wisent 0.1.1__py3-none-any.whl → 0.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of wisent might be problematic. Click here for more details.

Files changed (237) hide show
  1. wisent/__init__.py +1 -8
  2. wisent/benchmarks/__init__.py +0 -0
  3. wisent/benchmarks/coding/__init__.py +0 -0
  4. wisent/benchmarks/coding/metrics/__init__.py +0 -0
  5. wisent/benchmarks/coding/metrics/core/__init__.py +0 -0
  6. wisent/benchmarks/coding/metrics/core/atoms.py +36 -0
  7. wisent/benchmarks/coding/metrics/evaluator.py +275 -0
  8. wisent/benchmarks/coding/metrics/passk.py +66 -0
  9. wisent/benchmarks/coding/output_sanitizer/__init__.py +0 -0
  10. wisent/benchmarks/coding/output_sanitizer/core/__init__.py +0 -0
  11. wisent/benchmarks/coding/output_sanitizer/core/atoms.py +27 -0
  12. wisent/benchmarks/coding/output_sanitizer/cpp_sanitizer.py +62 -0
  13. wisent/benchmarks/coding/output_sanitizer/java_sanitizer.py +78 -0
  14. wisent/benchmarks/coding/output_sanitizer/python_sanitizer.py +94 -0
  15. wisent/benchmarks/coding/output_sanitizer/utils.py +107 -0
  16. wisent/benchmarks/coding/providers/__init__.py +18 -0
  17. wisent/benchmarks/coding/providers/core/__init__.py +0 -0
  18. wisent/benchmarks/coding/providers/core/atoms.py +31 -0
  19. wisent/benchmarks/coding/providers/livecodebench/__init__.py +0 -0
  20. wisent/benchmarks/coding/providers/livecodebench/provider.py +53 -0
  21. wisent/benchmarks/coding/safe_docker/__init__.py +0 -0
  22. wisent/benchmarks/coding/safe_docker/core/__init__.py +0 -0
  23. wisent/benchmarks/coding/safe_docker/core/atoms.py +105 -0
  24. wisent/benchmarks/coding/safe_docker/core/runtime.py +118 -0
  25. wisent/benchmarks/coding/safe_docker/entrypoint.py +123 -0
  26. wisent/benchmarks/coding/safe_docker/recipes.py +60 -0
  27. wisent/classifiers/__init__.py +0 -0
  28. wisent/classifiers/core/__init__.py +0 -0
  29. wisent/classifiers/core/atoms.py +747 -0
  30. wisent/classifiers/models/__init__.py +0 -0
  31. wisent/classifiers/models/logistic.py +29 -0
  32. wisent/classifiers/models/mlp.py +47 -0
  33. wisent/cli/__init__.py +0 -0
  34. wisent/cli/classifiers/__init__.py +0 -0
  35. wisent/cli/classifiers/classifier_rotator.py +137 -0
  36. wisent/cli/cli_logger.py +142 -0
  37. wisent/cli/data_loaders/__init__.py +0 -0
  38. wisent/cli/data_loaders/data_loader_rotator.py +96 -0
  39. wisent/cli/evaluators/__init__.py +0 -0
  40. wisent/cli/evaluators/evaluator_rotator.py +148 -0
  41. wisent/cli/steering_methods/__init__.py +0 -0
  42. wisent/cli/steering_methods/steering_rotator.py +110 -0
  43. wisent/cli/wisent_cli/__init__.py +0 -0
  44. wisent/cli/wisent_cli/commands/__init__.py +0 -0
  45. wisent/cli/wisent_cli/commands/help_cmd.py +52 -0
  46. wisent/cli/wisent_cli/commands/listing.py +154 -0
  47. wisent/cli/wisent_cli/commands/train_cmd.py +322 -0
  48. wisent/cli/wisent_cli/main.py +93 -0
  49. wisent/cli/wisent_cli/shell.py +80 -0
  50. wisent/cli/wisent_cli/ui.py +69 -0
  51. wisent/cli/wisent_cli/util/__init__.py +0 -0
  52. wisent/cli/wisent_cli/util/aggregations.py +43 -0
  53. wisent/cli/wisent_cli/util/parsing.py +126 -0
  54. wisent/cli/wisent_cli/version.py +4 -0
  55. wisent/core/__init__.py +27 -0
  56. wisent/core/activations/__init__.py +0 -0
  57. wisent/core/activations/activations_collector.py +338 -0
  58. wisent/core/activations/core/__init__.py +0 -0
  59. wisent/core/activations/core/atoms.py +216 -0
  60. wisent/core/agent/__init__.py +18 -0
  61. wisent/core/agent/budget.py +638 -0
  62. wisent/core/agent/device_benchmarks.py +685 -0
  63. wisent/core/agent/diagnose/__init__.py +55 -0
  64. wisent/core/agent/diagnose/agent_classifier_decision.py +641 -0
  65. wisent/core/agent/diagnose/classifier_marketplace.py +554 -0
  66. wisent/core/agent/diagnose/create_classifier.py +1154 -0
  67. wisent/core/agent/diagnose/response_diagnostics.py +268 -0
  68. wisent/core/agent/diagnose/select_classifiers.py +506 -0
  69. wisent/core/agent/diagnose/synthetic_classifier_option.py +754 -0
  70. wisent/core/agent/diagnose/tasks/__init__.py +33 -0
  71. wisent/core/agent/diagnose/tasks/task_manager.py +1456 -0
  72. wisent/core/agent/diagnose/tasks/task_relevance.py +94 -0
  73. wisent/core/agent/diagnose/tasks/task_selector.py +151 -0
  74. wisent/core/agent/diagnose/test_synthetic_classifier.py +71 -0
  75. wisent/core/agent/diagnose.py +242 -0
  76. wisent/core/agent/steer.py +212 -0
  77. wisent/core/agent/timeout.py +134 -0
  78. wisent/core/autonomous_agent.py +1234 -0
  79. wisent/core/bigcode_integration.py +583 -0
  80. wisent/core/contrastive_pairs/__init__.py +15 -0
  81. wisent/core/contrastive_pairs/core/__init__.py +0 -0
  82. wisent/core/contrastive_pairs/core/atoms.py +45 -0
  83. wisent/core/contrastive_pairs/core/buliders.py +59 -0
  84. wisent/core/contrastive_pairs/core/pair.py +178 -0
  85. wisent/core/contrastive_pairs/core/response.py +152 -0
  86. wisent/core/contrastive_pairs/core/serialization.py +300 -0
  87. wisent/core/contrastive_pairs/core/set.py +133 -0
  88. wisent/core/contrastive_pairs/diagnostics/__init__.py +45 -0
  89. wisent/core/contrastive_pairs/diagnostics/activations.py +53 -0
  90. wisent/core/contrastive_pairs/diagnostics/base.py +73 -0
  91. wisent/core/contrastive_pairs/diagnostics/control_vectors.py +169 -0
  92. wisent/core/contrastive_pairs/diagnostics/coverage.py +79 -0
  93. wisent/core/contrastive_pairs/diagnostics/divergence.py +98 -0
  94. wisent/core/contrastive_pairs/diagnostics/duplicates.py +116 -0
  95. wisent/core/contrastive_pairs/lm_eval_pairs/__init__.py +0 -0
  96. wisent/core/contrastive_pairs/lm_eval_pairs/atoms.py +238 -0
  97. wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_manifest.py +8 -0
  98. wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_registry.py +132 -0
  99. wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/__init__.py +0 -0
  100. wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/winogrande.py +115 -0
  101. wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_pairs_generation.py +50 -0
  102. wisent/core/data_loaders/__init__.py +0 -0
  103. wisent/core/data_loaders/core/__init__.py +0 -0
  104. wisent/core/data_loaders/core/atoms.py +98 -0
  105. wisent/core/data_loaders/loaders/__init__.py +0 -0
  106. wisent/core/data_loaders/loaders/custom.py +120 -0
  107. wisent/core/data_loaders/loaders/lm_loader.py +218 -0
  108. wisent/core/detection_handling.py +257 -0
  109. wisent/core/download_full_benchmarks.py +1386 -0
  110. wisent/core/evaluators/__init__.py +0 -0
  111. wisent/core/evaluators/oracles/__init__.py +0 -0
  112. wisent/core/evaluators/oracles/interactive.py +73 -0
  113. wisent/core/evaluators/oracles/nlp_evaluator.py +440 -0
  114. wisent/core/evaluators/oracles/user_specified.py +67 -0
  115. wisent/core/hyperparameter_optimizer.py +429 -0
  116. wisent/core/lm_eval_harness_ground_truth.py +1396 -0
  117. wisent/core/log_likelihoods_evaluator.py +321 -0
  118. wisent/core/managed_cached_benchmarks.py +595 -0
  119. wisent/core/mixed_benchmark_sampler.py +364 -0
  120. wisent/core/model_config_manager.py +330 -0
  121. wisent/core/model_persistence.py +317 -0
  122. wisent/core/models/__init__.py +0 -0
  123. wisent/core/models/core/__init__.py +0 -0
  124. wisent/core/models/core/atoms.py +460 -0
  125. wisent/core/models/wisent_model.py +727 -0
  126. wisent/core/multi_steering.py +316 -0
  127. wisent/core/optuna/__init__.py +57 -0
  128. wisent/core/optuna/classifier/__init__.py +25 -0
  129. wisent/core/optuna/classifier/activation_generator.py +349 -0
  130. wisent/core/optuna/classifier/classifier_cache.py +509 -0
  131. wisent/core/optuna/classifier/optuna_classifier_optimizer.py +606 -0
  132. wisent/core/optuna/steering/__init__.py +0 -0
  133. wisent/core/optuna/steering/bigcode_evaluator_wrapper.py +188 -0
  134. wisent/core/optuna/steering/data_utils.py +342 -0
  135. wisent/core/optuna/steering/metrics.py +474 -0
  136. wisent/core/optuna/steering/optuna_pipeline.py +1738 -0
  137. wisent/core/optuna/steering/steering_optimization.py +1111 -0
  138. wisent/core/parser.py +1668 -0
  139. wisent/core/prompts/__init__.py +0 -0
  140. wisent/core/prompts/core/__init__.py +0 -0
  141. wisent/core/prompts/core/atom.py +57 -0
  142. wisent/core/prompts/core/prompt_formater.py +157 -0
  143. wisent/core/prompts/prompt_stratiegies/__init__.py +0 -0
  144. wisent/core/prompts/prompt_stratiegies/direct_completion.py +24 -0
  145. wisent/core/prompts/prompt_stratiegies/instruction_following.py +24 -0
  146. wisent/core/prompts/prompt_stratiegies/multiple_choice.py +29 -0
  147. wisent/core/prompts/prompt_stratiegies/role_playing.py +31 -0
  148. wisent/core/representation.py +5 -0
  149. wisent/core/sample_size_optimizer.py +648 -0
  150. wisent/core/sample_size_optimizer_v2.py +355 -0
  151. wisent/core/save_results.py +277 -0
  152. wisent/core/steering.py +652 -0
  153. wisent/core/steering_method.py +26 -0
  154. wisent/core/steering_methods/__init__.py +0 -0
  155. wisent/core/steering_methods/core/__init__.py +0 -0
  156. wisent/core/steering_methods/core/atoms.py +153 -0
  157. wisent/core/steering_methods/methods/__init__.py +0 -0
  158. wisent/core/steering_methods/methods/caa.py +44 -0
  159. wisent/core/steering_optimizer.py +1297 -0
  160. wisent/core/task_interface.py +132 -0
  161. wisent/core/task_selector.py +189 -0
  162. wisent/core/tasks/__init__.py +175 -0
  163. wisent/core/tasks/aime_task.py +141 -0
  164. wisent/core/tasks/file_task.py +211 -0
  165. wisent/core/tasks/hle_task.py +180 -0
  166. wisent/core/tasks/hmmt_task.py +119 -0
  167. wisent/core/tasks/livecodebench_task.py +201 -0
  168. wisent/core/tasks/livemathbench_task.py +158 -0
  169. wisent/core/tasks/lm_eval_task.py +455 -0
  170. wisent/core/tasks/math500_task.py +84 -0
  171. wisent/core/tasks/polymath_task.py +146 -0
  172. wisent/core/tasks/supergpqa_task.py +220 -0
  173. wisent/core/time_estimator.py +149 -0
  174. wisent/core/timing_calibration.py +174 -0
  175. wisent/core/tracking/__init__.py +54 -0
  176. wisent/core/tracking/latency.py +618 -0
  177. wisent/core/tracking/memory.py +359 -0
  178. wisent/core/trainers/__init__.py +0 -0
  179. wisent/core/trainers/core/__init__.py +11 -0
  180. wisent/core/trainers/core/atoms.py +45 -0
  181. wisent/core/trainers/steering_trainer.py +271 -0
  182. wisent/core/user_model_config.py +158 -0
  183. wisent/opti/__init__.py +0 -0
  184. wisent/opti/core/__init__.py +0 -0
  185. wisent/opti/core/atoms.py +175 -0
  186. wisent/opti/methods/__init__.py +0 -0
  187. wisent/opti/methods/opti_classificator.py +172 -0
  188. wisent/opti/methods/opti_steering.py +138 -0
  189. wisent/synthetic/__init__.py +0 -0
  190. wisent/synthetic/cleaners/__init__.py +0 -0
  191. wisent/synthetic/cleaners/core/__init__.py +0 -0
  192. wisent/synthetic/cleaners/core/atoms.py +58 -0
  193. wisent/synthetic/cleaners/deduper_cleaner.py +53 -0
  194. wisent/synthetic/cleaners/methods/__init__.py +0 -0
  195. wisent/synthetic/cleaners/methods/base_dedupers.py +320 -0
  196. wisent/synthetic/cleaners/methods/base_refusalers.py +286 -0
  197. wisent/synthetic/cleaners/methods/core/__init__.py +0 -0
  198. wisent/synthetic/cleaners/methods/core/atoms.py +47 -0
  199. wisent/synthetic/cleaners/pairs_cleaner.py +90 -0
  200. wisent/synthetic/cleaners/refusaler_cleaner.py +133 -0
  201. wisent/synthetic/db_instructions/__init__.py +0 -0
  202. wisent/synthetic/db_instructions/core/__init__.py +0 -0
  203. wisent/synthetic/db_instructions/core/atoms.py +25 -0
  204. wisent/synthetic/db_instructions/mini_dp.py +37 -0
  205. wisent/synthetic/generators/__init__.py +0 -0
  206. wisent/synthetic/generators/core/__init__.py +0 -0
  207. wisent/synthetic/generators/core/atoms.py +73 -0
  208. wisent/synthetic/generators/diversities/__init__.py +0 -0
  209. wisent/synthetic/generators/diversities/core/__init__.py +0 -0
  210. wisent/synthetic/generators/diversities/core/core.py +68 -0
  211. wisent/synthetic/generators/diversities/methods/__init__.py +0 -0
  212. wisent/synthetic/generators/diversities/methods/fast_diversity.py +249 -0
  213. wisent/synthetic/generators/pairs_generator.py +179 -0
  214. wisent-0.5.2.dist-info/METADATA +67 -0
  215. wisent-0.5.2.dist-info/RECORD +218 -0
  216. {wisent-0.1.1.dist-info → wisent-0.5.2.dist-info}/WHEEL +1 -1
  217. {wisent-0.1.1.dist-info → wisent-0.5.2.dist-info/licenses}/LICENSE +2 -2
  218. wisent/activations/__init__.py +0 -9
  219. wisent/activations/client.py +0 -97
  220. wisent/activations/extractor.py +0 -251
  221. wisent/activations/models.py +0 -95
  222. wisent/client.py +0 -45
  223. wisent/control_vector/__init__.py +0 -9
  224. wisent/control_vector/client.py +0 -85
  225. wisent/control_vector/manager.py +0 -168
  226. wisent/control_vector/models.py +0 -70
  227. wisent/inference/__init__.py +0 -9
  228. wisent/inference/client.py +0 -103
  229. wisent/inference/inferencer.py +0 -250
  230. wisent/inference/models.py +0 -66
  231. wisent/utils/__init__.py +0 -3
  232. wisent/utils/auth.py +0 -30
  233. wisent/utils/http.py +0 -228
  234. wisent/version.py +0 -3
  235. wisent-0.1.1.dist-info/METADATA +0 -142
  236. wisent-0.1.1.dist-info/RECORD +0 -23
  237. {wisent-0.1.1.dist-info → wisent-0.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,218 @@
1
+ wisent/__init__.py,sha256=isJrmDBLRag7Zc2UK9ZovWGOv7ji1Oh-zJtJMNJFkXw,22
2
+ wisent/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ wisent/benchmarks/coding/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
+ wisent/benchmarks/coding/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ wisent/benchmarks/coding/metrics/evaluator.py,sha256=hI8WvJ8JyDzoKcAi3Yb4QbJ7dn_KsR4rR17k9q93RCs,11892
6
+ wisent/benchmarks/coding/metrics/passk.py,sha256=IZZmGAbvmONPDYX9khzN6tqk6GZe4EvfijSPBWTbrE8,1984
7
+ wisent/benchmarks/coding/metrics/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ wisent/benchmarks/coding/metrics/core/atoms.py,sha256=I4wwOUTDjJ_4Jo6Bbpl8Tkv0Uz9zpwNjzeWBrXru-9g,1001
9
+ wisent/benchmarks/coding/output_sanitizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ wisent/benchmarks/coding/output_sanitizer/cpp_sanitizer.py,sha256=EbTrBgYDAwMJnWiA5PK9Mb7u7s3KtCpk3XQE4MSjdu4,3456
11
+ wisent/benchmarks/coding/output_sanitizer/java_sanitizer.py,sha256=r7IPwM5FDskucjasb8sRtW7vvGZF-uZzaqOLcM3N_ws,4502
12
+ wisent/benchmarks/coding/output_sanitizer/python_sanitizer.py,sha256=2Zifsul69XFQI4_Z5JRbN_pb66qxV51xdth3zGkvQEQ,4873
13
+ wisent/benchmarks/coding/output_sanitizer/utils.py,sha256=FNepdX6bkDbp3unKLsMXNPemwi1iQnhsYEmcLc4SvWI,3153
14
+ wisent/benchmarks/coding/output_sanitizer/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
+ wisent/benchmarks/coding/output_sanitizer/core/atoms.py,sha256=yoPxZg-jA9XE065erGV99Dj6aE3dFvKzogxLo_IWvq8,1185
16
+ wisent/benchmarks/coding/providers/__init__.py,sha256=rpGxV7u93zVQdkXfywxPeq_L5jXNFc0cN1Zj0TsXw2E,731
17
+ wisent/benchmarks/coding/providers/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
+ wisent/benchmarks/coding/providers/core/atoms.py,sha256=6THxuLLpg2GRiKT82ZItyQWgLGx7_Ljzk4YhgjV8zfM,1090
19
+ wisent/benchmarks/coding/providers/livecodebench/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
+ wisent/benchmarks/coding/providers/livecodebench/provider.py,sha256=A_Gz3v7hk1p3Ep3UAG6M-bhB2FMefGybdo8wsp2rdZQ,2449
21
+ wisent/benchmarks/coding/safe_docker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ wisent/benchmarks/coding/safe_docker/entrypoint.py,sha256=--CpgJ9Vn699Jx0WeGUgLEBWlF_f5RBtbo3dLCRJeyM,4277
23
+ wisent/benchmarks/coding/safe_docker/recipes.py,sha256=UWkiBl_k1nmJ6mHB6G0KH6RfLFhV4bH84ITTYmsbT3E,2227
24
+ wisent/benchmarks/coding/safe_docker/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
+ wisent/benchmarks/coding/safe_docker/core/atoms.py,sha256=JE2eOKtiXGLNGSNqaPwtpPbcipoPeDdmVNxgt5_EHYE,3026
26
+ wisent/benchmarks/coding/safe_docker/core/runtime.py,sha256=ACzxKnXNPqA3w5kvllmJduz4ZAH9JR3HYDpHmH-7vM4,4393
27
+ wisent/classifiers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
+ wisent/classifiers/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
+ wisent/classifiers/core/atoms.py,sha256=rHxL6eO3OptQWc8UPKeZCMbnpnXTB_TzHkinMU_rZSk,25972
30
+ wisent/classifiers/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
+ wisent/classifiers/models/logistic.py,sha256=nnE1I4WF9iHNFfeGr5khtoG_cJ4hQlfoE2pa9ZaJlKw,859
32
+ wisent/classifiers/models/mlp.py,sha256=fOWAaqTOYpB5lyEzUOb-BTkpPIpX4QpeYuH2yPU2DMw,1519
33
+ wisent/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
+ wisent/cli/cli_logger.py,sha256=6vuLGPz3wJAf8tHQhuYatRhnFYiUnlPEFy6ThYpqKrs,4477
35
+ wisent/cli/classifiers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
+ wisent/cli/classifiers/classifier_rotator.py,sha256=LAx5hTZ71Q7I4W0uSz9Bn1V4G_cpU3jmvwt160i3zes,5158
37
+ wisent/cli/data_loaders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
+ wisent/cli/data_loaders/data_loader_rotator.py,sha256=q68sQJGHLZQ5iaEr84Uo_NeRMChsQL8kZJ3D6Y2MDF8,4309
39
+ wisent/cli/evaluators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
+ wisent/cli/evaluators/evaluator_rotator.py,sha256=9EDR7zeOwynZvZ-J5h96sYIl9RlKOUihyJ4X5vWf31w,5686
41
+ wisent/cli/steering_methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
+ wisent/cli/steering_methods/steering_rotator.py,sha256=_S32ItI4IHNNc230Wr8m1q5gP2BrwexSyN1_nkiUOTI,4212
43
+ wisent/cli/wisent_cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
+ wisent/cli/wisent_cli/main.py,sha256=7_llYPnxVbYCnLU5rIunHNz4jyZdXDJYz8IXkfZDeTI,3503
45
+ wisent/cli/wisent_cli/shell.py,sha256=LVA1hpC7JEUxR_j5p0APPL1jAoyWlt12s4_GMopa1D0,2372
46
+ wisent/cli/wisent_cli/ui.py,sha256=M52163wvh0DgSjsRG69RhqEX87faceXFm-roOn7bH2M,2960
47
+ wisent/cli/wisent_cli/version.py,sha256=ICeC5AhJ79Gx1kISaMY1WQHMl4al3elA4RKLAly-6uc,87
48
+ wisent/cli/wisent_cli/commands/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
+ wisent/cli/wisent_cli/commands/help_cmd.py,sha256=C8iA5mMdEBUQovtgJDqAGH6b9TbKSHPhnESQE8_6P5M,1614
50
+ wisent/cli/wisent_cli/commands/listing.py,sha256=1UaKNRrlDOacQSPxp_yu3cAoWpTCwNU1-8DO2oUWJ5w,5552
51
+ wisent/cli/wisent_cli/commands/train_cmd.py,sha256=Pp_DY6P-zk8PvCuz6ds9JxH7BWpqQM_jc_ZfZ1lGIR0,13427
52
+ wisent/cli/wisent_cli/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ wisent/cli/wisent_cli/util/aggregations.py,sha256=RW2f-B18k4R0gFlIFACQmrhFKSwfxREUqqu5PaI951Y,1415
54
+ wisent/cli/wisent_cli/util/parsing.py,sha256=DvBTcoBItDGJQI-AE4bs0otBJ7ElLynNhqRDzgeQjzs,4067
55
+ wisent/core/__init__.py,sha256=V48vT6tZj0iwp9rPWuElGJ5pyUyL1foWbQLS3tf4RiE,757
56
+ wisent/core/autonomous_agent.py,sha256=2k1PLWm2DZ6C2fmsjMDKmQ1_wfN7KhpilHrjkTw8nMw,52489
57
+ wisent/core/bigcode_integration.py,sha256=TIaPQDbPRDPdnCq8U-Gwl4lgayPfhOabOVQddqxotY4,19927
58
+ wisent/core/detection_handling.py,sha256=iiuKpzAbJfx_KFn2SFABQHOeeWblDJMXjzGwGDeKqcs,11127
59
+ wisent/core/download_full_benchmarks.py,sha256=KT5zHkau7zk3pgzoCS1UY8Tz7-M9JtlkNXZ9U1uDh2k,55946
60
+ wisent/core/hyperparameter_optimizer.py,sha256=GN-IY27kkFKuXwHbvalfEW5UVf4NfZ0G9rMWK2ThEAY,17319
61
+ wisent/core/lm_eval_harness_ground_truth.py,sha256=JjAbr520h01CcPUEgJNhj6RXWBja2WAvw6Jzq5av7qw,64912
62
+ wisent/core/log_likelihoods_evaluator.py,sha256=meHdfoAlKUm0l8F1Y6aKcBHBi_wNgSS_b8uBJrD9378,15535
63
+ wisent/core/managed_cached_benchmarks.py,sha256=JbvpZ1fgSuQQhyQVKEvqrQZRHGqfnjo9NFhgITFoFsE,22854
64
+ wisent/core/mixed_benchmark_sampler.py,sha256=tKQCHUXVuYeCyx4VZt8O1hGyB-TOY_SQ_SYi8cyApII,13585
65
+ wisent/core/model_config_manager.py,sha256=rQAdSmk3GFlZXyHp3fSV1bORxiZWhmzIz1uo3H4JtkA,12009
66
+ wisent/core/model_persistence.py,sha256=6_vc1Ndujd4v0O68giINSTvYhmb7-AiacWwAbqLOrls,10636
67
+ wisent/core/multi_steering.py,sha256=IpaVrs28tZQM8jXbgUbrhq3bWbH4KaNhUZQcWit7_p0,11711
68
+ wisent/core/parser.py,sha256=_YDeSuQMx0zNknz9rX3Ls1YPT1x5eohoY8rfjeoqxV8,69091
69
+ wisent/core/representation.py,sha256=hBl_N9qbr5Gsa7GCQ0nMWRm82RqYEfhd9cyf0PPH5LY,195
70
+ wisent/core/sample_size_optimizer.py,sha256=6wegGXZpdGpiR4R0YJ1D2JqLr6yinMndEx2gB5FL80s,23666
71
+ wisent/core/sample_size_optimizer_v2.py,sha256=bVYJRZC4_Mrq-HFlYLyv-9tWvqEHJ3kCeIwlmYOwI6I,13286
72
+ wisent/core/save_results.py,sha256=PRwaA5qO6EOsvURvLBl3YhvanlC0D0G4iYqxYAQ7sw8,13737
73
+ wisent/core/steering.py,sha256=GJsARTiaB72fyGQ8UGmTPBmIRb_0OL_-2BXQANSnKqg,22535
74
+ wisent/core/steering_method.py,sha256=-hZqtvwRS7sGqQJUd36MoPm0rjbO1LrtPAYmcIk8BqQ,462
75
+ wisent/core/steering_optimizer.py,sha256=wxa4p4aMjJWOknt2Jph28xPgYoEMxZVmp1GFA1pM3Wk,54759
76
+ wisent/core/task_interface.py,sha256=OlWdcxkprmZcOto-bXmg75kzUcWzH_kyW_e7w2FdPLM,4471
77
+ wisent/core/task_selector.py,sha256=QVgozUuiM74BMUJ8Ucb_sn6HQk5v0wL_QUsqKb55vJE,6224
78
+ wisent/core/time_estimator.py,sha256=DcgSzW-hr9BjmXJwBnGqE2dkFK0zgyz5WNF7934CJ9k,5778
79
+ wisent/core/timing_calibration.py,sha256=4eTn1GWGqzsXmWj9aryXUsZbFEPcJ3IvfCIfJJUFA0w,6860
80
+ wisent/core/user_model_config.py,sha256=8optjLqf9wTDtOf0c705d5_Rr2zE67jV9BNqoY-TRvA,6735
81
+ wisent/core/activations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
+ wisent/core/activations/activations_collector.py,sha256=wRqtxz5ahVrkd0ja1lAIidf6PL6wxfz9YvR8GT5OqXI,14146
83
+ wisent/core/activations/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
84
+ wisent/core/activations/core/atoms.py,sha256=FeeQj-YKb-1rLX0gnzFc5VM47ikWwfFh3datRduj6mQ,9101
85
+ wisent/core/agent/__init__.py,sha256=bIJAwg-AMQD-thjollZPnkA996zkUR21dPM_TS17ptw,478
86
+ wisent/core/agent/budget.py,sha256=9uLBeqmFRvBPGlNxGM0JbEz_mifH3MpLZp8Lw5IwaiM,24386
87
+ wisent/core/agent/device_benchmarks.py,sha256=YWX2_3yzpK26Guz8S9QTuFNvozwYX-tqvhiOleBsBMU,26138
88
+ wisent/core/agent/diagnose.py,sha256=3C5yI_gYd_8pQRdy9617tZzSGqL2rFsmXh1-WXH7Qmk,9312
89
+ wisent/core/agent/steer.py,sha256=qcYMAGTBvPxNLozHkK0uzIKrY1eyK1kCtYx4_wMJOL4,9802
90
+ wisent/core/agent/timeout.py,sha256=I-G4KeAYuz1le6xTLGEWtlOxShWBi6IYSyKuJu-GUz0,4334
91
+ wisent/core/agent/diagnose/__init__.py,sha256=2-4OsA6zqsJKKUmn3okEAXe8Bt4jNUsolIeK-G27f8w,1449
92
+ wisent/core/agent/diagnose/agent_classifier_decision.py,sha256=NgMaogSsXBti8sNWv-Xzna1jwcvZKPsU7M6dX28F6EI,28997
93
+ wisent/core/agent/diagnose/classifier_marketplace.py,sha256=CrXhiZt1XWOc9uuXLdA3AO4qsnVZ92qnVKZ1DFLJTZA,22161
94
+ wisent/core/agent/diagnose/create_classifier.py,sha256=UJKFgjGvIsRKfc5fPkfh227bAWcDD8M4jYNEeHffufI,44182
95
+ wisent/core/agent/diagnose/response_diagnostics.py,sha256=-bNGMq3mapWfZI5SQJAMQHuNRFtc1H6SpTpPtdpCFms,10609
96
+ wisent/core/agent/diagnose/select_classifiers.py,sha256=Uv5dxEmZRjjkZKmVmYQ1jC_XJVyM2MF5dv-4QRuTWKY,18320
97
+ wisent/core/agent/diagnose/synthetic_classifier_option.py,sha256=p_za96LiSXDg0uxvypG0dPMWqirA2srYFpkRTLGCR0Q,32483
98
+ wisent/core/agent/diagnose/test_synthetic_classifier.py,sha256=EWPPHtoND797XfoUjNZcmcuBp8w3PYm4YIBu1JXhzPE,2688
99
+ wisent/core/agent/diagnose/tasks/__init__.py,sha256=rfImwPtKCAfz-ASOBQyF4DEhU6hgCuiZBcqh1AaUE80,704
100
+ wisent/core/agent/diagnose/tasks/task_manager.py,sha256=Nd3ht1vSKmiTxxQx5aCe9QTH4yJwGvLdoUKlimZTfAg,62764
101
+ wisent/core/agent/diagnose/tasks/task_relevance.py,sha256=D4UBr0TqUNXkDZnNgA5wa4NYHSKtDaiugYeVg5zGQjs,3250
102
+ wisent/core/agent/diagnose/tasks/task_selector.py,sha256=ll34stireeqW-B_T4daf_91kujzVFQ8sOilk-JrxpHA,5414
103
+ wisent/core/contrastive_pairs/__init__.py,sha256=AbaAf-t_nyVVy_vLjp8WAlMDmNun3KNp_GMWAK25r9g,429
104
+ wisent/core/contrastive_pairs/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
105
+ wisent/core/contrastive_pairs/core/atoms.py,sha256=_zghw6c8iisW_SqBIUCoAnzhc5q7t5EgZ4zzTPxeLwQ,1129
106
+ wisent/core/contrastive_pairs/core/buliders.py,sha256=VWe4StOd3SsV0FBzg8b_2KG_ARiIITrwkfHR5xZNBxk,1975
107
+ wisent/core/contrastive_pairs/core/pair.py,sha256=VsoEXnZ8wpwuictZRpjp1O8pTeMnHvIn-jn01NIA5CI,8095
108
+ wisent/core/contrastive_pairs/core/response.py,sha256=bEUqW53jE7uGEdHFsu3pw209aHxcAORykYcXW-JdWUY,6147
109
+ wisent/core/contrastive_pairs/core/serialization.py,sha256=zpF5BZMFYb-ltD69Xuy53w7qnQ1b5OdkGNVR4pfWbZ8,11157
110
+ wisent/core/contrastive_pairs/core/set.py,sha256=8N1jN0bbuklkhhcDegd0L6Oc9Tv9fFFfoP1LlZSWVNU,4624
111
+ wisent/core/contrastive_pairs/diagnostics/__init__.py,sha256=aAtEI-oOmR2rTmcpMynODIjuTf7S8dW6wmyQS01aUfY,1498
112
+ wisent/core/contrastive_pairs/diagnostics/activations.py,sha256=TUNxU-HV3oeQxFbZhKo-OISM4mzR-Bib0naHmbqWzk8,1736
113
+ wisent/core/contrastive_pairs/diagnostics/base.py,sha256=uBi8PdTd6BRyy0lmGjAZLTZdgiiWwPNtsmKkBFCmlD0,2658
114
+ wisent/core/contrastive_pairs/diagnostics/control_vectors.py,sha256=ypRTEpVzSQDXEqyN-t7ssMoEcM44W8qABwImETEYO9o,6037
115
+ wisent/core/contrastive_pairs/diagnostics/coverage.py,sha256=MpT6_IdLqtMpav6mOCiNuemBVFvxWzkUbj7j3ZNx-48,2761
116
+ wisent/core/contrastive_pairs/diagnostics/divergence.py,sha256=Io3AcGluJogz4qENWu0ivQyFR_5bLN49BzCTI7DIVa4,3430
117
+ wisent/core/contrastive_pairs/diagnostics/duplicates.py,sha256=uwL-RCoQK6e791drLCSl-_z-rYAZXJYXX23zNYNCY0Y,4552
118
+ wisent/core/contrastive_pairs/lm_eval_pairs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
119
+ wisent/core/contrastive_pairs/lm_eval_pairs/atoms.py,sha256=iSvDrDlwvhdD8T6aT1NylUiyu8qRCdZzrMFWw1j7Sjg,8575
120
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_manifest.py,sha256=gfovSFBdTISyJyw1CXwi57_O15OESmB-AOuh5q6ENMQ,298
121
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_registry.py,sha256=DQn4bKRIC6fSpXvTzXxwCcrVe3EKZZesBG30qTCWeHc,4388
122
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_pairs_generation.py,sha256=Q128ATWcfE6NaQOm0O5oMtVRZbXzkeJMlkfCiGNkjyo,1657
123
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
124
+ wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/winogrande.py,sha256=rdBYDVlOifA4m5AXLTp9_ttkn2MFs9Yulg371WOjL1s,4044
125
+ wisent/core/data_loaders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
126
+ wisent/core/data_loaders/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
127
+ wisent/core/data_loaders/core/atoms.py,sha256=sjSS5Eb136hE29dHpKaMA0ohADc0k2iBj_PjpC40GuM,3470
128
+ wisent/core/data_loaders/loaders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
129
+ wisent/core/data_loaders/loaders/custom.py,sha256=Xe1sOHH3_dRjBnQg9vwMM-XA8ROn65dUr9TeT-nuNtQ,4144
130
+ wisent/core/data_loaders/loaders/lm_loader.py,sha256=3ZLi3UnoePd0YgubMlT4CTVWtfpbEHVfvi8QKVq0-Zw,7812
131
+ wisent/core/evaluators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
132
+ wisent/core/evaluators/oracles/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
133
+ wisent/core/evaluators/oracles/interactive.py,sha256=f3v2_N17fKzGyeOxONRJbrbn8i5uMeZmRvMmF0ShNf0,2638
134
+ wisent/core/evaluators/oracles/nlp_evaluator.py,sha256=KxbnF-I2IFbBQpoYyjQKGbYh4NErsEuhTCRYX_Tob8o,18220
135
+ wisent/core/evaluators/oracles/user_specified.py,sha256=V1dKrNj3Oq7UC_I7DT0WGnktP7R_DSW6UAwDdrA8SnE,2360
136
+ wisent/core/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
+ wisent/core/models/wisent_model.py,sha256=yJBcz3GjR7O-ySTV2vvOsOrL9xDvXsG0W9Gr0HR_0sc,28729
138
+ wisent/core/models/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
139
+ wisent/core/models/core/atoms.py,sha256=_Bpz0Sfiq6_VswThIltUwNGj_ukl5MhAg8RrgMKwEBM,15756
140
+ wisent/core/optuna/__init__.py,sha256=sTfwRnrRyKrCNVsF_qCjBDFEZC0ZmUZ7m6IE0iHfTVs,1914
141
+ wisent/core/optuna/classifier/__init__.py,sha256=vv2wCAbw8ccZxq3vxrQt9plUdbr7VJj-t2rRnh6jBR8,819
142
+ wisent/core/optuna/classifier/activation_generator.py,sha256=K384F_r65z-9f1scr6DoNNzlD1OCVEY9W5TxXilDM5E,14331
143
+ wisent/core/optuna/classifier/classifier_cache.py,sha256=Ng6M8MZoMQx0SpoeVb1ZAmQcVgxzEhlVnDM5RSp1eFo,17380
144
+ wisent/core/optuna/classifier/optuna_classifier_optimizer.py,sha256=OHcUE1Kl_KY0X3Kqp0K_VBIeptp_tqqpCnFVNil9Q_E,22392
145
+ wisent/core/optuna/steering/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
+ wisent/core/optuna/steering/bigcode_evaluator_wrapper.py,sha256=e3rdGkYPcvRoBzCPpN7xfL7T6Vbt3X9LCLTA39jC23A,6641
147
+ wisent/core/optuna/steering/data_utils.py,sha256=adgA8gXaHLbllhOKspmPxe0tjRZKrc4M8tqs7IQDrK4,12195
148
+ wisent/core/optuna/steering/metrics.py,sha256=Tf4WC3jaVcke5yFMLkBfbc8fhA96TdnL4hXXfGgJ8WM,20378
149
+ wisent/core/optuna/steering/optuna_pipeline.py,sha256=i71osz12k--TGJzd33eH7J0ngQnEJm7gW1LBSS2PBg0,74792
150
+ wisent/core/optuna/steering/steering_optimization.py,sha256=JNtgIWD4b5D7a_VTVlVf7M-yGBItp9p_6g73UhBsGp4,45495
151
+ wisent/core/prompts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
152
+ wisent/core/prompts/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
153
+ wisent/core/prompts/core/atom.py,sha256=yb3uF7a8Vu7QL_UssriwHlIiqDef43NmppFg7Yj_JTg,1519
154
+ wisent/core/prompts/core/prompt_formater.py,sha256=V-wgz8OPya550p_rkbOkiH-QBzjF3xmnqafCEcNMnuY,5671
155
+ wisent/core/prompts/prompt_stratiegies/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
+ wisent/core/prompts/prompt_stratiegies/direct_completion.py,sha256=CZq2P1CIyg7yOUS9rwv2KL-lEZDzyrAO4f95lNsujgA,794
157
+ wisent/core/prompts/prompt_stratiegies/instruction_following.py,sha256=ZZ4jM7yo5xZn4-QUt-tFDr37eiZK9TBy5Ygl6xdXP_g,802
158
+ wisent/core/prompts/prompt_stratiegies/multiple_choice.py,sha256=vWYEjvm8zt8g1f1hH9t_hgFhmb-kyJSvsxtZWpSRe-8,867
159
+ wisent/core/prompts/prompt_stratiegies/role_playing.py,sha256=pWNopxpziTGf3hrmBkTuLm1HNKb_pnnka2MTdcNWOEY,1066
160
+ wisent/core/steering_methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
161
+ wisent/core/steering_methods/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
+ wisent/core/steering_methods/core/atoms.py,sha256=v8DcO4SSmJXv8KFaYs-A4nR4D2is7Q5SEdFJlZ2SCTg,5420
163
+ wisent/core/steering_methods/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
164
+ wisent/core/steering_methods/methods/caa.py,sha256=CsMf1QvyywOr0nWehDQDn17IKAZ3qysURwPP6Jgbu5w,1683
165
+ wisent/core/tasks/__init__.py,sha256=AjsAd4VhMOh2c0_y1ZRYhNsc39cT1lec7M8yHKvua84,6727
166
+ wisent/core/tasks/aime_task.py,sha256=SLGcmf_ywtI73JeqQNjuuKVWgddHNmqqq2jhnQS10vw,5417
167
+ wisent/core/tasks/file_task.py,sha256=DUMhrMFXHXfcuNsPg-LbnCg8aL8fLgdooboZCTfdgSc,7079
168
+ wisent/core/tasks/hle_task.py,sha256=YBSvAA4WnM4OXdsAz6ryh6fL41vPwVHrMHF5OJeLkE4,7043
169
+ wisent/core/tasks/hmmt_task.py,sha256=k-mIWsSl3IEGfGXIPigpw21K2CTMqQ47QDnX__rVQhQ,4742
170
+ wisent/core/tasks/livecodebench_task.py,sha256=BjVn1IC9Hzsd7ADM7v_KYYcJCQ6syZX8BhP1wKHncMo,9235
171
+ wisent/core/tasks/livemathbench_task.py,sha256=G--Gl_1wczDZgB6-wCvvBbXzrOBo9IDbSUqkJxn82Y8,6407
172
+ wisent/core/tasks/lm_eval_task.py,sha256=FfyiJ0kPvvqef81c65Rbdx65CbsucupVC8iKwYHQxb4,14336
173
+ wisent/core/tasks/math500_task.py,sha256=e_qpzG_ppuZxoq3Vi40n_9-vOCf4lRAWO4zIiyUezgU,3124
174
+ wisent/core/tasks/polymath_task.py,sha256=SNZELmzdQM93rjN2_zdnqXTVokDnBFIj-cXE4dsKSTI,5933
175
+ wisent/core/tasks/supergpqa_task.py,sha256=_axLCD7-ZoigxTfaYwVrzyHuo5woeJxKaBpWSYJZ1Tg,9069
176
+ wisent/core/tracking/__init__.py,sha256=Ey03RCi2x-hPTXFjUGum3qvHWF9D-BpV0B5j0St5giw,1156
177
+ wisent/core/tracking/latency.py,sha256=YWvotesKW1k_-7xmXvFQucOQJq3Uu87M_FkudOjynTE,21855
178
+ wisent/core/tracking/memory.py,sha256=fSGrZzHXvOFz3X0V_80CPvSLT5cQeMWW4OT2QcunlA0,13087
179
+ wisent/core/trainers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
180
+ wisent/core/trainers/steering_trainer.py,sha256=JAdYwPhiakqN70WLqpZFZBsGHu2yed5v-TSM7ppjKJc,10557
181
+ wisent/core/trainers/core/__init__.py,sha256=D0JX0-XCHdtLrCXhVDHNQafvyWCvJ4-o4UKtkH1lI1k,1257
182
+ wisent/core/trainers/core/atoms.py,sha256=ycWk0G-7EIAEOnQL-o5_V5B8KTQ7CQUilGF4ibjighM,1536
183
+ wisent/opti/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
184
+ wisent/opti/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
185
+ wisent/opti/core/atoms.py,sha256=9UZeb_SOdDxQ6FBhdAf9qXaEXElImKUsoAMsV0c4yZg,5266
186
+ wisent/opti/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
187
+ wisent/opti/methods/opti_classificator.py,sha256=U7F3y6weqe6d9SdhR_w2KyGuu_8X27bkuCn4lHrVCw8,6842
188
+ wisent/opti/methods/opti_steering.py,sha256=Xh1GZKW6DOobJk88txEw7EQaHU9tVWqnyJOqPe8VvAo,5376
189
+ wisent/synthetic/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
190
+ wisent/synthetic/cleaners/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
191
+ wisent/synthetic/cleaners/deduper_cleaner.py,sha256=CjURqXjh0j1ESJD6-cDoxmAmwC2cWVHDt6j8f7-ePSM,1556
192
+ wisent/synthetic/cleaners/pairs_cleaner.py,sha256=c6UzgbGL-8np9GA8EnX3zZGSExdVcMzIntGtNtGm2Ak,3835
193
+ wisent/synthetic/cleaners/refusaler_cleaner.py,sha256=VdKSxk9Fm-c4GY0vgcyvW28OPz3iNpfKnzPSNDywih8,5350
194
+ wisent/synthetic/cleaners/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
195
+ wisent/synthetic/cleaners/core/atoms.py,sha256=XUrgDhrPs77gCWq9y4VSDaC4WlylRrT1o9vrZjtpB7Y,1350
196
+ wisent/synthetic/cleaners/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
197
+ wisent/synthetic/cleaners/methods/base_dedupers.py,sha256=-FBpIA-EDQ5EqIcYz8oYN7yD2s-7kxOR25MqGE1KmP0,11698
198
+ wisent/synthetic/cleaners/methods/base_refusalers.py,sha256=a6a5kyXlsJESLYBI0LOUVNVAS1ObOJEONcmF9Leugyo,10324
199
+ wisent/synthetic/cleaners/methods/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
200
+ wisent/synthetic/cleaners/methods/core/atoms.py,sha256=kxD-CnS-u2GXAiezNYEQJ0asgxbMpmR4sXroSz5QjxE,1563
201
+ wisent/synthetic/db_instructions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
202
+ wisent/synthetic/db_instructions/mini_dp.py,sha256=HgRDwofFdvRyQnTfFwGiCokP3ret03GrQEI13gb7V9I,1780
203
+ wisent/synthetic/db_instructions/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
204
+ wisent/synthetic/db_instructions/core/atoms.py,sha256=jBazuD37hyBMIsbFNDjpwlGnxECAOuh4YT0fmpH8C6o,748
205
+ wisent/synthetic/generators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
206
+ wisent/synthetic/generators/pairs_generator.py,sha256=RfpPdBTqNyWHtYS3ZT4WX_0h5fXLDSDTLXtoRXRcp2k,6551
207
+ wisent/synthetic/generators/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
208
+ wisent/synthetic/generators/core/atoms.py,sha256=9wL0v38BCqn3y9LtoRkQsK_X3egjdYcPmFXH0mgFSWg,2290
209
+ wisent/synthetic/generators/diversities/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
210
+ wisent/synthetic/generators/diversities/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
211
+ wisent/synthetic/generators/diversities/core/core.py,sha256=TjSj5T7NE5kRH-ABcFqb1Hz_j3Z6F_TcV-95uHD5Xw8,2201
212
+ wisent/synthetic/generators/diversities/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
213
+ wisent/synthetic/generators/diversities/methods/fast_diversity.py,sha256=Z2UzTbzyJFM_ToxCoXM_LQQQ1Jc6BZknrbpikTG1MRw,8522
214
+ wisent-0.5.2.dist-info/licenses/LICENSE,sha256=wy0iaw8b2tyqZAfKHib3lP3PJ9o88FDCg92oUHh3sDQ,1073
215
+ wisent-0.5.2.dist-info/METADATA,sha256=IRtye3gZz9T6U3O0fFUap_xvO1rcnnE52hWlIKvPq4g,2424
216
+ wisent-0.5.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
217
+ wisent-0.5.2.dist-info/top_level.txt,sha256=2Ts9Iyldnb3auIN2HBBaHPknRy7nSRDm2f6RGzYgr8A,7
218
+ wisent-0.5.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.2)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,6 +1,6 @@
1
1
  MIT License
2
2
 
3
- Copyright (c) 2024 Wisent Team
3
+ Copyright (c) 2023-2024 Wisent Team
4
4
 
5
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
6
  of this software and associated documentation files (the "Software"), to deal
@@ -18,4 +18,4 @@ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
18
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
19
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
20
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
21
+ SOFTWARE.
@@ -1,9 +0,0 @@
1
- """
2
- Functionality for extracting and managing model activations.
3
- """
4
-
5
- from wisent.activations.client import ActivationsClient
6
- from wisent.activations.extractor import ActivationExtractor
7
- from wisent.activations.models import Activation, ActivationBatch
8
-
9
- __all__ = ["ActivationsClient", "ActivationExtractor", "Activation", "ActivationBatch"]
@@ -1,97 +0,0 @@
1
- """
2
- Client for interacting with the activations API.
3
- """
4
-
5
- from typing import Dict, List, Optional, Union
6
-
7
- from wisent.activations.extractor import ActivationExtractor
8
- from wisent.activations.models import Activation, ActivationBatch
9
- from wisent.utils.auth import AuthManager
10
- from wisent.utils.http import HTTPClient
11
-
12
-
13
- class ActivationsClient:
14
- """
15
- Client for interacting with the activations API.
16
-
17
- Args:
18
- auth_manager: Authentication manager
19
- base_url: Base URL for the API
20
- timeout: Request timeout in seconds
21
- """
22
-
23
- def __init__(self, auth_manager: AuthManager, base_url: str, timeout: int = 60):
24
- self.auth_manager = auth_manager
25
- self.http_client = HTTPClient(base_url, auth_manager.get_headers(), timeout)
26
-
27
- def extract(
28
- self,
29
- model_name: str,
30
- prompt: str,
31
- layers: Optional[List[int]] = None,
32
- tokens_to_extract: Optional[List[int]] = None,
33
- device: Optional[str] = None,
34
- ) -> ActivationBatch:
35
- """
36
- Extract activations from a model for a given prompt.
37
-
38
- Args:
39
- model_name: Name of the model
40
- prompt: Input prompt
41
- layers: List of layers to extract activations from (default: [-1])
42
- tokens_to_extract: List of token indices to extract (default: [-1])
43
- device: Device to use for extraction (default: "cuda" if available, else "cpu")
44
-
45
- Returns:
46
- Batch of activations
47
- """
48
- extractor = ActivationExtractor(model_name, device=device)
49
- return extractor.extract(prompt, layers, tokens_to_extract)
50
-
51
- def upload(self, batch: ActivationBatch) -> Dict:
52
- """
53
- Upload a batch of activations to the Wisent backend.
54
-
55
- Args:
56
- batch: Batch of activations
57
-
58
- Returns:
59
- Response from the API
60
- """
61
- return self.http_client.post("/activations/upload", json_data=batch.to_dict())
62
-
63
- def get(self, batch_id: str) -> ActivationBatch:
64
- """
65
- Get a batch of activations from the Wisent backend.
66
-
67
- Args:
68
- batch_id: ID of the batch
69
-
70
- Returns:
71
- Batch of activations
72
- """
73
- data = self.http_client.get(f"/activations/{batch_id}")
74
- return ActivationBatch(**data)
75
-
76
- def list(
77
- self,
78
- model_name: Optional[str] = None,
79
- limit: int = 100,
80
- offset: int = 0,
81
- ) -> List[Dict]:
82
- """
83
- List activation batches from the Wisent backend.
84
-
85
- Args:
86
- model_name: Filter by model name
87
- limit: Maximum number of results
88
- offset: Offset for pagination
89
-
90
- Returns:
91
- List of activation batch metadata
92
- """
93
- params = {"limit": limit, "offset": offset}
94
- if model_name:
95
- params["model_name"] = model_name
96
-
97
- return self.http_client.get("/activations", params=params)
@@ -1,251 +0,0 @@
1
- """
2
- Functionality for extracting activations from models.
3
- """
4
-
5
- import logging
6
- from typing import Dict, List, Optional, Tuple, Union
7
-
8
- import torch
9
- from torch.utils.hooks import RemovableHandle
10
- from transformers import AutoModelForCausalLM, AutoTokenizer
11
-
12
- from wisent.activations.models import Activation, ActivationBatch, ActivationExtractorConfig
13
-
14
- logger = logging.getLogger(__name__)
15
-
16
-
17
- class ActivationExtractor:
18
- """
19
- Extracts activations from transformer models.
20
-
21
- Args:
22
- model_name: Name of the model to extract activations from
23
- config: Configuration for extraction
24
- device: Device to use for extraction
25
- """
26
-
27
- def __init__(
28
- self,
29
- model_name: str,
30
- config: Optional[ActivationExtractorConfig] = None,
31
- device: Optional[str] = None,
32
- ):
33
- self.model_name = model_name
34
- self.config = config or ActivationExtractorConfig()
35
-
36
- if device:
37
- self.config.device = device
38
-
39
- self.device = self.config.device
40
- self.model = None
41
- self.tokenizer = None
42
- self._hooks = []
43
- self._activations = {}
44
-
45
- logger.info(f"Initializing ActivationExtractor for model {model_name} on {self.device}")
46
-
47
- def _load_model(self) -> None:
48
- """Load the model and tokenizer."""
49
- if self.model is None:
50
- logger.info(f"Loading model {self.model_name}")
51
- self.model = AutoModelForCausalLM.from_pretrained(
52
- self.model_name,
53
- torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
54
- device_map=self.device
55
- )
56
- self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
57
- logger.info(f"Model loaded successfully")
58
-
59
- def _register_hooks(self, layers: List[int]) -> None:
60
- """
61
- Register hooks to capture activations from specified layers.
62
-
63
- Args:
64
- layers: List of layer indices to capture
65
- """
66
- self._remove_hooks()
67
- self._activations = {}
68
-
69
- # Get all transformer layers
70
- if hasattr(self.model, "transformer"):
71
- transformer_layers = self.model.transformer.h
72
- elif hasattr(self.model, "model") and hasattr(self.model.model, "layers"):
73
- transformer_layers = self.model.model.layers
74
- else:
75
- raise ValueError(f"Unsupported model architecture: {self.model_name}")
76
-
77
- num_layers = len(transformer_layers)
78
-
79
- # Resolve negative indices
80
- resolved_layers = []
81
- for layer in layers:
82
- if layer < 0:
83
- resolved_layer = num_layers + layer
84
- else:
85
- resolved_layer = layer
86
-
87
- if 0 <= resolved_layer < num_layers:
88
- resolved_layers.append(resolved_layer)
89
- else:
90
- logger.warning(f"Layer index {layer} out of range (0-{num_layers-1}), skipping")
91
-
92
- # Register hooks for each layer
93
- for layer_idx in resolved_layers:
94
- layer = transformer_layers[layer_idx]
95
-
96
- # Define hook function to capture activations
97
- def hook_fn(module, input, output, layer_idx=layer_idx):
98
- # For most models, output is a tuple with hidden states as the first element
99
- if isinstance(output, tuple):
100
- hidden_states = output[0]
101
- else:
102
- hidden_states = output
103
-
104
- if layer_idx not in self._activations:
105
- self._activations[layer_idx] = []
106
-
107
- # Store a copy of the hidden states
108
- self._activations[layer_idx].append(hidden_states.detach())
109
-
110
- # Register hook on the output of the layer
111
- if hasattr(layer, "output"):
112
- handle = layer.output.register_forward_hook(
113
- lambda module, input, output, layer_idx=layer_idx: hook_fn(module, input, output, layer_idx)
114
- )
115
- else:
116
- handle = layer.register_forward_hook(
117
- lambda module, input, output, layer_idx=layer_idx: hook_fn(module, input, output, layer_idx)
118
- )
119
-
120
- self._hooks.append(handle)
121
-
122
- logger.info(f"Registered hooks for layers: {resolved_layers}")
123
-
124
- def _remove_hooks(self) -> None:
125
- """Remove all registered hooks."""
126
- for hook in self._hooks:
127
- hook.remove()
128
- self._hooks = []
129
-
130
- def _get_token_indices(self, tokens_to_extract: List[int], total_tokens: int) -> List[int]:
131
- """
132
- Resolve token indices, handling negative indices.
133
-
134
- Args:
135
- tokens_to_extract: List of token indices to extract
136
- total_tokens: Total number of tokens
137
-
138
- Returns:
139
- List of resolved token indices
140
- """
141
- resolved_indices = []
142
-
143
- for idx in tokens_to_extract:
144
- if idx < 0:
145
- resolved_idx = total_tokens + idx
146
- else:
147
- resolved_idx = idx
148
-
149
- if 0 <= resolved_idx < total_tokens:
150
- resolved_indices.append(resolved_idx)
151
- else:
152
- logger.warning(f"Token index {idx} out of range (0-{total_tokens-1}), skipping")
153
-
154
- return resolved_indices
155
-
156
- def extract(
157
- self,
158
- prompt: str,
159
- layers: Optional[List[int]] = None,
160
- tokens_to_extract: Optional[List[int]] = None,
161
- ) -> ActivationBatch:
162
- """
163
- Extract activations from the model for a given prompt.
164
-
165
- Args:
166
- prompt: Input prompt
167
- layers: List of layers to extract activations from (default: from config)
168
- tokens_to_extract: List of token indices to extract (default: from config)
169
-
170
- Returns:
171
- Batch of activations
172
- """
173
- try:
174
- self._load_model()
175
-
176
- layers = layers or self.config.layers
177
- tokens_to_extract = tokens_to_extract or self.config.tokens_to_extract
178
-
179
- # Register hooks for the specified layers
180
- self._register_hooks(layers)
181
-
182
- # Tokenize the input
183
- inputs = self.tokenizer(prompt, return_tensors="pt")
184
- input_ids = inputs.input_ids.to(self.device)
185
-
186
- # Get the total number of tokens
187
- total_tokens = input_ids.shape[1]
188
-
189
- # Resolve token indices
190
- token_indices = self._get_token_indices(tokens_to_extract, total_tokens)
191
-
192
- # Run the model to capture activations
193
- with torch.no_grad():
194
- self.model(input_ids)
195
-
196
- # Process captured activations
197
- activations = []
198
-
199
- for layer_idx, layer_activations in self._activations.items():
200
- # Layer activations should have shape [batch_size, seq_len, hidden_dim]
201
- hidden_states = layer_activations[0]
202
-
203
- # Get token strings for the specified indices
204
- token_strings = {}
205
- for token_idx in token_indices:
206
- token_id = input_ids[0, token_idx].item()
207
- token_strings[token_idx] = self.tokenizer.decode([token_id])
208
-
209
- # Extract activations for the specified tokens
210
- for token_idx in token_indices:
211
- # Extract the activation for this token
212
- token_activation = hidden_states[0, token_idx, :].cpu()
213
-
214
- # Create an Activation object
215
- activation = Activation(
216
- model_name=self.model_name,
217
- layer=layer_idx,
218
- token_index=token_idx,
219
- values=token_activation,
220
- token_str=token_strings.get(token_idx)
221
- )
222
-
223
- activations.append(activation)
224
-
225
- # Clean up
226
- self._remove_hooks()
227
-
228
- # Create and return the batch
229
- return ActivationBatch(
230
- model_name=self.model_name,
231
- prompt=prompt,
232
- activations=activations,
233
- metadata={"total_tokens": total_tokens}
234
- )
235
-
236
- except Exception as e:
237
- logger.error(f"Error extracting activations: {str(e)}")
238
- self._remove_hooks()
239
- raise
240
-
241
- def __del__(self):
242
- """Clean up resources."""
243
- self._remove_hooks()
244
-
245
- # Free GPU memory
246
- if self.model is not None and hasattr(self.model, "to"):
247
- self.model = self.model.to("cpu")
248
-
249
- # Clear CUDA cache
250
- if torch.cuda.is_available():
251
- torch.cuda.empty_cache()