.json +0 -51
- wisent/examples/scripts/results/test_xquad_pairs.json +0 -14
- wisent/examples/scripts/results/test_xstorycloze_evaluation.json +0 -51
- wisent/examples/scripts/results/test_xstorycloze_pairs.json +0 -14
- wisent/examples/scripts/results/test_xsum_evaluation.json +0 -30
- wisent/examples/scripts/results/test_xsum_pairs.json +0 -8
- wisent/examples/scripts/results/test_xwinograd_evaluation.json +0 -51
- wisent/examples/scripts/results/test_xwinograd_pairs.json +0 -14
- wisent/examples/scripts/results/test_yahoo_answers_topics_evaluation.json +0 -30
- wisent/examples/scripts/results/test_yahoo_answers_topics_pairs.json +0 -8
- {wisent-0.7.379.dist-info → wisent-0.7.701.dist-info}/WHEEL +0 -0
- {wisent-0.7.379.dist-info → wisent-0.7.701.dist-info}/entry_points.txt +0 -0
- {wisent-0.7.379.dist-info → wisent-0.7.701.dist-info}/licenses/LICENSE +0 -0
- {wisent-0.7.379.dist-info → wisent-0.7.701.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1202 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Exhaustive layer combination analysis.
|
|
3
|
+
|
|
4
|
+
Tests all 2^N - 1 layer combinations to find optimal layer subsets
|
|
5
|
+
for geometry detection.
|
|
6
|
+
|
|
7
|
+
Uses CLI commands for pair generation and activation extraction.
|
|
8
|
+
|
|
9
|
+
===============================================================================
|
|
10
|
+
DEBUGGING NOTES - READ BEFORE MAKING ASSUMPTIONS
|
|
11
|
+
===============================================================================
|
|
12
|
+
|
|
13
|
+
On Dec 15, 2025, a Qwen3-8B run (36 layers = 68 billion combinations) became
|
|
14
|
+
unresponsive after starting step [5]. The instance lost SSM connection, SSH
|
|
15
|
+
timed out, and required a reboot.
|
|
16
|
+
|
|
17
|
+
WHAT WE KNOW (facts with evidence):
|
|
18
|
+
- Step [5] started: "Running exhaustive analysis (68719476735 combinations)..."
|
|
19
|
+
- No further output after that line
|
|
20
|
+
- Instance became unreachable (SSM ConnectionLost, SSH timeout)
|
|
21
|
+
- After reboot, dmesg.0 showed NO OOM messages
|
|
22
|
+
- kern.log had no errors between 18:30 (step 5 start) and 19:58 (reboot)
|
|
23
|
+
|
|
24
|
+
WHAT WE DO NOT KNOW (no evidence):
|
|
25
|
+
- Whether the process was running or stuck
|
|
26
|
+
- Whether memory was exhausted (no OOM in logs)
|
|
27
|
+
- Whether CPU was pegged
|
|
28
|
+
- The actual cause of unresponsiveness
|
|
29
|
+
|
|
30
|
+
DO NOT ASSUME:
|
|
31
|
+
- That 68 billion combinations is "too many" without measuring
|
|
32
|
+
- That the list allocation caused OOM (no evidence)
|
|
33
|
+
- That the loop is slow (no benchmarks)
|
|
34
|
+
- ANY root cause without actual evidence from logs/metrics
|
|
35
|
+
|
|
36
|
+
If investigating future failures:
|
|
37
|
+
1. Check dmesg BEFORE rebooting for OOM messages
|
|
38
|
+
2. Check /var/log/kern.log for errors
|
|
39
|
+
3. Try to SSH and run 'top', 'free -h', 'ps aux' before assuming crash
|
|
40
|
+
4. Get actual memory/CPU metrics, don't guess
|
|
41
|
+
|
|
42
|
+
The instance may have been working fine but just not producing output.
|
|
43
|
+
===============================================================================
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
import json
|
|
47
|
+
import os
|
|
48
|
+
import subprocess
|
|
49
|
+
import sys
|
|
50
|
+
import tempfile
|
|
51
|
+
import time
|
|
52
|
+
import torch
|
|
53
|
+
from datetime import datetime
|
|
54
|
+
from typing import Dict, List
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def run_exhaustive_layer_analysis(
|
|
58
|
+
task: str = "truthfulqa_gen",
|
|
59
|
+
model: str = "meta-llama/Llama-3.2-1B-Instruct",
|
|
60
|
+
num_pairs: int = 50,
|
|
61
|
+
max_layers: int | None = None,
|
|
62
|
+
output_dir: str = "/home/ubuntu/output",
|
|
63
|
+
):
|
|
64
|
+
"""
|
|
65
|
+
Run exhaustive layer combination analysis.
|
|
66
|
+
|
|
67
|
+
Tests all 2^N - 1 layer combinations to find which layer subsets
|
|
68
|
+
produce the strongest geometric structure detection.
|
|
69
|
+
|
|
70
|
+
Uses CLI commands:
|
|
71
|
+
- generate-pairs-from-task: Generate contrastive pairs
|
|
72
|
+
- get-activations: Extract activations for all layers
|
|
73
|
+
|
|
74
|
+
Automatically detects the model's layer count.
|
|
75
|
+
|
|
76
|
+
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
77
|
+
WARNING: DO NOT SET max_layers TO REDUCE THE NUMBER OF LAYERS TESTED.
|
|
78
|
+
|
|
79
|
+
The whole point of this analysis is to test ALL layer combinations.
|
|
80
|
+
If you need to reduce combinations for feasibility:
|
|
81
|
+
1. Use a larger instance (g6e.2xlarge = 64GB, g6e.4xlarge = 128GB, g6e.12xlarge = 384GB)
|
|
82
|
+
2. Wait longer - it's supposed to take hours/days
|
|
83
|
+
3. DO NOT artificially cap layers - that defeats the purpose
|
|
84
|
+
|
|
85
|
+
max_layers exists ONLY for debugging/testing purposes, NOT for production runs.
|
|
86
|
+
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
87
|
+
"""
|
|
88
|
+
from wisent.core.contrastive_pairs.diagnostics.control_vectors import (
|
|
89
|
+
detect_geometry_exhaustive,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
sys.stdout.reconfigure(line_buffering=True)
|
|
93
|
+
|
|
94
|
+
print("=" * 80)
|
|
95
|
+
print("EXHAUSTIVE LAYER COMBINATION ANALYSIS")
|
|
96
|
+
print("=" * 80)
|
|
97
|
+
print(f"Task: {task}")
|
|
98
|
+
print(f"Model: {model}")
|
|
99
|
+
print(f"Num pairs: {num_pairs}")
|
|
100
|
+
print(f"Output dir: {output_dir}")
|
|
101
|
+
|
|
102
|
+
# Auto-detect model layer count from config (without loading weights)
|
|
103
|
+
print(f"\n[0] Detecting model layer count from config...")
|
|
104
|
+
start = time.time()
|
|
105
|
+
from transformers import AutoConfig
|
|
106
|
+
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
107
|
+
# Different models use different config keys for layer count
|
|
108
|
+
model_layers = getattr(config, 'num_hidden_layers', None) or \
|
|
109
|
+
getattr(config, 'n_layer', None) or \
|
|
110
|
+
getattr(config, 'num_layers', None) or 32
|
|
111
|
+
print(f" Model has {model_layers} layers (detected in {time.time() - start:.1f}s)")
|
|
112
|
+
|
|
113
|
+
# Determine layers to use
|
|
114
|
+
if max_layers is not None:
|
|
115
|
+
num_layers = min(max_layers, model_layers)
|
|
116
|
+
print(f" Using {num_layers} layers (limited by --max-layers)")
|
|
117
|
+
else:
|
|
118
|
+
num_layers = model_layers
|
|
119
|
+
|
|
120
|
+
print(f" Total combinations to test: {2**num_layers - 1:,}")
|
|
121
|
+
print("=" * 80)
|
|
122
|
+
|
|
123
|
+
with tempfile.TemporaryDirectory() as tmpdir:
|
|
124
|
+
pairs_file = os.path.join(tmpdir, "pairs.json")
|
|
125
|
+
activations_file = os.path.join(tmpdir, "activations.json")
|
|
126
|
+
|
|
127
|
+
# Step 1: Generate pairs using CLI
|
|
128
|
+
print(f"\n[1] Generating {num_pairs} pairs for {task}...")
|
|
129
|
+
start = time.time()
|
|
130
|
+
result = subprocess.run(
|
|
131
|
+
[
|
|
132
|
+
sys.executable, "-m", "wisent.core.main", "generate-pairs-from-task",
|
|
133
|
+
task,
|
|
134
|
+
"--output", pairs_file,
|
|
135
|
+
"--limit", str(num_pairs),
|
|
136
|
+
],
|
|
137
|
+
capture_output=True,
|
|
138
|
+
text=True,
|
|
139
|
+
timeout=600
|
|
140
|
+
)
|
|
141
|
+
if result.returncode != 0:
|
|
142
|
+
print(f"ERROR: Pair generation failed: {result.stderr}")
|
|
143
|
+
return
|
|
144
|
+
print(f" Generated pairs in {time.time() - start:.1f}s")
|
|
145
|
+
|
|
146
|
+
# Step 2: Get activations for ALL layers using CLI
|
|
147
|
+
# Build layers string: "1,2,3,...,num_layers"
|
|
148
|
+
layers_str = ",".join(str(i) for i in range(1, num_layers + 1))
|
|
149
|
+
|
|
150
|
+
print(f"\n[2] Extracting activations for layers 1-{num_layers}...")
|
|
151
|
+
start = time.time()
|
|
152
|
+
result = subprocess.run(
|
|
153
|
+
[
|
|
154
|
+
sys.executable, "-m", "wisent.core.main", "get-activations",
|
|
155
|
+
pairs_file,
|
|
156
|
+
"--output", activations_file,
|
|
157
|
+
"--model", model,
|
|
158
|
+
"--layers", layers_str,
|
|
159
|
+
"--token-aggregation", "final",
|
|
160
|
+
],
|
|
161
|
+
capture_output=True,
|
|
162
|
+
text=True,
|
|
163
|
+
timeout=1800 # 30 min timeout for activation extraction
|
|
164
|
+
)
|
|
165
|
+
if result.returncode != 0:
|
|
166
|
+
print(f"ERROR: Activation extraction failed: {result.stderr}")
|
|
167
|
+
return
|
|
168
|
+
print(f" Extracted activations in {time.time() - start:.1f}s")
|
|
169
|
+
|
|
170
|
+
# Step 3: Load activations from JSON
|
|
171
|
+
print("\n[3] Loading activations from file...")
|
|
172
|
+
with open(activations_file, 'r') as f:
|
|
173
|
+
data = json.load(f)
|
|
174
|
+
|
|
175
|
+
pairs_list = data.get('pairs', [])
|
|
176
|
+
print(f" Loaded {len(pairs_list)} pairs with activations")
|
|
177
|
+
|
|
178
|
+
# Step 4: Convert to tensors by layer
|
|
179
|
+
print("\n[4] Converting to tensors by layer...")
|
|
180
|
+
pos_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
181
|
+
neg_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
182
|
+
|
|
183
|
+
for pair in pairs_list:
|
|
184
|
+
pos_la = pair.get('positive_response', {}).get('layers_activations', {})
|
|
185
|
+
neg_la = pair.get('negative_response', {}).get('layers_activations', {})
|
|
186
|
+
|
|
187
|
+
for layer_key in pos_la:
|
|
188
|
+
layer = int(layer_key)
|
|
189
|
+
if max_layers is not None and layer > max_layers:
|
|
190
|
+
continue
|
|
191
|
+
|
|
192
|
+
if layer not in pos_by_layer:
|
|
193
|
+
pos_by_layer[layer] = []
|
|
194
|
+
neg_by_layer[layer] = []
|
|
195
|
+
|
|
196
|
+
if layer_key in pos_la and layer_key in neg_la:
|
|
197
|
+
pos_by_layer[layer].append(torch.tensor(pos_la[layer_key]).reshape(-1))
|
|
198
|
+
neg_by_layer[layer].append(torch.tensor(neg_la[layer_key]).reshape(-1))
|
|
199
|
+
|
|
200
|
+
# Stack into tensors
|
|
201
|
+
pos_tensors = {}
|
|
202
|
+
neg_tensors = {}
|
|
203
|
+
layers_available = sorted(pos_by_layer.keys())
|
|
204
|
+
|
|
205
|
+
for layer in layers_available:
|
|
206
|
+
if pos_by_layer[layer] and neg_by_layer[layer]:
|
|
207
|
+
pos_tensors[layer] = torch.stack(pos_by_layer[layer])
|
|
208
|
+
neg_tensors[layer] = torch.stack(neg_by_layer[layer])
|
|
209
|
+
print(f" Layer {layer}: {pos_tensors[layer].shape}")
|
|
210
|
+
|
|
211
|
+
num_layers = len(pos_tensors)
|
|
212
|
+
actual_combos = 2 ** num_layers - 1
|
|
213
|
+
print(f"\n {num_layers} layers available -> {actual_combos} combinations to test")
|
|
214
|
+
|
|
215
|
+
# Step 5: Run exhaustive analysis
|
|
216
|
+
print(f"\n[5] Running exhaustive analysis ({actual_combos} combinations)...")
|
|
217
|
+
start = time.time()
|
|
218
|
+
|
|
219
|
+
last_report = [0, time.time()] # [last_count, last_time]
|
|
220
|
+
def progress_callback(current: int, total: int):
|
|
221
|
+
# Report every 10000 combinations OR every 30 seconds, whichever comes first
|
|
222
|
+
now = time.time()
|
|
223
|
+
if current - last_report[0] >= 10000 or now - last_report[1] >= 30:
|
|
224
|
+
elapsed = now - start
|
|
225
|
+
rate = current / elapsed if elapsed > 0 else 0
|
|
226
|
+
remaining = (total - current) / rate if rate > 0 else float('inf')
|
|
227
|
+
pct = 100 * current / total
|
|
228
|
+
print(f" Progress: {current:,}/{total:,} ({pct:.4f}%) - {rate:.1f} combos/sec - ETA: {remaining:.0f}s")
|
|
229
|
+
last_report[0] = current
|
|
230
|
+
last_report[1] = now
|
|
231
|
+
|
|
232
|
+
result = detect_geometry_exhaustive(
|
|
233
|
+
pos_tensors,
|
|
234
|
+
neg_tensors,
|
|
235
|
+
max_layers=num_layers,
|
|
236
|
+
combination_method="concat",
|
|
237
|
+
progress_callback=progress_callback,
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
elapsed = time.time() - start
|
|
241
|
+
print(f"\n Completed in {elapsed:.1f}s ({actual_combos / elapsed:.1f} combos/sec)")
|
|
242
|
+
|
|
243
|
+
# Print results
|
|
244
|
+
print("\n" + "=" * 80)
|
|
245
|
+
print("RESULTS")
|
|
246
|
+
print("=" * 80)
|
|
247
|
+
|
|
248
|
+
print(f"\nTotal combinations tested: {result.total_combinations}")
|
|
249
|
+
print(f"\nBest combination: {result.best_combination}")
|
|
250
|
+
print(f"Best score: {result.best_score:.4f}")
|
|
251
|
+
print(f"Best structure: {result.best_structure.value}")
|
|
252
|
+
|
|
253
|
+
print(f"\nBest single layer: L{result.single_layer_best}")
|
|
254
|
+
print(f"Best single layer score: {result.single_layer_best_score:.4f}")
|
|
255
|
+
print(f"Combination beats single: {result.combination_beats_single}")
|
|
256
|
+
print(f"Improvement over single: {result.improvement_over_single:.4f}")
|
|
257
|
+
|
|
258
|
+
print("\n--- Top 10 Combinations ---")
|
|
259
|
+
for i, r in enumerate(result.top_10):
|
|
260
|
+
layers_str = "+".join(f"L{l}" for l in r.layers)
|
|
261
|
+
print(f" {i+1}. {layers_str}: {r.best_structure.value} = {r.best_score:.4f}")
|
|
262
|
+
|
|
263
|
+
print("\n--- Patterns ---")
|
|
264
|
+
print(f" Most important layers: {result.patterns.get('most_important_layers', [])}")
|
|
265
|
+
print(f" Optimal combination size: {result.patterns.get('optimal_combination_size', 1)}")
|
|
266
|
+
print(f" Dominant structure: {result.patterns.get('dominant_structure', 'unknown')}")
|
|
267
|
+
print(f" Best score by size: {result.patterns.get('best_score_by_size', {})}")
|
|
268
|
+
print(f" Early vs late ratio: {result.patterns.get('early_vs_late_ratio', 0):.2f}")
|
|
269
|
+
|
|
270
|
+
print(f"\n--- Recommendation ---")
|
|
271
|
+
print(f" {result.recommendation}")
|
|
272
|
+
|
|
273
|
+
# Save results
|
|
274
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
275
|
+
output_file = os.path.join(output_dir, f"exhaustive_geometry_{task}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json")
|
|
276
|
+
|
|
277
|
+
# Convert to serializable format
|
|
278
|
+
results_json = {
|
|
279
|
+
"task": task,
|
|
280
|
+
"model": model,
|
|
281
|
+
"num_pairs": num_pairs,
|
|
282
|
+
"max_layers": num_layers,
|
|
283
|
+
"total_combinations": result.total_combinations,
|
|
284
|
+
"elapsed_seconds": elapsed,
|
|
285
|
+
"best_combination": list(result.best_combination),
|
|
286
|
+
"best_score": result.best_score,
|
|
287
|
+
"best_structure": result.best_structure.value,
|
|
288
|
+
"single_layer_best": result.single_layer_best,
|
|
289
|
+
"single_layer_best_score": result.single_layer_best_score,
|
|
290
|
+
"combination_beats_single": result.combination_beats_single,
|
|
291
|
+
"improvement_over_single": result.improvement_over_single,
|
|
292
|
+
"top_10": [
|
|
293
|
+
{
|
|
294
|
+
"layers": list(r.layers),
|
|
295
|
+
"best_structure": r.best_structure.value,
|
|
296
|
+
"best_score": r.best_score,
|
|
297
|
+
"all_scores": r.all_scores,
|
|
298
|
+
}
|
|
299
|
+
for r in result.top_10
|
|
300
|
+
],
|
|
301
|
+
"top_100": [
|
|
302
|
+
{
|
|
303
|
+
"layers": list(r.layers),
|
|
304
|
+
"best_structure": r.best_structure.value,
|
|
305
|
+
"best_score": r.best_score,
|
|
306
|
+
}
|
|
307
|
+
for r in result.all_results[:100]
|
|
308
|
+
],
|
|
309
|
+
"patterns": {
|
|
310
|
+
k: v if not isinstance(v, float) or not (v != v) else None # Handle NaN
|
|
311
|
+
for k, v in result.patterns.items()
|
|
312
|
+
},
|
|
313
|
+
"recommendation": result.recommendation,
|
|
314
|
+
}
|
|
315
|
+
|
|
316
|
+
with open(output_file, "w") as f:
|
|
317
|
+
json.dump(results_json, f, indent=2)
|
|
318
|
+
print(f"\nResults saved to: {output_file}")
|
|
319
|
+
|
|
320
|
+
return result
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
def run_limited_layer_analysis(
|
|
324
|
+
task: str = "truthfulqa_gen",
|
|
325
|
+
model: str = "meta-llama/Llama-3.2-1B-Instruct",
|
|
326
|
+
num_pairs: int = 50,
|
|
327
|
+
max_combo_size: int = 3,
|
|
328
|
+
output_dir: str = "/home/ubuntu/output",
|
|
329
|
+
):
|
|
330
|
+
"""
|
|
331
|
+
Run limited layer combination analysis.
|
|
332
|
+
|
|
333
|
+
Tests 1-layer, 2-layer, 3-layer combinations plus all layers combined.
|
|
334
|
+
Much faster than exhaustive: O(N^3) instead of O(2^N).
|
|
335
|
+
|
|
336
|
+
For 36 layers with max_combo_size=3:
|
|
337
|
+
- 36 + 630 + 7140 + 1 = 7,807 combinations (vs 68 billion exhaustive)
|
|
338
|
+
"""
|
|
339
|
+
from wisent.core.contrastive_pairs.diagnostics.control_vectors import (
|
|
340
|
+
detect_geometry_limited,
|
|
341
|
+
)
|
|
342
|
+
from math import comb
|
|
343
|
+
|
|
344
|
+
sys.stdout.reconfigure(line_buffering=True)
|
|
345
|
+
|
|
346
|
+
print("=" * 80)
|
|
347
|
+
print("LIMITED LAYER COMBINATION ANALYSIS")
|
|
348
|
+
print("=" * 80)
|
|
349
|
+
print(f"Task: {task}")
|
|
350
|
+
print(f"Model: {model}")
|
|
351
|
+
print(f"Num pairs: {num_pairs}")
|
|
352
|
+
print(f"Max combo size: {max_combo_size}")
|
|
353
|
+
print(f"Output dir: {output_dir}")
|
|
354
|
+
|
|
355
|
+
# Auto-detect model layer count from config
|
|
356
|
+
print(f"\n[0] Detecting model layer count from config...")
|
|
357
|
+
start = time.time()
|
|
358
|
+
from transformers import AutoConfig
|
|
359
|
+
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
360
|
+
model_layers = getattr(config, 'num_hidden_layers', None) or \
|
|
361
|
+
getattr(config, 'n_layer', None) or \
|
|
362
|
+
getattr(config, 'num_layers', None) or 32
|
|
363
|
+
print(f" Model has {model_layers} layers (detected in {time.time() - start:.1f}s)")
|
|
364
|
+
|
|
365
|
+
# Calculate expected combinations
|
|
366
|
+
total_combos = sum(comb(model_layers, r) for r in range(1, min(max_combo_size, model_layers) + 1))
|
|
367
|
+
if max_combo_size < model_layers:
|
|
368
|
+
total_combos += 1 # all layers
|
|
369
|
+
print(f" Will test {total_combos:,} combinations (1 to {max_combo_size} layers + all {model_layers})")
|
|
370
|
+
print("=" * 80)
|
|
371
|
+
|
|
372
|
+
with tempfile.TemporaryDirectory() as tmpdir:
|
|
373
|
+
pairs_file = os.path.join(tmpdir, "pairs.json")
|
|
374
|
+
activations_file = os.path.join(tmpdir, "activations.json")
|
|
375
|
+
|
|
376
|
+
# Step 1: Generate pairs
|
|
377
|
+
print(f"\n[1] Generating {num_pairs} pairs for {task}...")
|
|
378
|
+
start = time.time()
|
|
379
|
+
result = subprocess.run(
|
|
380
|
+
[
|
|
381
|
+
sys.executable, "-m", "wisent.core.main", "generate-pairs-from-task",
|
|
382
|
+
task,
|
|
383
|
+
"--output", pairs_file,
|
|
384
|
+
"--limit", str(num_pairs),
|
|
385
|
+
],
|
|
386
|
+
capture_output=True,
|
|
387
|
+
text=True,
|
|
388
|
+
timeout=600
|
|
389
|
+
)
|
|
390
|
+
if result.returncode != 0:
|
|
391
|
+
print(f"ERROR: Pair generation failed: {result.stderr}")
|
|
392
|
+
return
|
|
393
|
+
print(f" Generated pairs in {time.time() - start:.1f}s")
|
|
394
|
+
|
|
395
|
+
# Step 2: Get activations for ALL layers
|
|
396
|
+
layers_str = ",".join(str(i) for i in range(1, model_layers + 1))
|
|
397
|
+
|
|
398
|
+
print(f"\n[2] Extracting activations for layers 1-{model_layers}...")
|
|
399
|
+
start = time.time()
|
|
400
|
+
result = subprocess.run(
|
|
401
|
+
[
|
|
402
|
+
sys.executable, "-m", "wisent.core.main", "get-activations",
|
|
403
|
+
pairs_file,
|
|
404
|
+
"--output", activations_file,
|
|
405
|
+
"--model", model,
|
|
406
|
+
"--layers", layers_str,
|
|
407
|
+
"--token-aggregation", "final",
|
|
408
|
+
],
|
|
409
|
+
capture_output=True,
|
|
410
|
+
text=True,
|
|
411
|
+
timeout=1800
|
|
412
|
+
)
|
|
413
|
+
if result.returncode != 0:
|
|
414
|
+
print(f"ERROR: Activation extraction failed: {result.stderr}")
|
|
415
|
+
return
|
|
416
|
+
print(f" Extracted activations in {time.time() - start:.1f}s")
|
|
417
|
+
|
|
418
|
+
# Step 3: Load activations
|
|
419
|
+
print("\n[3] Loading activations from file...")
|
|
420
|
+
with open(activations_file, 'r') as f:
|
|
421
|
+
data = json.load(f)
|
|
422
|
+
|
|
423
|
+
pairs_list = data.get('pairs', [])
|
|
424
|
+
print(f" Loaded {len(pairs_list)} pairs with activations")
|
|
425
|
+
|
|
426
|
+
# Step 4: Convert to tensors by layer
|
|
427
|
+
print("\n[4] Converting to tensors by layer...")
|
|
428
|
+
pos_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
429
|
+
neg_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
430
|
+
|
|
431
|
+
for pair in pairs_list:
|
|
432
|
+
pos_la = pair.get('positive_response', {}).get('layers_activations', {})
|
|
433
|
+
neg_la = pair.get('negative_response', {}).get('layers_activations', {})
|
|
434
|
+
|
|
435
|
+
for layer_key in pos_la:
|
|
436
|
+
layer = int(layer_key)
|
|
437
|
+
if layer not in pos_by_layer:
|
|
438
|
+
pos_by_layer[layer] = []
|
|
439
|
+
neg_by_layer[layer] = []
|
|
440
|
+
|
|
441
|
+
if layer_key in pos_la and layer_key in neg_la:
|
|
442
|
+
pos_by_layer[layer].append(torch.tensor(pos_la[layer_key]).reshape(-1))
|
|
443
|
+
neg_by_layer[layer].append(torch.tensor(neg_la[layer_key]).reshape(-1))
|
|
444
|
+
|
|
445
|
+
pos_tensors: Dict[int, torch.Tensor] = {}
|
|
446
|
+
neg_tensors: Dict[int, torch.Tensor] = {}
|
|
447
|
+
for layer in sorted(pos_by_layer.keys()):
|
|
448
|
+
if pos_by_layer[layer]:
|
|
449
|
+
pos_tensors[layer] = torch.stack(pos_by_layer[layer])
|
|
450
|
+
neg_tensors[layer] = torch.stack(neg_by_layer[layer])
|
|
451
|
+
print(f" Layer {layer}: {pos_tensors[layer].shape}")
|
|
452
|
+
|
|
453
|
+
num_layers = len(pos_tensors)
|
|
454
|
+
print(f"\n {num_layers} layers available")
|
|
455
|
+
|
|
456
|
+
# Step 5: Run limited analysis
|
|
457
|
+
print(f"\n[5] Running limited analysis ({total_combos:,} combinations)...")
|
|
458
|
+
start = time.time()
|
|
459
|
+
|
|
460
|
+
last_report = [0, time.time()]
|
|
461
|
+
def progress_callback(current: int, total: int):
|
|
462
|
+
now = time.time()
|
|
463
|
+
if current - last_report[0] >= 100 or now - last_report[1] >= 30 or current == total:
|
|
464
|
+
elapsed = now - start
|
|
465
|
+
rate = current / elapsed if elapsed > 0 else 0
|
|
466
|
+
remaining = (total - current) / rate if rate > 0 else 0
|
|
467
|
+
pct = 100 * current / total
|
|
468
|
+
print(f" Progress: {current:,}/{total:,} ({pct:.1f}%) - {rate:.1f} combos/sec - ETA: {remaining:.0f}s")
|
|
469
|
+
last_report[0] = current
|
|
470
|
+
last_report[1] = now
|
|
471
|
+
|
|
472
|
+
result = detect_geometry_limited(
|
|
473
|
+
pos_tensors,
|
|
474
|
+
neg_tensors,
|
|
475
|
+
max_combo_size=max_combo_size,
|
|
476
|
+
combination_method="concat",
|
|
477
|
+
progress_callback=progress_callback,
|
|
478
|
+
)
|
|
479
|
+
|
|
480
|
+
elapsed = time.time() - start
|
|
481
|
+
print(f"\n Completed in {elapsed:.1f}s ({total_combos / elapsed:.1f} combos/sec)")
|
|
482
|
+
|
|
483
|
+
# Print results
|
|
484
|
+
print("\n" + "=" * 80)
|
|
485
|
+
print("RESULTS")
|
|
486
|
+
print("=" * 80)
|
|
487
|
+
|
|
488
|
+
print(f"\nTotal combinations tested: {result.total_combinations}")
|
|
489
|
+
print(f"\nBest combination: {result.best_combination}")
|
|
490
|
+
print(f"Best score: {result.best_score:.4f}")
|
|
491
|
+
print(f"Best structure: {result.best_structure.value}")
|
|
492
|
+
|
|
493
|
+
print(f"\nBest single layer: L{result.single_layer_best}")
|
|
494
|
+
print(f"Best single layer score: {result.single_layer_best_score:.4f}")
|
|
495
|
+
print(f"Combination beats single: {result.combination_beats_single}")
|
|
496
|
+
print(f"Improvement over single: {result.improvement_over_single:.4f}")
|
|
497
|
+
|
|
498
|
+
print("\n--- Top 10 Combinations ---")
|
|
499
|
+
for i, r in enumerate(result.top_10):
|
|
500
|
+
layers_str = "+".join(f"L{l}" for l in r.layers)
|
|
501
|
+
print(f"{i+1}. {layers_str}: {r.best_score:.4f} ({r.best_structure.value})")
|
|
502
|
+
|
|
503
|
+
print(f"\nRecommendation: {result.recommendation}")
|
|
504
|
+
|
|
505
|
+
# Save results
|
|
506
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
507
|
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
508
|
+
output_file = os.path.join(output_dir, f"geometry_limited_{task}_{timestamp}.json")
|
|
509
|
+
|
|
510
|
+
results_json = {
|
|
511
|
+
"task": task,
|
|
512
|
+
"model": model,
|
|
513
|
+
"num_pairs": num_pairs,
|
|
514
|
+
"max_combo_size": max_combo_size,
|
|
515
|
+
"total_combinations": result.total_combinations,
|
|
516
|
+
"best_combination": list(result.best_combination),
|
|
517
|
+
"best_score": result.best_score,
|
|
518
|
+
"best_structure": result.best_structure.value,
|
|
519
|
+
"single_layer_best": result.single_layer_best,
|
|
520
|
+
"single_layer_best_score": result.single_layer_best_score,
|
|
521
|
+
"combination_beats_single": result.combination_beats_single,
|
|
522
|
+
"improvement_over_single": result.improvement_over_single,
|
|
523
|
+
"top_10": [
|
|
524
|
+
{
|
|
525
|
+
"layers": list(r.layers),
|
|
526
|
+
"best_score": r.best_score,
|
|
527
|
+
"best_structure": r.best_structure.value,
|
|
528
|
+
"all_scores": r.all_scores,
|
|
529
|
+
}
|
|
530
|
+
for r in result.top_10
|
|
531
|
+
],
|
|
532
|
+
"top_100": [
|
|
533
|
+
{
|
|
534
|
+
"layers": list(r.layers),
|
|
535
|
+
"best_score": r.best_score,
|
|
536
|
+
"best_structure": r.best_structure.value,
|
|
537
|
+
}
|
|
538
|
+
for r in result.all_results[:100]
|
|
539
|
+
],
|
|
540
|
+
"patterns": result.patterns,
|
|
541
|
+
"recommendation": result.recommendation,
|
|
542
|
+
}
|
|
543
|
+
|
|
544
|
+
with open(output_file, "w") as f:
|
|
545
|
+
json.dump(results_json, f, indent=2)
|
|
546
|
+
print(f"\nResults saved to: {output_file}")
|
|
547
|
+
|
|
548
|
+
return result
|
|
549
|
+
|
|
550
|
+
|
|
551
|
+
def run_contiguous_layer_analysis(
|
|
552
|
+
task: str = "truthfulqa_gen",
|
|
553
|
+
model: str = "meta-llama/Llama-3.2-1B-Instruct",
|
|
554
|
+
num_pairs: int = 50,
|
|
555
|
+
output_dir: str = "/home/ubuntu/output",
|
|
556
|
+
):
|
|
557
|
+
"""
|
|
558
|
+
Run contiguous layer combination analysis.
|
|
559
|
+
|
|
560
|
+
Only tests combinations where layers are adjacent (1-2, 2-3, 1-5, etc.).
|
|
561
|
+
Very fast: O(N^2) = N*(N+1)/2 combinations.
|
|
562
|
+
|
|
563
|
+
For 36 layers: 666 combinations
|
|
564
|
+
For 24 layers: 300 combinations
|
|
565
|
+
"""
|
|
566
|
+
from wisent.core.contrastive_pairs.diagnostics.control_vectors import (
|
|
567
|
+
detect_geometry_contiguous,
|
|
568
|
+
)
|
|
569
|
+
|
|
570
|
+
sys.stdout.reconfigure(line_buffering=True)
|
|
571
|
+
|
|
572
|
+
print("=" * 80)
|
|
573
|
+
print("CONTIGUOUS LAYER COMBINATION ANALYSIS")
|
|
574
|
+
print("=" * 80)
|
|
575
|
+
print(f"Task: {task}")
|
|
576
|
+
print(f"Model: {model}")
|
|
577
|
+
print(f"Num pairs: {num_pairs}")
|
|
578
|
+
print(f"Output dir: {output_dir}")
|
|
579
|
+
|
|
580
|
+
# Auto-detect model layer count from config
|
|
581
|
+
print(f"\n[0] Detecting model layer count from config...")
|
|
582
|
+
start = time.time()
|
|
583
|
+
from transformers import AutoConfig
|
|
584
|
+
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
585
|
+
model_layers = getattr(config, 'num_hidden_layers', None) or \
|
|
586
|
+
getattr(config, 'n_layer', None) or \
|
|
587
|
+
getattr(config, 'num_layers', None) or 32
|
|
588
|
+
print(f" Model has {model_layers} layers (detected in {time.time() - start:.1f}s)")
|
|
589
|
+
|
|
590
|
+
# Calculate expected combinations
|
|
591
|
+
total_combos = model_layers * (model_layers + 1) // 2
|
|
592
|
+
print(f" Will test {total_combos:,} contiguous combinations")
|
|
593
|
+
print("=" * 80)
|
|
594
|
+
|
|
595
|
+
with tempfile.TemporaryDirectory() as tmpdir:
|
|
596
|
+
pairs_file = os.path.join(tmpdir, "pairs.json")
|
|
597
|
+
activations_file = os.path.join(tmpdir, "activations.json")
|
|
598
|
+
|
|
599
|
+
# Step 1: Generate pairs
|
|
600
|
+
print(f"\n[1] Generating {num_pairs} pairs for {task}...")
|
|
601
|
+
start = time.time()
|
|
602
|
+
result = subprocess.run(
|
|
603
|
+
[
|
|
604
|
+
sys.executable, "-m", "wisent.core.main", "generate-pairs-from-task",
|
|
605
|
+
task,
|
|
606
|
+
"--output", pairs_file,
|
|
607
|
+
"--limit", str(num_pairs),
|
|
608
|
+
],
|
|
609
|
+
capture_output=True,
|
|
610
|
+
text=True,
|
|
611
|
+
timeout=600
|
|
612
|
+
)
|
|
613
|
+
if result.returncode != 0:
|
|
614
|
+
print(f"ERROR: Pair generation failed: {result.stderr}")
|
|
615
|
+
return
|
|
616
|
+
print(f" Generated pairs in {time.time() - start:.1f}s")
|
|
617
|
+
|
|
618
|
+
# Step 2: Get activations for ALL layers
|
|
619
|
+
layers_str = ",".join(str(i) for i in range(1, model_layers + 1))
|
|
620
|
+
|
|
621
|
+
print(f"\n[2] Extracting activations for layers 1-{model_layers}...")
|
|
622
|
+
start = time.time()
|
|
623
|
+
result = subprocess.run(
|
|
624
|
+
[
|
|
625
|
+
sys.executable, "-m", "wisent.core.main", "get-activations",
|
|
626
|
+
pairs_file,
|
|
627
|
+
"--output", activations_file,
|
|
628
|
+
"--model", model,
|
|
629
|
+
"--layers", layers_str,
|
|
630
|
+
"--token-aggregation", "final",
|
|
631
|
+
],
|
|
632
|
+
capture_output=True,
|
|
633
|
+
text=True,
|
|
634
|
+
timeout=1800
|
|
635
|
+
)
|
|
636
|
+
if result.returncode != 0:
|
|
637
|
+
print(f"ERROR: Activation extraction failed: {result.stderr}")
|
|
638
|
+
return
|
|
639
|
+
print(f" Extracted activations in {time.time() - start:.1f}s")
|
|
640
|
+
|
|
641
|
+
# Step 3: Load activations
|
|
642
|
+
print("\n[3] Loading activations from file...")
|
|
643
|
+
with open(activations_file, 'r') as f:
|
|
644
|
+
data = json.load(f)
|
|
645
|
+
|
|
646
|
+
pairs_list = data.get('pairs', [])
|
|
647
|
+
print(f" Loaded {len(pairs_list)} pairs with activations")
|
|
648
|
+
|
|
649
|
+
# Step 4: Convert to tensors by layer
|
|
650
|
+
print("\n[4] Converting to tensors by layer...")
|
|
651
|
+
pos_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
652
|
+
neg_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
653
|
+
|
|
654
|
+
for pair in pairs_list:
|
|
655
|
+
pos_la = pair.get('positive_response', {}).get('layers_activations', {})
|
|
656
|
+
neg_la = pair.get('negative_response', {}).get('layers_activations', {})
|
|
657
|
+
|
|
658
|
+
for layer_key in pos_la:
|
|
659
|
+
layer = int(layer_key)
|
|
660
|
+
if layer not in pos_by_layer:
|
|
661
|
+
pos_by_layer[layer] = []
|
|
662
|
+
neg_by_layer[layer] = []
|
|
663
|
+
|
|
664
|
+
if layer_key in pos_la and layer_key in neg_la:
|
|
665
|
+
pos_by_layer[layer].append(torch.tensor(pos_la[layer_key]).reshape(-1))
|
|
666
|
+
neg_by_layer[layer].append(torch.tensor(neg_la[layer_key]).reshape(-1))
|
|
667
|
+
|
|
668
|
+
pos_tensors: Dict[int, torch.Tensor] = {}
|
|
669
|
+
neg_tensors: Dict[int, torch.Tensor] = {}
|
|
670
|
+
for layer in sorted(pos_by_layer.keys()):
|
|
671
|
+
if pos_by_layer[layer]:
|
|
672
|
+
pos_tensors[layer] = torch.stack(pos_by_layer[layer])
|
|
673
|
+
neg_tensors[layer] = torch.stack(neg_by_layer[layer])
|
|
674
|
+
print(f" Layer {layer}: {pos_tensors[layer].shape}")
|
|
675
|
+
|
|
676
|
+
num_layers = len(pos_tensors)
|
|
677
|
+
print(f"\n {num_layers} layers available")
|
|
678
|
+
|
|
679
|
+
# Step 5: Run contiguous analysis
|
|
680
|
+
print(f"\n[5] Running contiguous analysis ({total_combos:,} combinations)...")
|
|
681
|
+
start = time.time()
|
|
682
|
+
|
|
683
|
+
last_report = [0, time.time()]
|
|
684
|
+
def progress_callback(current: int, total: int):
|
|
685
|
+
now = time.time()
|
|
686
|
+
if current - last_report[0] >= 50 or now - last_report[1] >= 30 or current == total:
|
|
687
|
+
elapsed = now - start
|
|
688
|
+
rate = current / elapsed if elapsed > 0 else 0
|
|
689
|
+
remaining = (total - current) / rate if rate > 0 else 0
|
|
690
|
+
pct = 100 * current / total
|
|
691
|
+
print(f" Progress: {current:,}/{total:,} ({pct:.1f}%) - {rate:.1f} combos/sec - ETA: {remaining:.0f}s")
|
|
692
|
+
last_report[0] = current
|
|
693
|
+
last_report[1] = now
|
|
694
|
+
|
|
695
|
+
result = detect_geometry_contiguous(
|
|
696
|
+
pos_tensors,
|
|
697
|
+
neg_tensors,
|
|
698
|
+
combination_method="concat",
|
|
699
|
+
progress_callback=progress_callback,
|
|
700
|
+
)
|
|
701
|
+
|
|
702
|
+
elapsed = time.time() - start
|
|
703
|
+
print(f"\n Completed in {elapsed:.1f}s ({total_combos / elapsed:.1f} combos/sec)")
|
|
704
|
+
|
|
705
|
+
# Print results
|
|
706
|
+
print("\n" + "=" * 80)
|
|
707
|
+
print("RESULTS")
|
|
708
|
+
print("=" * 80)
|
|
709
|
+
|
|
710
|
+
print(f"\nTotal combinations tested: {result.total_combinations}")
|
|
711
|
+
print(f"\nBest combination: {result.best_combination}")
|
|
712
|
+
print(f"Best score: {result.best_score:.4f}")
|
|
713
|
+
print(f"Best structure: {result.best_structure.value}")
|
|
714
|
+
|
|
715
|
+
print(f"\nBest single layer: L{result.single_layer_best}")
|
|
716
|
+
print(f"Best single layer score: {result.single_layer_best_score:.4f}")
|
|
717
|
+
print(f"Combination beats single: {result.combination_beats_single}")
|
|
718
|
+
print(f"Improvement over single: {result.improvement_over_single:.4f}")
|
|
719
|
+
|
|
720
|
+
print("\n--- Top 10 Combinations ---")
|
|
721
|
+
for i, r in enumerate(result.top_10):
|
|
722
|
+
layers_str = f"L{r.layers[0]}-L{r.layers[-1]}" if len(r.layers) > 1 else f"L{r.layers[0]}"
|
|
723
|
+
print(f"{i+1}. {layers_str} ({len(r.layers)} layers): {r.best_score:.4f} ({r.best_structure.value})")
|
|
724
|
+
|
|
725
|
+
print(f"\nRecommendation: {result.recommendation}")
|
|
726
|
+
|
|
727
|
+
# Save results
|
|
728
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
729
|
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
730
|
+
output_file = os.path.join(output_dir, f"geometry_contiguous_{task}_{timestamp}.json")
|
|
731
|
+
|
|
732
|
+
results_json = {
|
|
733
|
+
"task": task,
|
|
734
|
+
"model": model,
|
|
735
|
+
"num_pairs": num_pairs,
|
|
736
|
+
"mode": "contiguous",
|
|
737
|
+
"total_combinations": result.total_combinations,
|
|
738
|
+
"best_combination": list(result.best_combination),
|
|
739
|
+
"best_score": result.best_score,
|
|
740
|
+
"best_structure": result.best_structure.value,
|
|
741
|
+
"single_layer_best": result.single_layer_best,
|
|
742
|
+
"single_layer_best_score": result.single_layer_best_score,
|
|
743
|
+
"combination_beats_single": result.combination_beats_single,
|
|
744
|
+
"improvement_over_single": result.improvement_over_single,
|
|
745
|
+
"top_10": [
|
|
746
|
+
{
|
|
747
|
+
"layers": list(r.layers),
|
|
748
|
+
"best_score": r.best_score,
|
|
749
|
+
"best_structure": r.best_structure.value,
|
|
750
|
+
"all_scores": r.all_scores,
|
|
751
|
+
}
|
|
752
|
+
for r in result.top_10
|
|
753
|
+
],
|
|
754
|
+
"top_100": [
|
|
755
|
+
{
|
|
756
|
+
"layers": list(r.layers),
|
|
757
|
+
"best_score": r.best_score,
|
|
758
|
+
"best_structure": r.best_structure.value,
|
|
759
|
+
}
|
|
760
|
+
for r in result.all_results[:100]
|
|
761
|
+
],
|
|
762
|
+
"patterns": result.patterns,
|
|
763
|
+
"recommendation": result.recommendation,
|
|
764
|
+
}
|
|
765
|
+
|
|
766
|
+
with open(output_file, "w") as f:
|
|
767
|
+
json.dump(results_json, f, indent=2)
|
|
768
|
+
print(f"\nResults saved to: {output_file}")
|
|
769
|
+
|
|
770
|
+
return result
|
|
771
|
+
|
|
772
|
+
|
|
773
|
+
TOKEN_AGGREGATIONS = ["final", "average", "first", "max", "min", "max_score"]
|
|
774
|
+
PROMPT_STRATEGIES = ["chat_template", "direct_completion", "instruction_following", "multiple_choice", "role_playing"]
|
|
775
|
+
|
|
776
|
+
|
|
777
|
+
def run_smart_layer_analysis(
|
|
778
|
+
task: str = "truthfulqa_gen",
|
|
779
|
+
model: str = "meta-llama/Llama-3.2-1B-Instruct",
|
|
780
|
+
num_pairs: int = 50,
|
|
781
|
+
max_combo_size: int = 3,
|
|
782
|
+
token_aggregation: str = "final",
|
|
783
|
+
prompt_strategy: str = "chat_template",
|
|
784
|
+
output_dir: str = "/home/ubuntu/output",
|
|
785
|
+
):
|
|
786
|
+
"""
|
|
787
|
+
Run smart layer combination analysis.
|
|
788
|
+
|
|
789
|
+
Combines contiguous + limited search: tests all contiguous ranges (L1-L5, L3-L8, etc.)
|
|
790
|
+
plus all 1,2,3-layer non-contiguous combinations. Deduplicates overlaps.
|
|
791
|
+
|
|
792
|
+
For 36 layers: ~7,800 unique combinations
|
|
793
|
+
For 24 layers: ~2,600 unique combinations
|
|
794
|
+
"""
|
|
795
|
+
from wisent.core.contrastive_pairs.diagnostics.control_vectors import (
|
|
796
|
+
detect_geometry_smart,
|
|
797
|
+
)
|
|
798
|
+
from math import comb
|
|
799
|
+
|
|
800
|
+
sys.stdout.reconfigure(line_buffering=True)
|
|
801
|
+
|
|
802
|
+
print("=" * 80)
|
|
803
|
+
print("SMART LAYER COMBINATION ANALYSIS")
|
|
804
|
+
print("(Contiguous + Limited 1,2,3-layer combinations)")
|
|
805
|
+
print("=" * 80)
|
|
806
|
+
print(f"Task: {task}")
|
|
807
|
+
print(f"Model: {model}")
|
|
808
|
+
print(f"Num pairs: {num_pairs}")
|
|
809
|
+
print(f"Max combo size: {max_combo_size}")
|
|
810
|
+
print(f"Token aggregation: {token_aggregation}")
|
|
811
|
+
print(f"Prompt strategy: {prompt_strategy}")
|
|
812
|
+
print(f"Output dir: {output_dir}")
|
|
813
|
+
|
|
814
|
+
# Auto-detect model layer count from config
|
|
815
|
+
print(f"\n[0] Detecting model layer count from config...")
|
|
816
|
+
start = time.time()
|
|
817
|
+
from transformers import AutoConfig
|
|
818
|
+
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
819
|
+
model_layers = getattr(config, 'num_hidden_layers', None) or \
|
|
820
|
+
getattr(config, 'n_layer', None) or \
|
|
821
|
+
getattr(config, 'num_layers', None) or 32
|
|
822
|
+
print(f" Model has {model_layers} layers (detected in {time.time() - start:.1f}s)")
|
|
823
|
+
|
|
824
|
+
# Calculate expected combinations (estimate, actual will be less due to deduplication)
|
|
825
|
+
contiguous = model_layers * (model_layers + 1) // 2
|
|
826
|
+
limited = sum(comb(model_layers, r) for r in range(1, min(max_combo_size, model_layers) + 1))
|
|
827
|
+
print(f" Contiguous: {contiguous:,}, Limited 1-{max_combo_size}: {limited:,}")
|
|
828
|
+
print(f" (Actual will be less due to deduplication)")
|
|
829
|
+
print("=" * 80)
|
|
830
|
+
|
|
831
|
+
with tempfile.TemporaryDirectory() as tmpdir:
|
|
832
|
+
pairs_file = os.path.join(tmpdir, "pairs.json")
|
|
833
|
+
activations_file = os.path.join(tmpdir, "activations.json")
|
|
834
|
+
|
|
835
|
+
# Step 1: Generate pairs
|
|
836
|
+
print(f"\n[1] Generating {num_pairs} pairs for {task}...")
|
|
837
|
+
start = time.time()
|
|
838
|
+
result = subprocess.run(
|
|
839
|
+
[
|
|
840
|
+
sys.executable, "-m", "wisent.core.main", "generate-pairs-from-task",
|
|
841
|
+
task,
|
|
842
|
+
"--output", pairs_file,
|
|
843
|
+
"--limit", str(num_pairs),
|
|
844
|
+
],
|
|
845
|
+
capture_output=True,
|
|
846
|
+
text=True,
|
|
847
|
+
timeout=600
|
|
848
|
+
)
|
|
849
|
+
if result.returncode != 0:
|
|
850
|
+
print(f"ERROR: Pair generation failed: {result.stderr}")
|
|
851
|
+
return
|
|
852
|
+
print(f" Generated pairs in {time.time() - start:.1f}s")
|
|
853
|
+
|
|
854
|
+
# Step 2: Get activations for ALL layers
|
|
855
|
+
layers_str = ",".join(str(i) for i in range(1, model_layers + 1))
|
|
856
|
+
|
|
857
|
+
print(f"\n[2] Extracting activations for layers 1-{model_layers}...")
|
|
858
|
+
print(f" Token aggregation: {token_aggregation}, Prompt strategy: {prompt_strategy}")
|
|
859
|
+
start = time.time()
|
|
860
|
+
result = subprocess.run(
|
|
861
|
+
[
|
|
862
|
+
sys.executable, "-m", "wisent.core.main", "get-activations",
|
|
863
|
+
pairs_file,
|
|
864
|
+
"--output", activations_file,
|
|
865
|
+
"--model", model,
|
|
866
|
+
"--layers", layers_str,
|
|
867
|
+
"--token-aggregation", token_aggregation,
|
|
868
|
+
"--prompt-strategy", prompt_strategy,
|
|
869
|
+
],
|
|
870
|
+
capture_output=True,
|
|
871
|
+
text=True,
|
|
872
|
+
timeout=1800
|
|
873
|
+
)
|
|
874
|
+
if result.returncode != 0:
|
|
875
|
+
print(f"ERROR: Activation extraction failed: {result.stderr}")
|
|
876
|
+
return
|
|
877
|
+
print(f" Extracted activations in {time.time() - start:.1f}s")
|
|
878
|
+
|
|
879
|
+
# Step 3: Load activations
|
|
880
|
+
print("\n[3] Loading activations from file...")
|
|
881
|
+
with open(activations_file, 'r') as f:
|
|
882
|
+
data = json.load(f)
|
|
883
|
+
|
|
884
|
+
pairs_list = data.get('pairs', [])
|
|
885
|
+
print(f" Loaded {len(pairs_list)} pairs with activations")
|
|
886
|
+
|
|
887
|
+
# Step 4: Convert to tensors by layer
|
|
888
|
+
print("\n[4] Converting to tensors by layer...")
|
|
889
|
+
pos_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
890
|
+
neg_by_layer: Dict[int, List[torch.Tensor]] = {}
|
|
891
|
+
|
|
892
|
+
for pair in pairs_list:
|
|
893
|
+
pos_la = pair.get('positive_response', {}).get('layers_activations', {})
|
|
894
|
+
neg_la = pair.get('negative_response', {}).get('layers_activations', {})
|
|
895
|
+
|
|
896
|
+
for layer_key in pos_la:
|
|
897
|
+
layer = int(layer_key)
|
|
898
|
+
if layer not in pos_by_layer:
|
|
899
|
+
pos_by_layer[layer] = []
|
|
900
|
+
neg_by_layer[layer] = []
|
|
901
|
+
|
|
902
|
+
if layer_key in pos_la and layer_key in neg_la:
|
|
903
|
+
pos_by_layer[layer].append(torch.tensor(pos_la[layer_key]).reshape(-1))
|
|
904
|
+
neg_by_layer[layer].append(torch.tensor(neg_la[layer_key]).reshape(-1))
|
|
905
|
+
|
|
906
|
+
pos_tensors: Dict[int, torch.Tensor] = {}
|
|
907
|
+
neg_tensors: Dict[int, torch.Tensor] = {}
|
|
908
|
+
for layer in sorted(pos_by_layer.keys()):
|
|
909
|
+
if pos_by_layer[layer]:
|
|
910
|
+
pos_tensors[layer] = torch.stack(pos_by_layer[layer])
|
|
911
|
+
neg_tensors[layer] = torch.stack(neg_by_layer[layer])
|
|
912
|
+
print(f" Layer {layer}: {pos_tensors[layer].shape}")
|
|
913
|
+
|
|
914
|
+
num_layers = len(pos_tensors)
|
|
915
|
+
print(f"\n {num_layers} layers available")
|
|
916
|
+
|
|
917
|
+
# Step 5: Run smart analysis
|
|
918
|
+
print(f"\n[5] Running smart analysis...")
|
|
919
|
+
start = time.time()
|
|
920
|
+
|
|
921
|
+
last_report = [0, time.time()]
|
|
922
|
+
def progress_callback(current: int, total: int):
|
|
923
|
+
now = time.time()
|
|
924
|
+
if current - last_report[0] >= 100 or now - last_report[1] >= 30 or current == total:
|
|
925
|
+
elapsed = now - start
|
|
926
|
+
rate = current / elapsed if elapsed > 0 else 0
|
|
927
|
+
remaining = (total - current) / rate if rate > 0 else 0
|
|
928
|
+
pct = 100 * current / total
|
|
929
|
+
print(f" Progress: {current:,}/{total:,} ({pct:.1f}%) - {rate:.1f} combos/sec - ETA: {remaining:.0f}s")
|
|
930
|
+
last_report[0] = current
|
|
931
|
+
last_report[1] = now
|
|
932
|
+
|
|
933
|
+
result = detect_geometry_smart(
|
|
934
|
+
pos_tensors,
|
|
935
|
+
neg_tensors,
|
|
936
|
+
max_combo_size=max_combo_size,
|
|
937
|
+
combination_method="concat",
|
|
938
|
+
progress_callback=progress_callback,
|
|
939
|
+
)
|
|
940
|
+
|
|
941
|
+
elapsed = time.time() - start
|
|
942
|
+
print(f"\n Completed in {elapsed:.1f}s ({result.total_combinations / elapsed:.1f} combos/sec)")
|
|
943
|
+
|
|
944
|
+
# Print results
|
|
945
|
+
print("\n" + "=" * 80)
|
|
946
|
+
print("RESULTS")
|
|
947
|
+
print("=" * 80)
|
|
948
|
+
|
|
949
|
+
print(f"\nTotal combinations tested: {result.total_combinations}")
|
|
950
|
+
print(f"\nBest combination: {result.best_combination}")
|
|
951
|
+
print(f"Best score: {result.best_score:.4f}")
|
|
952
|
+
print(f"Best structure: {result.best_structure.value}")
|
|
953
|
+
|
|
954
|
+
print(f"\nBest single layer: L{result.single_layer_best}")
|
|
955
|
+
print(f"Best single layer score: {result.single_layer_best_score:.4f}")
|
|
956
|
+
print(f"Combination beats single: {result.combination_beats_single}")
|
|
957
|
+
print(f"Improvement over single: {result.improvement_over_single:.4f}")
|
|
958
|
+
|
|
959
|
+
print("\n--- Top 10 Combinations ---")
|
|
960
|
+
for i, r in enumerate(result.top_10):
|
|
961
|
+
if len(r.layers) > 1 and r.layers[-1] - r.layers[0] == len(r.layers) - 1:
|
|
962
|
+
# Contiguous
|
|
963
|
+
layers_str = f"L{r.layers[0]}-L{r.layers[-1]}"
|
|
964
|
+
else:
|
|
965
|
+
layers_str = "+".join(f"L{l}" for l in r.layers)
|
|
966
|
+
print(f"{i+1}. {layers_str} ({len(r.layers)} layers): {r.best_score:.4f} ({r.best_structure.value})")
|
|
967
|
+
|
|
968
|
+
print(f"\nRecommendation: {result.recommendation}")
|
|
969
|
+
|
|
970
|
+
# Save results
|
|
971
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
972
|
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
973
|
+
output_file = os.path.join(output_dir, f"geometry_smart_{task}_{token_aggregation}_{prompt_strategy}_{timestamp}.json")
|
|
974
|
+
|
|
975
|
+
results_json = {
|
|
976
|
+
"task": task,
|
|
977
|
+
"model": model,
|
|
978
|
+
"num_pairs": num_pairs,
|
|
979
|
+
"mode": "smart",
|
|
980
|
+
"max_combo_size": max_combo_size,
|
|
981
|
+
"token_aggregation": token_aggregation,
|
|
982
|
+
"prompt_strategy": prompt_strategy,
|
|
983
|
+
"total_combinations": result.total_combinations,
|
|
984
|
+
"best_combination": list(result.best_combination),
|
|
985
|
+
"best_score": result.best_score,
|
|
986
|
+
"best_structure": result.best_structure.value,
|
|
987
|
+
"single_layer_best": result.single_layer_best,
|
|
988
|
+
"single_layer_best_score": result.single_layer_best_score,
|
|
989
|
+
"combination_beats_single": result.combination_beats_single,
|
|
990
|
+
"improvement_over_single": result.improvement_over_single,
|
|
991
|
+
"top_10": [
|
|
992
|
+
{
|
|
993
|
+
"layers": list(r.layers),
|
|
994
|
+
"best_score": r.best_score,
|
|
995
|
+
"best_structure": r.best_structure.value,
|
|
996
|
+
"all_scores": r.all_scores,
|
|
997
|
+
}
|
|
998
|
+
for r in result.top_10
|
|
999
|
+
],
|
|
1000
|
+
"top_100": [
|
|
1001
|
+
{
|
|
1002
|
+
"layers": list(r.layers),
|
|
1003
|
+
"best_score": r.best_score,
|
|
1004
|
+
"best_structure": r.best_structure.value,
|
|
1005
|
+
}
|
|
1006
|
+
for r in result.all_results[:100]
|
|
1007
|
+
],
|
|
1008
|
+
"patterns": result.patterns,
|
|
1009
|
+
"recommendation": result.recommendation,
|
|
1010
|
+
}
|
|
1011
|
+
|
|
1012
|
+
with open(output_file, "w") as f:
|
|
1013
|
+
json.dump(results_json, f, indent=2)
|
|
1014
|
+
print(f"\nResults saved to: {output_file}")
|
|
1015
|
+
|
|
1016
|
+
return result
|
|
1017
|
+
|
|
1018
|
+
|
|
1019
|
+
def run_comprehensive_sweep(
|
|
1020
|
+
task: str = "truthfulqa_gen",
|
|
1021
|
+
model: str = "meta-llama/Llama-3.2-1B-Instruct",
|
|
1022
|
+
num_pairs: int = 50,
|
|
1023
|
+
max_combo_size: int = 3,
|
|
1024
|
+
output_dir: str = "/home/ubuntu/output",
|
|
1025
|
+
):
|
|
1026
|
+
"""
|
|
1027
|
+
Run comprehensive sweep across all token aggregations and prompt strategies.
|
|
1028
|
+
|
|
1029
|
+
Tests 6 token aggregations x 5 prompt strategies = 30 configurations,
|
|
1030
|
+
each with smart layer combination search.
|
|
1031
|
+
"""
|
|
1032
|
+
sys.stdout.reconfigure(line_buffering=True)
|
|
1033
|
+
|
|
1034
|
+
print("=" * 80)
|
|
1035
|
+
print("COMPREHENSIVE GEOMETRY SWEEP")
|
|
1036
|
+
print("=" * 80)
|
|
1037
|
+
print(f"Task: {task}")
|
|
1038
|
+
print(f"Model: {model}")
|
|
1039
|
+
print(f"Num pairs: {num_pairs}")
|
|
1040
|
+
print(f"Token aggregations: {TOKEN_AGGREGATIONS}")
|
|
1041
|
+
print(f"Prompt strategies: {PROMPT_STRATEGIES}")
|
|
1042
|
+
print(f"Total configurations: {len(TOKEN_AGGREGATIONS) * len(PROMPT_STRATEGIES)}")
|
|
1043
|
+
print("=" * 80)
|
|
1044
|
+
|
|
1045
|
+
all_results = []
|
|
1046
|
+
total_configs = len(TOKEN_AGGREGATIONS) * len(PROMPT_STRATEGIES)
|
|
1047
|
+
config_idx = 0
|
|
1048
|
+
|
|
1049
|
+
for token_agg in TOKEN_AGGREGATIONS:
|
|
1050
|
+
for prompt_strat in PROMPT_STRATEGIES:
|
|
1051
|
+
config_idx += 1
|
|
1052
|
+
print(f"\n{'='*80}")
|
|
1053
|
+
print(f"CONFIG {config_idx}/{total_configs}: {token_agg} + {prompt_strat}")
|
|
1054
|
+
print("=" * 80)
|
|
1055
|
+
|
|
1056
|
+
try:
|
|
1057
|
+
result = run_smart_layer_analysis(
|
|
1058
|
+
task=task,
|
|
1059
|
+
model=model,
|
|
1060
|
+
num_pairs=num_pairs,
|
|
1061
|
+
max_combo_size=max_combo_size,
|
|
1062
|
+
token_aggregation=token_agg,
|
|
1063
|
+
prompt_strategy=prompt_strat,
|
|
1064
|
+
output_dir=output_dir,
|
|
1065
|
+
)
|
|
1066
|
+
|
|
1067
|
+
if result:
|
|
1068
|
+
all_results.append({
|
|
1069
|
+
"token_aggregation": token_agg,
|
|
1070
|
+
"prompt_strategy": prompt_strat,
|
|
1071
|
+
"best_combination": list(result.best_combination),
|
|
1072
|
+
"best_score": result.best_score,
|
|
1073
|
+
"best_structure": result.best_structure.value,
|
|
1074
|
+
"single_layer_best": result.single_layer_best,
|
|
1075
|
+
"single_layer_best_score": result.single_layer_best_score,
|
|
1076
|
+
"improvement_over_single": result.improvement_over_single,
|
|
1077
|
+
})
|
|
1078
|
+
except Exception as e:
|
|
1079
|
+
print(f"ERROR in config {token_agg}+{prompt_strat}: {e}")
|
|
1080
|
+
all_results.append({
|
|
1081
|
+
"token_aggregation": token_agg,
|
|
1082
|
+
"prompt_strategy": prompt_strat,
|
|
1083
|
+
"error": str(e),
|
|
1084
|
+
})
|
|
1085
|
+
|
|
1086
|
+
# Save summary
|
|
1087
|
+
print("\n" + "=" * 80)
|
|
1088
|
+
print("SWEEP SUMMARY")
|
|
1089
|
+
print("=" * 80)
|
|
1090
|
+
|
|
1091
|
+
# Sort by best_score
|
|
1092
|
+
successful = [r for r in all_results if "best_score" in r]
|
|
1093
|
+
successful.sort(key=lambda x: x["best_score"], reverse=True)
|
|
1094
|
+
|
|
1095
|
+
print(f"\nCompleted {len(successful)}/{total_configs} configurations")
|
|
1096
|
+
print("\n--- Top 10 Configurations ---")
|
|
1097
|
+
for i, r in enumerate(successful[:10]):
|
|
1098
|
+
print(f"{i+1}. {r['token_aggregation']}+{r['prompt_strategy']}: {r['best_score']:.4f} ({r['best_structure']}) - layers {r['best_combination']}")
|
|
1099
|
+
|
|
1100
|
+
# Save sweep summary
|
|
1101
|
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
1102
|
+
summary_file = os.path.join(output_dir, f"geometry_sweep_summary_{task}_{timestamp}.json")
|
|
1103
|
+
|
|
1104
|
+
summary = {
|
|
1105
|
+
"task": task,
|
|
1106
|
+
"model": model,
|
|
1107
|
+
"num_pairs": num_pairs,
|
|
1108
|
+
"max_combo_size": max_combo_size,
|
|
1109
|
+
"token_aggregations": TOKEN_AGGREGATIONS,
|
|
1110
|
+
"prompt_strategies": PROMPT_STRATEGIES,
|
|
1111
|
+
"total_configurations": total_configs,
|
|
1112
|
+
"successful_configurations": len(successful),
|
|
1113
|
+
"all_results": all_results,
|
|
1114
|
+
"top_10": successful[:10],
|
|
1115
|
+
}
|
|
1116
|
+
|
|
1117
|
+
with open(summary_file, "w") as f:
|
|
1118
|
+
json.dump(summary, f, indent=2)
|
|
1119
|
+
print(f"\nSweep summary saved to: {summary_file}")
|
|
1120
|
+
|
|
1121
|
+
return summary
|
|
1122
|
+
|
|
1123
|
+
|
|
1124
|
+
if __name__ == "__main__":
|
|
1125
|
+
import argparse
|
|
1126
|
+
parser = argparse.ArgumentParser()
|
|
1127
|
+
parser.add_argument("--task", default="truthfulqa_gen")
|
|
1128
|
+
parser.add_argument("--model", default="meta-llama/Llama-3.2-1B-Instruct")
|
|
1129
|
+
parser.add_argument("--num-pairs", type=int, default=50)
|
|
1130
|
+
# WARNING: Do NOT use --max-layers in production runs!
|
|
1131
|
+
# The whole point of exhaustive analysis is to test ALL layers.
|
|
1132
|
+
# If you need more memory, use a larger instance type instead.
|
|
1133
|
+
parser.add_argument("--max-layers", type=int, default=None,
|
|
1134
|
+
help="DEBUG ONLY - DO NOT USE IN PRODUCTION. Use larger instance instead.")
|
|
1135
|
+
parser.add_argument("--output-dir", default="/home/ubuntu/output")
|
|
1136
|
+
parser.add_argument("--sweep", action="store_true",
|
|
1137
|
+
help="Run comprehensive sweep across all token aggregations and prompt strategies")
|
|
1138
|
+
parser.add_argument("--smart", action="store_true", default=True,
|
|
1139
|
+
help="Use smart search (contiguous + 1,2,3-layer) - DEFAULT")
|
|
1140
|
+
parser.add_argument("--limited", action="store_true",
|
|
1141
|
+
help="Use limited search (1,2,3-layer combos + all layers)")
|
|
1142
|
+
parser.add_argument("--contiguous", action="store_true",
|
|
1143
|
+
help="Use contiguous search (adjacent layers only)")
|
|
1144
|
+
parser.add_argument("--exhaustive", action="store_true",
|
|
1145
|
+
help="Use exhaustive search (all 2^N combinations) - VERY SLOW")
|
|
1146
|
+
parser.add_argument("--max-combo-size", type=int, default=3,
|
|
1147
|
+
help="Max combination size for limited/smart search (default: 3)")
|
|
1148
|
+
parser.add_argument("--token-aggregation", default="final", choices=TOKEN_AGGREGATIONS,
|
|
1149
|
+
help="Token aggregation method (default: final)")
|
|
1150
|
+
parser.add_argument("--prompt-strategy", default="chat_template", choices=PROMPT_STRATEGIES,
|
|
1151
|
+
help="Prompt construction strategy (default: chat_template)")
|
|
1152
|
+
args = parser.parse_args()
|
|
1153
|
+
|
|
1154
|
+
# Print loud warning if max_layers is set
|
|
1155
|
+
if args.max_layers is not None:
|
|
1156
|
+
print("!" * 80)
|
|
1157
|
+
print("WARNING: --max-layers is set! This should ONLY be used for debugging.")
|
|
1158
|
+
print("For production runs, use a larger instance type instead of capping layers.")
|
|
1159
|
+
print("!" * 80)
|
|
1160
|
+
|
|
1161
|
+
if args.sweep:
|
|
1162
|
+
run_comprehensive_sweep(
|
|
1163
|
+
task=args.task,
|
|
1164
|
+
model=args.model,
|
|
1165
|
+
num_pairs=args.num_pairs,
|
|
1166
|
+
max_combo_size=args.max_combo_size,
|
|
1167
|
+
output_dir=args.output_dir,
|
|
1168
|
+
)
|
|
1169
|
+
elif args.exhaustive:
|
|
1170
|
+
run_exhaustive_layer_analysis(
|
|
1171
|
+
task=args.task,
|
|
1172
|
+
model=args.model,
|
|
1173
|
+
num_pairs=args.num_pairs,
|
|
1174
|
+
max_layers=args.max_layers,
|
|
1175
|
+
output_dir=args.output_dir,
|
|
1176
|
+
)
|
|
1177
|
+
elif args.contiguous:
|
|
1178
|
+
run_contiguous_layer_analysis(
|
|
1179
|
+
task=args.task,
|
|
1180
|
+
model=args.model,
|
|
1181
|
+
num_pairs=args.num_pairs,
|
|
1182
|
+
output_dir=args.output_dir,
|
|
1183
|
+
)
|
|
1184
|
+
elif args.limited:
|
|
1185
|
+
run_limited_layer_analysis(
|
|
1186
|
+
task=args.task,
|
|
1187
|
+
model=args.model,
|
|
1188
|
+
num_pairs=args.num_pairs,
|
|
1189
|
+
max_combo_size=args.max_combo_size,
|
|
1190
|
+
output_dir=args.output_dir,
|
|
1191
|
+
)
|
|
1192
|
+
else:
|
|
1193
|
+
# Default: smart search
|
|
1194
|
+
run_smart_layer_analysis(
|
|
1195
|
+
task=args.task,
|
|
1196
|
+
model=args.model,
|
|
1197
|
+
num_pairs=args.num_pairs,
|
|
1198
|
+
max_combo_size=args.max_combo_size,
|
|
1199
|
+
token_aggregation=args.token_aggregation,
|
|
1200
|
+
prompt_strategy=args.prompt_strategy,
|
|
1201
|
+
output_dir=args.output_dir,
|
|
1202
|
+
)
|