windborne 1.0.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- windborne/__init__.py +76 -0
- windborne/cli.py +544 -0
- windborne/config.py +42 -0
- windborne/data_api.py +784 -0
- windborne/forecasts_api.py +459 -0
- windborne/utils.py +940 -0
- windborne-1.0.0.dist-info/METADATA +25 -0
- windborne-1.0.0.dist-info/RECORD +11 -0
- windborne-1.0.0.dist-info/WHEEL +5 -0
- windborne-1.0.0.dist-info/entry_points.txt +2 -0
- windborne-1.0.0.dist-info/top_level.txt +1 -0
windborne/data_api.py
ADDED
@@ -0,0 +1,784 @@
|
|
1
|
+
from .config import DATA_API_BASE_URL, LAUNCH_SITES
|
2
|
+
from .utils import make_api_request, to_unix_timestamp, save_csv_json, format_little_r, convert_to_netcdf
|
3
|
+
|
4
|
+
import time
|
5
|
+
import os
|
6
|
+
from math import floor
|
7
|
+
from datetime import datetime, timezone, timedelta
|
8
|
+
import csv
|
9
|
+
import json
|
10
|
+
|
11
|
+
def get_observations(since=None, min_time=None, max_time=None, include_ids=None, include_mission_name=True, include_updated_at=None, mission_id=None, min_latitude=None, max_latitude=None, min_longitude=None, max_longitude=None, save_to_file=None):
|
12
|
+
"""
|
13
|
+
Retrieves observations based on specified filters including geographical bounds.
|
14
|
+
|
15
|
+
Args:
|
16
|
+
since (str): Filter observations after this timestamp.
|
17
|
+
|
18
|
+
min_time (str): Minimum timestamp for observations.
|
19
|
+
max_time (str): Maximum timestamp for observations.
|
20
|
+
include_ids (bool): Include observation IDs in response.
|
21
|
+
include_mission_name (bool): Include mission names in response.
|
22
|
+
include_updated_at (bool): Include update timestamps in response.
|
23
|
+
mission_id (str): Filter observations by mission ID.
|
24
|
+
min_latitude (float): Minimum latitude boundary.
|
25
|
+
max_latitude (float): Maximum latitude boundary.
|
26
|
+
min_longitude (float): Minimum longitude boundary.
|
27
|
+
max_longitude (float): Maximum longitude boundary.
|
28
|
+
|
29
|
+
save_to_file (str): Optional path to save the response data.
|
30
|
+
If provided, saves the data in CSV format.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
dict: The API response containing filtered observations.
|
34
|
+
"""
|
35
|
+
|
36
|
+
url = f"{DATA_API_BASE_URL}/observations.json"
|
37
|
+
|
38
|
+
# Convert date strings to Unix timestamps
|
39
|
+
params = {}
|
40
|
+
if since:
|
41
|
+
params["since"] = to_unix_timestamp(since)
|
42
|
+
if min_time:
|
43
|
+
params["min_time"] = to_unix_timestamp(min_time)
|
44
|
+
if max_time:
|
45
|
+
params["max_time"] = to_unix_timestamp(min_time)
|
46
|
+
if mission_id:
|
47
|
+
params["mission_id"] = mission_id
|
48
|
+
if min_latitude:
|
49
|
+
params["min_latitude"] = min_latitude
|
50
|
+
if max_latitude:
|
51
|
+
params["max_latitude"] = max_latitude
|
52
|
+
if min_longitude:
|
53
|
+
params["min_longitude"] = min_longitude
|
54
|
+
if max_longitude:
|
55
|
+
params["max_longitude"] = max_longitude
|
56
|
+
if include_ids:
|
57
|
+
params["include_ids"] = True
|
58
|
+
if include_mission_name:
|
59
|
+
params["include_mission_name"] = True
|
60
|
+
if include_updated_at:
|
61
|
+
params["include_updated_at"] = True
|
62
|
+
|
63
|
+
# Remove any keys where the value is None to avoid sending unnecessary parameters
|
64
|
+
params = {k: v for k, v in params.items() if v is not None}
|
65
|
+
|
66
|
+
response = make_api_request(url, params=params)
|
67
|
+
|
68
|
+
if save_to_file:
|
69
|
+
save_csv_json(save_to_file, response, csv_data_key='observations')
|
70
|
+
|
71
|
+
return response
|
72
|
+
|
73
|
+
def get_super_observations(since=None, min_time=None, max_time=None, include_ids=None, include_mission_name=None, include_updated_at=None, mission_id=None, save_to_file=None):
|
74
|
+
"""
|
75
|
+
Retrieves super observations based on specified filters.
|
76
|
+
|
77
|
+
Args:
|
78
|
+
since (str): Filter observations after this timestamp.
|
79
|
+
min_time (str): Minimum timestamp for observations.
|
80
|
+
max_time (str): Maximum timestamp for observations.
|
81
|
+
include_ids (bool): Include observation IDs in response.
|
82
|
+
include_mission_name (bool): Include mission names in response.
|
83
|
+
include_updated_at (bool): Include update timestamps in response.
|
84
|
+
mission_id (str): Filter observations by mission ID.
|
85
|
+
save_to_file (str): Optional path to save the response data.
|
86
|
+
If provided, saves the data in CSV format.
|
87
|
+
|
88
|
+
Returns:
|
89
|
+
dict: The API response containing filtered super observations.
|
90
|
+
"""
|
91
|
+
|
92
|
+
url = f"{DATA_API_BASE_URL}/super_observations.json"
|
93
|
+
|
94
|
+
params = {}
|
95
|
+
if since:
|
96
|
+
params["since"] = to_unix_timestamp(since)
|
97
|
+
if min_time:
|
98
|
+
params["min_time"] = to_unix_timestamp(min_time)
|
99
|
+
if max_time:
|
100
|
+
params["max_time"] = to_unix_timestamp(max_time)
|
101
|
+
if mission_id:
|
102
|
+
params["mission_id"] = mission_id
|
103
|
+
if include_ids:
|
104
|
+
params["include_ids"] = True
|
105
|
+
if include_mission_name:
|
106
|
+
params["include_mission_name"] = True
|
107
|
+
if include_updated_at:
|
108
|
+
params["include_updated_at"] = True
|
109
|
+
|
110
|
+
params = {k: v for k, v in params.items() if v is not None}
|
111
|
+
|
112
|
+
response = make_api_request(url, params=params)
|
113
|
+
if save_to_file:
|
114
|
+
save_csv_json(save_to_file, response, csv_data_key='observations')
|
115
|
+
|
116
|
+
return response
|
117
|
+
|
118
|
+
def poll_observations(start_time, end_time=None, include_ids=None, include_updated_at=None, mission_id=None, min_latitude=None, max_latitude=None, min_longitude=None, max_longitude=None, interval=60, save_to_file=None, bucket_hours=6.0, output_format=None, callback=None):
|
119
|
+
"""
|
120
|
+
Fetches observations between a start time and an optional end time and saves to files in specified format.
|
121
|
+
Files are broken up into time buckets, with filenames containing the time at the mid-point of the bucket.
|
122
|
+
For example, for 6-hour buckets centered on 00 UTC, the start time should be 21 UTC of the previous day.
|
123
|
+
|
124
|
+
Args:
|
125
|
+
start_time (str): A date string, supporting formats YYYY-MM-DD HH:MM:SS, YYYY-MM-DD_HH:MM and ISO strings,
|
126
|
+
representing the starting time of fetching data.
|
127
|
+
end_time (str): Optional. A date string, supporting formats YYYY-MM-DD HH:MM:SS, YYYY-MM-DD_HH:MM and ISO strings,
|
128
|
+
representing the end time of fetching data. If not provided, current time is used as end time.
|
129
|
+
|
130
|
+
include_ids (bool): Include observation IDs in response.
|
131
|
+
include_updated_at (bool): Include update timestamps in response.
|
132
|
+
mission_id (str): Filter observations by mission ID.
|
133
|
+
min_latitude (float): Minimum latitude boundary.
|
134
|
+
max_latitude (float): Maximum latitude boundary.
|
135
|
+
min_longitude (float): Minimum longitude boundary.
|
136
|
+
max_longitude (float): Maximum longitude boundary.
|
137
|
+
|
138
|
+
interval (int): Optional. Interval in seconds between polls when a empty page is received (default: 60)
|
139
|
+
save_to_file (str): Saves all data to a single file instead of bucketing.
|
140
|
+
Supported formats are '.csv', '.json', '.little_r' and '.nc'
|
141
|
+
bucket_hours (int): Optional. Size of time buckets in hours. Defaults to 6 hours.
|
142
|
+
output_format (str): Optional. Format to save data in separate files. Supported formats are 'json, 'csv', 'little_r' and 'netcdf'.
|
143
|
+
callback (callable): Optional callback function that receives (super observations, metadata) before saving.
|
144
|
+
This allows custom processing or saving in custom formats.
|
145
|
+
"""
|
146
|
+
|
147
|
+
start_time = to_unix_timestamp(start_time)
|
148
|
+
|
149
|
+
if end_time:
|
150
|
+
end_time = to_unix_timestamp(end_time)
|
151
|
+
else:
|
152
|
+
end_time = int(datetime.now().timestamp())
|
153
|
+
|
154
|
+
# Supported formats for saving into separate files:
|
155
|
+
# - csv (default)
|
156
|
+
# - little_r
|
157
|
+
# - json
|
158
|
+
# - netcdf
|
159
|
+
if output_format and output_format not in ['json', 'csv', 'little_r', 'netcdf']:
|
160
|
+
print("Please use one of the following formats:")
|
161
|
+
print(" - json")
|
162
|
+
print(" - csv")
|
163
|
+
print(" - little_r")
|
164
|
+
print(" - netcdf")
|
165
|
+
return
|
166
|
+
|
167
|
+
# Supported formats for saving into a single file:
|
168
|
+
# NOTE: for poll_observations we handle .csv saving within poll_observations and not using save_csv_json
|
169
|
+
# - .csv
|
170
|
+
# - .json
|
171
|
+
# - .little_r
|
172
|
+
# - .nc
|
173
|
+
if save_to_file and not save_to_file.endswith(('.json', '.csv', '.little_r', '.nc')):
|
174
|
+
print("Please use one of the following formats:")
|
175
|
+
print(" - .json")
|
176
|
+
print(" - .csv")
|
177
|
+
print(" - .little_r")
|
178
|
+
print(" - .nc")
|
179
|
+
return
|
180
|
+
|
181
|
+
# Convert start_time to datetime
|
182
|
+
start_dt = datetime.fromtimestamp(start_time, tz=timezone.utc)
|
183
|
+
|
184
|
+
# Calculate first center time that's after start_time
|
185
|
+
hours_since_day_start = start_dt.hour + start_dt.minute / 60
|
186
|
+
bucket_number = hours_since_day_start // bucket_hours
|
187
|
+
first_center = start_dt.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(hours=(bucket_number + 1) * bucket_hours)
|
188
|
+
|
189
|
+
|
190
|
+
# Headers for CSV files
|
191
|
+
headers = [
|
192
|
+
"timestamp", "id", "time", "latitude", "longitude", "altitude", "humidity",
|
193
|
+
"mission_name", "pressure", "specific_humidity", "speed_u", "speed_v", "temperature"
|
194
|
+
]
|
195
|
+
|
196
|
+
if save_to_file:
|
197
|
+
all_observations = {}
|
198
|
+
else:
|
199
|
+
buckets = {}
|
200
|
+
|
201
|
+
# Initialize the polling loop
|
202
|
+
current_timestamp = start_time
|
203
|
+
has_next_page = True
|
204
|
+
|
205
|
+
|
206
|
+
while has_next_page:
|
207
|
+
try:
|
208
|
+
# Fetch observations
|
209
|
+
observations_page = get_observations(
|
210
|
+
since=current_timestamp,
|
211
|
+
min_latitude=min_latitude,
|
212
|
+
max_latitude=max_latitude,
|
213
|
+
min_longitude=min_longitude,
|
214
|
+
max_longitude=max_longitude,
|
215
|
+
include_updated_at=include_updated_at,
|
216
|
+
mission_id=mission_id,
|
217
|
+
include_ids=include_ids,
|
218
|
+
include_mission_name=True
|
219
|
+
)
|
220
|
+
|
221
|
+
if observations_page is None:
|
222
|
+
print("\n----------------------------------------------------------------------")
|
223
|
+
print(f"Received null response from API. Retrying in {interval} seconds ...")
|
224
|
+
print("----------------------------------------------------------------------")
|
225
|
+
time.sleep(interval)
|
226
|
+
continue
|
227
|
+
|
228
|
+
observations = observations_page.get('observations', [])
|
229
|
+
print(f"Fetched {len(observations)} observation(s)")
|
230
|
+
|
231
|
+
# Invoke the callback with fetched observations
|
232
|
+
if callback:
|
233
|
+
print("/nCallback/n")
|
234
|
+
callback(observations)
|
235
|
+
|
236
|
+
for obs in observations:
|
237
|
+
if 'mission_name' not in obs:
|
238
|
+
print("Warning: got an observation without a mission name")
|
239
|
+
continue
|
240
|
+
|
241
|
+
timestamp = obs.get('timestamp')
|
242
|
+
if not timestamp:
|
243
|
+
continue
|
244
|
+
|
245
|
+
try:
|
246
|
+
obs_time = datetime.fromtimestamp(timestamp, tz=timezone.utc)
|
247
|
+
except (OSError, ValueError, TypeError, OverflowError):
|
248
|
+
continue
|
249
|
+
|
250
|
+
mission_name = obs.get('mission_name', 'Unknown')
|
251
|
+
obs['time'] = obs_time.replace(tzinfo=timezone.utc).isoformat()
|
252
|
+
|
253
|
+
processed_obs = {}
|
254
|
+
for header in headers:
|
255
|
+
value = obs.get(header)
|
256
|
+
if value is None or value == '' or (isinstance(value, str) and not value.strip()):
|
257
|
+
processed_obs[header] = 'None'
|
258
|
+
else:
|
259
|
+
processed_obs[header] = value
|
260
|
+
|
261
|
+
obs_id = f"{timestamp}_{mission_name}"
|
262
|
+
|
263
|
+
if save_to_file:
|
264
|
+
all_observations[obs_id] = processed_obs
|
265
|
+
else:
|
266
|
+
if obs_time >= start_dt: # Only process observations after start time
|
267
|
+
hours_diff = (obs_time - first_center).total_seconds() / 3600
|
268
|
+
bucket_index = floor(hours_diff / bucket_hours)
|
269
|
+
bucket_center = first_center + timedelta(hours=bucket_index * bucket_hours)
|
270
|
+
bucket_end = bucket_center + timedelta(hours=bucket_hours)
|
271
|
+
|
272
|
+
if obs_time <= bucket_end: # Include observations up to the end of the bucket
|
273
|
+
bucket_key = (bucket_center, mission_name)
|
274
|
+
if bucket_key not in buckets:
|
275
|
+
buckets[bucket_key] = {}
|
276
|
+
buckets[bucket_key][obs_id] = processed_obs
|
277
|
+
|
278
|
+
# Update pagination
|
279
|
+
next_timestamp = observations_page.get('next_since')
|
280
|
+
has_next_page = observations_page.get('has_next_page', False)
|
281
|
+
|
282
|
+
if not has_next_page or not next_timestamp or next_timestamp <= current_timestamp:
|
283
|
+
print("-----------------------------------------------------\n")
|
284
|
+
print("No more pages available or reached end of time range.")
|
285
|
+
print("\n-----------------------------------------------------")
|
286
|
+
break
|
287
|
+
|
288
|
+
current_timestamp = next_timestamp
|
289
|
+
|
290
|
+
except Exception as e:
|
291
|
+
print(f"Error occurred: {e}")
|
292
|
+
exit(1001)
|
293
|
+
|
294
|
+
# Save data to a single file
|
295
|
+
if save_to_file:
|
296
|
+
filtered_observations = {obs_id: obs for obs_id, obs in all_observations.items()
|
297
|
+
if float(obs['timestamp']) >= start_time}
|
298
|
+
# Sort by timestamp
|
299
|
+
sorted_observations = dict(sorted(filtered_observations.items(),
|
300
|
+
key=lambda x: float(x[1]['timestamp'])))
|
301
|
+
|
302
|
+
if save_to_file.endswith('.nc'):
|
303
|
+
first_obs_timestamp = float(next(iter(sorted_observations.values()))['timestamp'])
|
304
|
+
convert_to_netcdf(sorted_observations, first_obs_timestamp, output_filename=save_to_file)
|
305
|
+
elif save_to_file.endswith('.json'):
|
306
|
+
with open(save_to_file, 'w', encoding='utf-8') as f:
|
307
|
+
json.dump(sorted_observations, f, indent=4)
|
308
|
+
|
309
|
+
elif save_to_file.endswith('.csv'):
|
310
|
+
with open(save_to_file, mode='w', newline='') as file:
|
311
|
+
writer = csv.DictWriter(file, fieldnames=headers)
|
312
|
+
writer.writeheader()
|
313
|
+
writer.writerows(sorted_observations.values())
|
314
|
+
|
315
|
+
elif save_to_file.endswith('.little_r'):
|
316
|
+
little_r_records = format_little_r(list(sorted_observations.items()))
|
317
|
+
with open(save_to_file, 'w') as file:
|
318
|
+
file.write('\n'.join(little_r_records))
|
319
|
+
|
320
|
+
print(f"Saved {len(sorted_observations)} {'observation' if len(sorted_observations) == 1 else 'observations'} to {save_to_file}")
|
321
|
+
|
322
|
+
# Save data to multiple file
|
323
|
+
elif output_format:
|
324
|
+
# Track statistics per mission
|
325
|
+
mission_stats = {} # {mission_name: {'files': 0, 'observations': 0}}
|
326
|
+
total_observations_written = 0
|
327
|
+
|
328
|
+
# Save bucketed data
|
329
|
+
for (bucket_center, mission_name), observations in buckets.items():
|
330
|
+
if observations:
|
331
|
+
# Format hour to be the actual bucket center
|
332
|
+
bucket_hour = int((bucket_center.hour + bucket_hours/2) % 24)
|
333
|
+
|
334
|
+
if output_format == 'netcdf':
|
335
|
+
convert_to_netcdf(observations, bucket_center.timestamp())
|
336
|
+
|
337
|
+
if output_format == 'csv':
|
338
|
+
output_file = (f"WindBorne_{mission_name}_%04d-%02d-%02d_%02d_%dh.csv" %
|
339
|
+
(bucket_center.year, bucket_center.month, bucket_center.day,
|
340
|
+
bucket_hour, bucket_hours))
|
341
|
+
|
342
|
+
os.makedirs(os.path.dirname(output_file) or '.', exist_ok=True)
|
343
|
+
|
344
|
+
# Sort observations by timestamp within each bucket
|
345
|
+
sorted_obs = sorted(observations.values(), key=lambda x: int(x['timestamp']))
|
346
|
+
|
347
|
+
with open(output_file, mode='w', newline='') as file:
|
348
|
+
writer = csv.DictWriter(file, fieldnames=headers)
|
349
|
+
writer.writeheader()
|
350
|
+
writer.writerows(sorted_obs)
|
351
|
+
|
352
|
+
elif output_format == 'json':
|
353
|
+
output_file = (f"WindBorne_{mission_name}_%04d-%02d-%02d_%02d_%dh.json" %
|
354
|
+
(bucket_center.year, bucket_center.month, bucket_center.day,
|
355
|
+
bucket_hour, bucket_hours))
|
356
|
+
|
357
|
+
os.makedirs(os.path.dirname(output_file) or '.', exist_ok=True)
|
358
|
+
|
359
|
+
# Sort observations by timestamp within each bucket
|
360
|
+
sorted_obs = dict(sorted(observations.items(), key=lambda x: int(x[1]['timestamp'])))
|
361
|
+
|
362
|
+
with open(output_file, 'w', encoding='utf-8') as file:
|
363
|
+
json.dump(sorted_obs, file, indent=4)
|
364
|
+
|
365
|
+
elif output_format == 'little_r':
|
366
|
+
output_file = (f"WindBorne_{mission_name}_%04d-%02d-%02d_%02d-00_%dh.little_r" %
|
367
|
+
(bucket_center.year, bucket_center.month, bucket_center.day,
|
368
|
+
bucket_hour, bucket_hours))
|
369
|
+
|
370
|
+
os.makedirs(os.path.dirname(output_file) or '.', exist_ok=True)
|
371
|
+
|
372
|
+
sorted_obs = sorted(observations.items(), key=lambda x: int(x[1]['timestamp']))
|
373
|
+
|
374
|
+
little_r_records = format_little_r(sorted_obs)
|
375
|
+
with open(output_file, 'w') as file:
|
376
|
+
file.write('\n'.join(little_r_records))
|
377
|
+
total_observations_written += len(observations)
|
378
|
+
|
379
|
+
# Update statistics
|
380
|
+
if mission_name not in mission_stats:
|
381
|
+
mission_stats[mission_name] = {'files': 0, 'observations': 0}
|
382
|
+
mission_stats[mission_name]['files'] += 1
|
383
|
+
mission_stats[mission_name]['observations'] += len(observations)
|
384
|
+
# Print total observations written
|
385
|
+
print(f"Total {'observation' if total_observations_written == 1 else 'observations'} written: {total_observations_written}")
|
386
|
+
print("-----------------------------------------------------")
|
387
|
+
|
388
|
+
# Print summary for each mission
|
389
|
+
for mission_name, stats in mission_stats.items():
|
390
|
+
print(f"Mission {mission_name}: Saved {stats['observations']} {'observation' if stats['observations'] == 1 else 'observations'} across {stats['files']} {'file' if stats['files'] == 1 else 'files'}")
|
391
|
+
|
392
|
+
print("-----------------------------------------------------")
|
393
|
+
print("All observations have been processed and saved.")
|
394
|
+
|
395
|
+
def poll_super_observations(start_time, end_time=None, interval=60, save_to_file=None, bucket_hours=6.0, output_format=None, callback=None):
|
396
|
+
"""
|
397
|
+
Fetches super observations between a start time and an optional end time and saves to files in specified format.
|
398
|
+
Files are broken up into time buckets, with filenames containing the time at the mid-point of the bucket.
|
399
|
+
For example, for 6-hour buckets centered on 00 UTC, the start time should be 21 UTC of the previous day.
|
400
|
+
|
401
|
+
Args:
|
402
|
+
start_time (str): A date string, supporting formats YYYY-MM-DD HH:MM:SS, YYYY-MM-DD_HH:MM and ISO strings,
|
403
|
+
representing the starting time of fetching data.
|
404
|
+
end_time (str): Optional. A date string, supporting formats YYYY-MM-DD HH:MM:SS, YYYY-MM-DD_HH:MM and ISO strings,
|
405
|
+
representing the end time of fetching data. If not provided, current time is used as end time.
|
406
|
+
interval (int): Optional. Interval in seconds between polls when a empty page is received (default: 60)
|
407
|
+
save_to_file (str): Saves all data to a single file instead of bucketing.
|
408
|
+
Supported formats are '.csv', '.json', '.little_r' and '.nc'
|
409
|
+
bucket_hours (int): Optional. Size of time buckets in hours. Defaults to 6 hours.
|
410
|
+
output_format (str): Optional. Format to save data in separate files. Supported formats are 'json, 'csv', 'little_r' and 'netcdf'.
|
411
|
+
callback (callable): Optional callback function that receives (super observations, metadata) before saving.
|
412
|
+
This allows custom processing or saving in custom formats.
|
413
|
+
"""
|
414
|
+
|
415
|
+
start_time = to_unix_timestamp(start_time)
|
416
|
+
|
417
|
+
if end_time:
|
418
|
+
end_time = to_unix_timestamp(end_time)
|
419
|
+
else:
|
420
|
+
end_time = int(datetime.now().timestamp())
|
421
|
+
|
422
|
+
# Supported formats for saving into separate files:
|
423
|
+
# - csv (default)
|
424
|
+
# - little_r
|
425
|
+
# - json
|
426
|
+
# - netcdf
|
427
|
+
if output_format and output_format not in ['json', 'csv', 'little_r', 'netcdf']:
|
428
|
+
print("Please use one of the following formats:")
|
429
|
+
print(" - json")
|
430
|
+
print(" - csv")
|
431
|
+
print(" - little_r")
|
432
|
+
print(" - netcdf")
|
433
|
+
return
|
434
|
+
|
435
|
+
# Supported formats for saving into a single file:
|
436
|
+
# NOTE: for poll_super_observations we handle .csv saving within poll_super_observations and not using save_csv_json
|
437
|
+
# - .csv
|
438
|
+
# - .json
|
439
|
+
# - .little_r
|
440
|
+
# - .nc
|
441
|
+
if save_to_file and not save_to_file.endswith(('.json', '.csv', '.little_r', '.nc')):
|
442
|
+
print("Please use one of the following formats:")
|
443
|
+
print(" - .json")
|
444
|
+
print(" - .csv")
|
445
|
+
print(" - .little_r")
|
446
|
+
print(" - .nc")
|
447
|
+
return
|
448
|
+
|
449
|
+
# Convert start_time to datetime
|
450
|
+
start_dt = datetime.fromtimestamp(start_time, tz=timezone.utc)
|
451
|
+
|
452
|
+
# Calculate first center time that's after start_time
|
453
|
+
hours_since_day_start = start_dt.hour + start_dt.minute / 60
|
454
|
+
bucket_number = hours_since_day_start // bucket_hours
|
455
|
+
first_center = start_dt.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(hours=(bucket_number + 1) * bucket_hours)
|
456
|
+
|
457
|
+
|
458
|
+
# Headers for CSV files
|
459
|
+
headers = [
|
460
|
+
"timestamp", "id", "time", "latitude", "longitude", "altitude", "humidity",
|
461
|
+
"mission_name", "pressure", "specific_humidity", "speed_u", "speed_v", "temperature"
|
462
|
+
]
|
463
|
+
|
464
|
+
if save_to_file:
|
465
|
+
all_observations = {}
|
466
|
+
else:
|
467
|
+
buckets = {}
|
468
|
+
|
469
|
+
# Initialize the polling loop
|
470
|
+
current_timestamp = start_time
|
471
|
+
has_next_page = True
|
472
|
+
|
473
|
+
|
474
|
+
while has_next_page:
|
475
|
+
try:
|
476
|
+
# Fetch observations
|
477
|
+
observations_page = get_super_observations(
|
478
|
+
since=current_timestamp,
|
479
|
+
min_time=start_time,
|
480
|
+
max_time=end_time,
|
481
|
+
include_ids=True,
|
482
|
+
include_mission_name=True
|
483
|
+
)
|
484
|
+
|
485
|
+
if observations_page is None:
|
486
|
+
print("\n----------------------------------------------------------------------")
|
487
|
+
print(f"Received null response from API. Retrying in {interval} seconds ...")
|
488
|
+
print("----------------------------------------------------------------------")
|
489
|
+
time.sleep(interval)
|
490
|
+
continue
|
491
|
+
|
492
|
+
observations = observations_page.get('observations', [])
|
493
|
+
print(f"Fetched {len(observations)} super observation(s)")
|
494
|
+
|
495
|
+
# Invoke the callback with fetched observations
|
496
|
+
if callback:
|
497
|
+
print("/nCallback/n")
|
498
|
+
callback(observations)
|
499
|
+
|
500
|
+
for obs in observations:
|
501
|
+
if 'mission_name' not in obs:
|
502
|
+
print("Warning: got an super observation without a mission name")
|
503
|
+
continue
|
504
|
+
|
505
|
+
timestamp = obs.get('timestamp')
|
506
|
+
if not timestamp:
|
507
|
+
continue
|
508
|
+
|
509
|
+
try:
|
510
|
+
obs_time = datetime.fromtimestamp(timestamp, tz=timezone.utc)
|
511
|
+
except (OSError, ValueError, TypeError, OverflowError):
|
512
|
+
continue
|
513
|
+
|
514
|
+
mission_name = obs.get('mission_name', 'Unknown')
|
515
|
+
obs['time'] = obs_time.replace(tzinfo=timezone.utc).isoformat()
|
516
|
+
|
517
|
+
processed_obs = {}
|
518
|
+
for header in headers:
|
519
|
+
value = obs.get(header)
|
520
|
+
if value is None or value == '' or (isinstance(value, str) and not value.strip()):
|
521
|
+
processed_obs[header] = 'None'
|
522
|
+
else:
|
523
|
+
processed_obs[header] = value
|
524
|
+
|
525
|
+
obs_id = f"{timestamp}_{mission_name}"
|
526
|
+
|
527
|
+
if save_to_file:
|
528
|
+
all_observations[obs_id] = processed_obs
|
529
|
+
else:
|
530
|
+
if obs_time >= start_dt: # Only process observations after start time
|
531
|
+
hours_diff = (obs_time - first_center).total_seconds() / 3600
|
532
|
+
bucket_index = floor(hours_diff / bucket_hours)
|
533
|
+
bucket_center = first_center + timedelta(hours=bucket_index * bucket_hours)
|
534
|
+
bucket_end = bucket_center + timedelta(hours=bucket_hours)
|
535
|
+
|
536
|
+
if obs_time <= bucket_end: # Include observations up to the end of the bucket
|
537
|
+
bucket_key = (bucket_center, mission_name)
|
538
|
+
if bucket_key not in buckets:
|
539
|
+
buckets[bucket_key] = {}
|
540
|
+
buckets[bucket_key][obs_id] = processed_obs
|
541
|
+
|
542
|
+
# Update pagination
|
543
|
+
next_timestamp = observations_page.get('next_since')
|
544
|
+
has_next_page = observations_page.get('has_next_page', False)
|
545
|
+
|
546
|
+
if not has_next_page or not next_timestamp or next_timestamp <= current_timestamp:
|
547
|
+
print("-----------------------------------------------------\n")
|
548
|
+
print("No more pages available or reached end of time range.")
|
549
|
+
print("\n-----------------------------------------------------")
|
550
|
+
break
|
551
|
+
|
552
|
+
current_timestamp = next_timestamp
|
553
|
+
|
554
|
+
except Exception as e:
|
555
|
+
print(f"Error occurred: {e}")
|
556
|
+
exit(1001)
|
557
|
+
|
558
|
+
# Save data to a single file
|
559
|
+
if save_to_file:
|
560
|
+
filtered_observations = {obs_id: obs for obs_id, obs in all_observations.items()
|
561
|
+
if float(obs['timestamp']) >= start_time}
|
562
|
+
# Sort by timestamp
|
563
|
+
sorted_observations = dict(sorted(filtered_observations.items(),
|
564
|
+
key=lambda x: float(x[1]['timestamp'])))
|
565
|
+
|
566
|
+
if save_to_file.endswith('.nc'):
|
567
|
+
first_obs_timestamp = float(next(iter(sorted_observations.values()))['timestamp'])
|
568
|
+
convert_to_netcdf(sorted_observations, first_obs_timestamp, output_filename=save_to_file)
|
569
|
+
|
570
|
+
elif save_to_file.endswith('.json'):
|
571
|
+
with open(save_to_file, 'w', encoding='utf-8') as f:
|
572
|
+
json.dump(sorted_observations, f, indent=4)
|
573
|
+
|
574
|
+
elif save_to_file.endswith('.csv'):
|
575
|
+
with open(save_to_file, mode='w', newline='') as file:
|
576
|
+
writer = csv.DictWriter(file, fieldnames=headers)
|
577
|
+
writer.writeheader()
|
578
|
+
writer.writerows(sorted_observations.values())
|
579
|
+
|
580
|
+
elif save_to_file.endswith('.little_r'):
|
581
|
+
little_r_records = format_little_r(list(sorted_observations.items()))
|
582
|
+
with open(save_to_file, 'w') as file:
|
583
|
+
file.write('\n'.join(little_r_records))
|
584
|
+
|
585
|
+
print(f"Saved {len(sorted_observations)} super {'observation' if len(sorted_observations) == 1 else 'observations'} to {save_to_file}")
|
586
|
+
|
587
|
+
# Save data to multiple file
|
588
|
+
elif output_format:
|
589
|
+
# Track statistics per mission
|
590
|
+
mission_stats = {} # {mission_name: {'files': 0, 'observations': 0}}
|
591
|
+
total_observations_written = 0
|
592
|
+
|
593
|
+
# Save bucketed data
|
594
|
+
for (bucket_center, mission_name), observations in buckets.items():
|
595
|
+
if observations:
|
596
|
+
# Format hour to be the actual bucket center
|
597
|
+
bucket_hour = int((bucket_center.hour + bucket_hours/2) % 24)
|
598
|
+
|
599
|
+
if output_format == 'netcdf':
|
600
|
+
convert_to_netcdf(observations, bucket_center.timestamp())
|
601
|
+
|
602
|
+
if output_format == 'csv':
|
603
|
+
output_file = (f"WindBorne_{mission_name}_%04d-%02d-%02d_%02d_%dh.csv" %
|
604
|
+
(bucket_center.year, bucket_center.month, bucket_center.day,
|
605
|
+
bucket_hour, bucket_hours))
|
606
|
+
|
607
|
+
os.makedirs(os.path.dirname(output_file) or '.', exist_ok=True)
|
608
|
+
|
609
|
+
# Sort observations by timestamp within each bucket
|
610
|
+
sorted_obs = sorted(observations.values(), key=lambda x: int(x['timestamp']))
|
611
|
+
|
612
|
+
with open(output_file, mode='w', newline='') as file:
|
613
|
+
writer = csv.DictWriter(file, fieldnames=headers)
|
614
|
+
writer.writeheader()
|
615
|
+
writer.writerows(sorted_obs)
|
616
|
+
|
617
|
+
elif output_format == 'json':
|
618
|
+
output_file = (f"WindBorne_{mission_name}_%04d-%02d-%02d_%02d_%dh.json" %
|
619
|
+
(bucket_center.year, bucket_center.month, bucket_center.day,
|
620
|
+
bucket_hour, bucket_hours))
|
621
|
+
|
622
|
+
os.makedirs(os.path.dirname(output_file) or '.', exist_ok=True)
|
623
|
+
|
624
|
+
# Sort observations by timestamp within each bucket
|
625
|
+
sorted_obs = dict(sorted(observations.items(), key=lambda x: int(x[1]['timestamp'])))
|
626
|
+
|
627
|
+
with open(output_file, 'w', encoding='utf-8') as file:
|
628
|
+
json.dump(sorted_obs, file, indent=4)
|
629
|
+
|
630
|
+
elif output_format == 'little_r':
|
631
|
+
output_file = (f"WindBorne_{mission_name}_%04d-%02d-%02d_%02d-00_%dh.little_r" %
|
632
|
+
(bucket_center.year, bucket_center.month, bucket_center.day,
|
633
|
+
bucket_hour, bucket_hours))
|
634
|
+
|
635
|
+
os.makedirs(os.path.dirname(output_file) or '.', exist_ok=True)
|
636
|
+
|
637
|
+
sorted_obs = sorted(observations.items(), key=lambda x: int(x[1]['timestamp']))
|
638
|
+
|
639
|
+
little_r_records = format_little_r(sorted_obs)
|
640
|
+
with open(output_file, 'w') as file:
|
641
|
+
file.write('\n'.join(little_r_records))
|
642
|
+
total_observations_written += len(observations)
|
643
|
+
|
644
|
+
# Update statistics
|
645
|
+
if mission_name not in mission_stats:
|
646
|
+
mission_stats[mission_name] = {'files': 0, 'observations': 0}
|
647
|
+
mission_stats[mission_name]['files'] += 1
|
648
|
+
mission_stats[mission_name]['observations'] += len(observations)
|
649
|
+
# Print total super observations written
|
650
|
+
print(f"Total super {'observation' if total_observations_written == 1 else 'observations'} written: {total_observations_written}")
|
651
|
+
print("-----------------------------------------------------")
|
652
|
+
|
653
|
+
# Print summary for each mission
|
654
|
+
for mission_name, stats in mission_stats.items():
|
655
|
+
print(f"Mission {mission_name}: Saved {stats['observations']} super {'observation' if stats['observations'] == 1 else 'observations'} across {stats['files']} {'file' if stats['files'] == 1 else 'files'}")
|
656
|
+
|
657
|
+
print("-----------------------------------------------------")
|
658
|
+
print("All super observations have been processed and saved.")
|
659
|
+
|
660
|
+
def get_flying_missions(cli=None, save_to_file=None):
|
661
|
+
"""
|
662
|
+
Retrieves a list of currently flying missions.
|
663
|
+
In CLI mode, displays missions in a formatted table.
|
664
|
+
|
665
|
+
Args:
|
666
|
+
save_to_file (str): Optional path to save the response data.
|
667
|
+
If provided, saves the data in CSV or JSON format.
|
668
|
+
|
669
|
+
Returns:
|
670
|
+
dict: The API response containing list of flying missions.
|
671
|
+
"""
|
672
|
+
|
673
|
+
url = f"{DATA_API_BASE_URL}/missions.json"
|
674
|
+
flying_missions_response = make_api_request(url)
|
675
|
+
flying_missions = flying_missions_response.get("missions", [])
|
676
|
+
|
677
|
+
# Display currently flying missions only if we are in cli and we don't save info in file
|
678
|
+
if flying_missions and cli and not save_to_file:
|
679
|
+
print("Currently flying missions:\n")
|
680
|
+
|
681
|
+
# Define headers and data
|
682
|
+
headers = ["Index", "Mission ID", "Mission Name"]
|
683
|
+
rows = [
|
684
|
+
[str(i), mission.get("id", "N/A"), mission.get("name", "Unnamed Mission")]
|
685
|
+
for i, mission in enumerate(flying_missions, start=1)
|
686
|
+
]
|
687
|
+
|
688
|
+
# Kinda overkill | but it's a good practice if we ever change missions naming convention
|
689
|
+
# Calculate column widths
|
690
|
+
col_widths = [max(len(cell) for cell in col) + 2 for col in zip(headers, *rows)]
|
691
|
+
|
692
|
+
# Display table
|
693
|
+
print("".join(f"{headers[i]:<{col_widths[i]}}" for i in range(len(headers))))
|
694
|
+
print("".join("-" * col_width for col_width in col_widths))
|
695
|
+
for row in rows:
|
696
|
+
print("".join(f"{row[i]:<{col_widths[i]}}" for i in range(len(row))))
|
697
|
+
|
698
|
+
if save_to_file:
|
699
|
+
save_csv_json(save_to_file, flying_missions_response, csv_data_key='missions')
|
700
|
+
|
701
|
+
return flying_missions_response
|
702
|
+
|
703
|
+
def get_mission_launch_site(mission_id=None, save_to_file=None):
|
704
|
+
"""
|
705
|
+
Retrieves launch site information for a specified mission.
|
706
|
+
"""
|
707
|
+
if not mission_id:
|
708
|
+
print("Must provide mission ID")
|
709
|
+
return
|
710
|
+
|
711
|
+
url = f"{DATA_API_BASE_URL}/missions/{mission_id}/launch_site.json"
|
712
|
+
response = make_api_request(url)
|
713
|
+
|
714
|
+
if response and not save_to_file:
|
715
|
+
launch_site = response.get('launch_site')
|
716
|
+
if isinstance(launch_site, dict):
|
717
|
+
site_name = LAUNCH_SITES.get(launch_site.get('id'), 'N/A')
|
718
|
+
print("Mission launch site\n")
|
719
|
+
print(f"{'Location':<12} {site_name}")
|
720
|
+
print(f"{'Latitude':<12} {launch_site.get('latitude', 'N/A')}")
|
721
|
+
print(f"{'Longitude':<12} {launch_site.get('longitude', 'N/A')}")
|
722
|
+
else:
|
723
|
+
print("Unable to display launch site details - unexpected format")
|
724
|
+
|
725
|
+
if save_to_file:
|
726
|
+
save_csv_json(save_to_file, response, csv_data_key='launch_site')
|
727
|
+
|
728
|
+
return response
|
729
|
+
|
730
|
+
def get_predicted_path(mission_id=None, save_to_file=None):
|
731
|
+
"""
|
732
|
+
Fetches the predicted flight path for a given mission.
|
733
|
+
Displays currently flying missions if the provided mission ID is invalid.
|
734
|
+
|
735
|
+
Args:
|
736
|
+
mission_id (str): The ID of the mission to fetch the prediction for.
|
737
|
+
save_to_file (str): Optional path to save the response data.
|
738
|
+
If provided, saves the data in CSV format.
|
739
|
+
|
740
|
+
Returns:
|
741
|
+
dict: The API response containing the predicted flight path data.
|
742
|
+
"""
|
743
|
+
if not mission_id:
|
744
|
+
print("To get the predicted flight path for a given mission you must provide a mission ID.")
|
745
|
+
return
|
746
|
+
|
747
|
+
# Check if provided mission ID belong to a flying mission
|
748
|
+
flying_missions_response = get_flying_missions()
|
749
|
+
flying_missions = flying_missions_response.get("missions", [])
|
750
|
+
|
751
|
+
if mission_id not in [mission.get("id") for mission in flying_missions]:
|
752
|
+
print(f"Provided mission ID '{mission_id}' does not belong to a mission that is currently flying.")
|
753
|
+
|
754
|
+
# Display currently flying missions
|
755
|
+
if flying_missions:
|
756
|
+
print("\nCurrently flying missions:\n")
|
757
|
+
|
758
|
+
# Define headers and data
|
759
|
+
headers = ["Index", "Mission ID", "Mission Name"]
|
760
|
+
rows = [
|
761
|
+
[str(i), mission.get("id", "N/A"), mission.get("name", "Unnamed Mission")]
|
762
|
+
for i, mission in enumerate(flying_missions, start=1)
|
763
|
+
]
|
764
|
+
|
765
|
+
# Kinda overkill | but it's a good practice if we ever change missions naming convention
|
766
|
+
# Calculate column widths
|
767
|
+
col_widths = [max(len(cell) for cell in col) + 2 for col in zip(headers, *rows)]
|
768
|
+
|
769
|
+
# Display table
|
770
|
+
print("".join(f"{headers[i]:<{col_widths[i]}}" for i in range(len(headers))))
|
771
|
+
print("".join("-" * col_width for col_width in col_widths))
|
772
|
+
for row in rows:
|
773
|
+
print("".join(f"{row[i]:<{col_widths[i]}}" for i in range(len(row))))
|
774
|
+
else:
|
775
|
+
print("No missions are currently flying.")
|
776
|
+
return
|
777
|
+
|
778
|
+
url = f"{DATA_API_BASE_URL}/missions/{mission_id}/prediction.json"
|
779
|
+
response = make_api_request(url)
|
780
|
+
|
781
|
+
if save_to_file:
|
782
|
+
save_csv_json(save_to_file, response, csv_data_key='prediction')
|
783
|
+
|
784
|
+
return response
|