westpa 2022.12__cp313-cp313-macosx_10_13_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of westpa might be problematic. Click here for more details.
- westpa/__init__.py +14 -0
- westpa/_version.py +21 -0
- westpa/analysis/__init__.py +5 -0
- westpa/analysis/core.py +746 -0
- westpa/analysis/statistics.py +27 -0
- westpa/analysis/trajectories.py +360 -0
- westpa/cli/__init__.py +0 -0
- westpa/cli/core/__init__.py +0 -0
- westpa/cli/core/w_fork.py +152 -0
- westpa/cli/core/w_init.py +230 -0
- westpa/cli/core/w_run.py +77 -0
- westpa/cli/core/w_states.py +212 -0
- westpa/cli/core/w_succ.py +99 -0
- westpa/cli/core/w_truncate.py +68 -0
- westpa/cli/tools/__init__.py +0 -0
- westpa/cli/tools/ploterr.py +506 -0
- westpa/cli/tools/plothist.py +706 -0
- westpa/cli/tools/w_assign.py +596 -0
- westpa/cli/tools/w_bins.py +166 -0
- westpa/cli/tools/w_crawl.py +119 -0
- westpa/cli/tools/w_direct.py +547 -0
- westpa/cli/tools/w_dumpsegs.py +94 -0
- westpa/cli/tools/w_eddist.py +506 -0
- westpa/cli/tools/w_fluxanl.py +376 -0
- westpa/cli/tools/w_ipa.py +833 -0
- westpa/cli/tools/w_kinavg.py +127 -0
- westpa/cli/tools/w_kinetics.py +96 -0
- westpa/cli/tools/w_multi_west.py +414 -0
- westpa/cli/tools/w_ntop.py +213 -0
- westpa/cli/tools/w_pdist.py +515 -0
- westpa/cli/tools/w_postanalysis_matrix.py +82 -0
- westpa/cli/tools/w_postanalysis_reweight.py +53 -0
- westpa/cli/tools/w_red.py +491 -0
- westpa/cli/tools/w_reweight.py +780 -0
- westpa/cli/tools/w_select.py +226 -0
- westpa/cli/tools/w_stateprobs.py +111 -0
- westpa/cli/tools/w_trace.py +599 -0
- westpa/core/__init__.py +0 -0
- westpa/core/_rc.py +673 -0
- westpa/core/binning/__init__.py +55 -0
- westpa/core/binning/_assign.cpython-313-darwin.so +0 -0
- westpa/core/binning/assign.py +455 -0
- westpa/core/binning/binless.py +96 -0
- westpa/core/binning/binless_driver.py +54 -0
- westpa/core/binning/binless_manager.py +190 -0
- westpa/core/binning/bins.py +47 -0
- westpa/core/binning/mab.py +506 -0
- westpa/core/binning/mab_driver.py +54 -0
- westpa/core/binning/mab_manager.py +198 -0
- westpa/core/data_manager.py +1694 -0
- westpa/core/extloader.py +74 -0
- westpa/core/h5io.py +995 -0
- westpa/core/kinetics/__init__.py +24 -0
- westpa/core/kinetics/_kinetics.cpython-313-darwin.so +0 -0
- westpa/core/kinetics/events.py +147 -0
- westpa/core/kinetics/matrates.py +156 -0
- westpa/core/kinetics/rate_averaging.py +266 -0
- westpa/core/progress.py +218 -0
- westpa/core/propagators/__init__.py +54 -0
- westpa/core/propagators/executable.py +719 -0
- westpa/core/reweight/__init__.py +14 -0
- westpa/core/reweight/_reweight.cpython-313-darwin.so +0 -0
- westpa/core/reweight/matrix.py +126 -0
- westpa/core/segment.py +119 -0
- westpa/core/sim_manager.py +835 -0
- westpa/core/states.py +359 -0
- westpa/core/systems.py +93 -0
- westpa/core/textio.py +74 -0
- westpa/core/trajectory.py +330 -0
- westpa/core/we_driver.py +910 -0
- westpa/core/wm_ops.py +43 -0
- westpa/core/yamlcfg.py +391 -0
- westpa/fasthist/__init__.py +34 -0
- westpa/fasthist/_fasthist.cpython-313-darwin.so +0 -0
- westpa/mclib/__init__.py +271 -0
- westpa/mclib/__main__.py +28 -0
- westpa/mclib/_mclib.cpython-313-darwin.so +0 -0
- westpa/oldtools/__init__.py +4 -0
- westpa/oldtools/aframe/__init__.py +35 -0
- westpa/oldtools/aframe/atool.py +75 -0
- westpa/oldtools/aframe/base_mixin.py +26 -0
- westpa/oldtools/aframe/binning.py +178 -0
- westpa/oldtools/aframe/data_reader.py +560 -0
- westpa/oldtools/aframe/iter_range.py +200 -0
- westpa/oldtools/aframe/kinetics.py +117 -0
- westpa/oldtools/aframe/mcbs.py +153 -0
- westpa/oldtools/aframe/output.py +39 -0
- westpa/oldtools/aframe/plotting.py +90 -0
- westpa/oldtools/aframe/trajwalker.py +126 -0
- westpa/oldtools/aframe/transitions.py +469 -0
- westpa/oldtools/cmds/__init__.py +0 -0
- westpa/oldtools/cmds/w_ttimes.py +361 -0
- westpa/oldtools/files.py +34 -0
- westpa/oldtools/miscfn.py +23 -0
- westpa/oldtools/stats/__init__.py +4 -0
- westpa/oldtools/stats/accumulator.py +35 -0
- westpa/oldtools/stats/edfs.py +129 -0
- westpa/oldtools/stats/mcbs.py +96 -0
- westpa/tools/__init__.py +33 -0
- westpa/tools/binning.py +472 -0
- westpa/tools/core.py +340 -0
- westpa/tools/data_reader.py +159 -0
- westpa/tools/dtypes.py +31 -0
- westpa/tools/iter_range.py +198 -0
- westpa/tools/kinetics_tool.py +340 -0
- westpa/tools/plot.py +283 -0
- westpa/tools/progress.py +17 -0
- westpa/tools/selected_segs.py +154 -0
- westpa/tools/wipi.py +751 -0
- westpa/trajtree/__init__.py +4 -0
- westpa/trajtree/_trajtree.cpython-313-darwin.so +0 -0
- westpa/trajtree/trajtree.py +117 -0
- westpa/westext/__init__.py +0 -0
- westpa/westext/adaptvoronoi/__init__.py +3 -0
- westpa/westext/adaptvoronoi/adaptVor_driver.py +214 -0
- westpa/westext/hamsm_restarting/__init__.py +3 -0
- westpa/westext/hamsm_restarting/example_overrides.py +35 -0
- westpa/westext/hamsm_restarting/restart_driver.py +1165 -0
- westpa/westext/stringmethod/__init__.py +11 -0
- westpa/westext/stringmethod/fourier_fitting.py +69 -0
- westpa/westext/stringmethod/string_driver.py +253 -0
- westpa/westext/stringmethod/string_method.py +306 -0
- westpa/westext/weed/BinCluster.py +180 -0
- westpa/westext/weed/ProbAdjustEquil.py +100 -0
- westpa/westext/weed/UncertMath.py +247 -0
- westpa/westext/weed/__init__.py +10 -0
- westpa/westext/weed/weed_driver.py +192 -0
- westpa/westext/wess/ProbAdjust.py +101 -0
- westpa/westext/wess/__init__.py +6 -0
- westpa/westext/wess/wess_driver.py +217 -0
- westpa/work_managers/__init__.py +57 -0
- westpa/work_managers/core.py +396 -0
- westpa/work_managers/environment.py +134 -0
- westpa/work_managers/mpi.py +318 -0
- westpa/work_managers/processes.py +187 -0
- westpa/work_managers/serial.py +28 -0
- westpa/work_managers/threads.py +79 -0
- westpa/work_managers/zeromq/__init__.py +20 -0
- westpa/work_managers/zeromq/core.py +641 -0
- westpa/work_managers/zeromq/node.py +131 -0
- westpa/work_managers/zeromq/work_manager.py +526 -0
- westpa/work_managers/zeromq/worker.py +320 -0
- westpa-2022.12.dist-info/AUTHORS +22 -0
- westpa-2022.12.dist-info/LICENSE +21 -0
- westpa-2022.12.dist-info/METADATA +193 -0
- westpa-2022.12.dist-info/RECORD +149 -0
- westpa-2022.12.dist-info/WHEEL +6 -0
- westpa-2022.12.dist-info/entry_points.txt +29 -0
- westpa-2022.12.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,515 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
import h5py
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from westpa.tools import (
|
|
7
|
+
WESTParallelTool,
|
|
8
|
+
WESTDataReader,
|
|
9
|
+
WESTDSSynthesizer,
|
|
10
|
+
WESTWDSSynthesizer,
|
|
11
|
+
IterRangeSelection,
|
|
12
|
+
ProgressIndicatorComponent,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
from westpa.fasthist import histnd, normhistnd
|
|
16
|
+
from westpa.core import h5io
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
log = logging.getLogger('w_pdist')
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def isiterable(x):
|
|
23
|
+
try:
|
|
24
|
+
iter(x)
|
|
25
|
+
except TypeError:
|
|
26
|
+
return False
|
|
27
|
+
else:
|
|
28
|
+
return True
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def _remote_min_max(ndim, dset_dtype, n_iter, dsspec):
|
|
32
|
+
try:
|
|
33
|
+
minval = np.finfo(dset_dtype).min
|
|
34
|
+
maxval = np.finfo(dset_dtype).max
|
|
35
|
+
except ValueError:
|
|
36
|
+
minval = np.iinfo(dset_dtype).min
|
|
37
|
+
maxval = np.iinfo(dset_dtype).max
|
|
38
|
+
|
|
39
|
+
data_range = [(maxval, minval) for _i in range(ndim)]
|
|
40
|
+
|
|
41
|
+
dset = dsspec.get_iter_data(n_iter)
|
|
42
|
+
for idim in range(ndim):
|
|
43
|
+
dimdata = dset[:, :, idim]
|
|
44
|
+
current_min, current_max = data_range[idim]
|
|
45
|
+
current_min = min(current_min, dimdata.min())
|
|
46
|
+
current_max = max(current_max, dimdata.max())
|
|
47
|
+
data_range[idim] = (current_min, current_max)
|
|
48
|
+
del dimdata
|
|
49
|
+
del dset
|
|
50
|
+
return data_range
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _remote_bin_iter(iiter, n_iter, dsspec, wt_dsspec, initpoint, binbounds, ignore_out_of_range):
|
|
54
|
+
iter_hist_shape = tuple(len(bounds) - 1 for bounds in binbounds)
|
|
55
|
+
iter_hist = np.zeros(iter_hist_shape, dtype=np.float64)
|
|
56
|
+
|
|
57
|
+
dset = dsspec.get_iter_data(n_iter)
|
|
58
|
+
npts = dset.shape[1]
|
|
59
|
+
weights = wt_dsspec.get_iter_data(n_iter)
|
|
60
|
+
|
|
61
|
+
dset = dset[:, initpoint:, :]
|
|
62
|
+
for ipt in range(npts - initpoint):
|
|
63
|
+
histnd(dset[:, ipt, :], binbounds, weights, out=iter_hist, binbound_check=False, ignore_out_of_range=ignore_out_of_range)
|
|
64
|
+
|
|
65
|
+
del weights, dset
|
|
66
|
+
|
|
67
|
+
# normalize histogram
|
|
68
|
+
normhistnd(iter_hist, binbounds)
|
|
69
|
+
return iiter, n_iter, iter_hist
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class WPDist(WESTParallelTool):
|
|
73
|
+
prog = 'w_pdist'
|
|
74
|
+
description = '''\
|
|
75
|
+
Calculate time-resolved, multi-dimensional probability distributions of WE
|
|
76
|
+
datasets.
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
-----------------------------------------------------------------------------
|
|
80
|
+
Source data
|
|
81
|
+
-----------------------------------------------------------------------------
|
|
82
|
+
|
|
83
|
+
Source data is provided either by a user-specified function
|
|
84
|
+
(--construct-dataset) or a list of "data set specifications" (--dsspecs).
|
|
85
|
+
If neither is provided, the progress coordinate dataset ''pcoord'' is used.
|
|
86
|
+
|
|
87
|
+
To use a custom function to extract or calculate data whose probability
|
|
88
|
+
distribution will be calculated, specify the function in standard Python
|
|
89
|
+
MODULE.FUNCTION syntax as the argument to --construct-dataset. This function
|
|
90
|
+
will be called as function(n_iter,iter_group), where n_iter is the iteration
|
|
91
|
+
whose data are being considered and iter_group is the corresponding group
|
|
92
|
+
in the main WEST HDF5 file (west.h5). The function must return data which can
|
|
93
|
+
be indexed as [segment][timepoint][dimension].
|
|
94
|
+
|
|
95
|
+
To use a list of data set specifications, specify --dsspecs and then list the
|
|
96
|
+
desired datasets one-by-one (space-separated in most shells). These data set
|
|
97
|
+
specifications are formatted as NAME[,file=FILENAME,slice=SLICE], which will
|
|
98
|
+
use the dataset called NAME in the HDF5 file FILENAME (defaulting to the main
|
|
99
|
+
WEST HDF5 file west.h5), and slice it with the Python slice expression SLICE
|
|
100
|
+
(as in [0:2] to select the first two elements of the first axis of the
|
|
101
|
+
dataset). The ``slice`` option is most useful for selecting one column (or
|
|
102
|
+
more) from a multi-column dataset, such as arises when using a progress
|
|
103
|
+
coordinate of multiple dimensions.
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
-----------------------------------------------------------------------------
|
|
107
|
+
Histogram binning
|
|
108
|
+
-----------------------------------------------------------------------------
|
|
109
|
+
|
|
110
|
+
By default, histograms are constructed with 100 bins in each dimension. This
|
|
111
|
+
can be overridden by specifying -b/--bins, which accepts a number of different
|
|
112
|
+
kinds of arguments:
|
|
113
|
+
|
|
114
|
+
a single integer N
|
|
115
|
+
N uniformly spaced bins will be used in each dimension.
|
|
116
|
+
|
|
117
|
+
a sequence of integers N1,N2,... (comma-separated)
|
|
118
|
+
N1 uniformly spaced bins will be used for the first dimension, N2 for the
|
|
119
|
+
second, and so on.
|
|
120
|
+
|
|
121
|
+
a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]
|
|
122
|
+
The bin boundaries B11, B12, B13, ... will be used for the first dimension,
|
|
123
|
+
B21, B22, B23, ... for the second dimension, and so on. These bin
|
|
124
|
+
boundaries need not be uniformly spaced. These expressions will be
|
|
125
|
+
evaluated with Python's ``eval`` construct, with ``np`` available for
|
|
126
|
+
use [e.g. to specify bins using np.arange()].
|
|
127
|
+
|
|
128
|
+
The first two forms (integer, list of integers) will trigger a scan of all
|
|
129
|
+
data in each dimension in order to determine the minimum and maximum values,
|
|
130
|
+
which may be very expensive for large datasets. This can be avoided by
|
|
131
|
+
explicitly providing bin boundaries using the list-of-lists form.
|
|
132
|
+
|
|
133
|
+
Note that these bins are *NOT* at all related to the bins used to drive WE
|
|
134
|
+
sampling.
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
-----------------------------------------------------------------------------
|
|
138
|
+
Output format
|
|
139
|
+
-----------------------------------------------------------------------------
|
|
140
|
+
|
|
141
|
+
The output file produced (specified by -o/--output, defaulting to "pdist.h5")
|
|
142
|
+
may be fed to plothist to generate plots (or appropriately processed text or
|
|
143
|
+
HDF5 files) from this data. In short, the following datasets are created:
|
|
144
|
+
|
|
145
|
+
``histograms``
|
|
146
|
+
Normalized histograms. The first axis corresponds to iteration, and
|
|
147
|
+
remaining axes correspond to dimensions of the input dataset.
|
|
148
|
+
|
|
149
|
+
``/binbounds_0``
|
|
150
|
+
Vector of bin boundaries for the first (index 0) dimension. Additional
|
|
151
|
+
datasets similarly named (/binbounds_1, /binbounds_2, ...) are created
|
|
152
|
+
for additional dimensions.
|
|
153
|
+
|
|
154
|
+
``/midpoints_0``
|
|
155
|
+
Vector of bin midpoints for the first (index 0) dimension. Additional
|
|
156
|
+
datasets similarly named are created for additional dimensions.
|
|
157
|
+
|
|
158
|
+
``n_iter``
|
|
159
|
+
Vector of iteration numbers corresponding to the stored histograms (i.e.
|
|
160
|
+
the first axis of the ``histograms`` dataset).
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
-----------------------------------------------------------------------------
|
|
164
|
+
Subsequent processing
|
|
165
|
+
-----------------------------------------------------------------------------
|
|
166
|
+
|
|
167
|
+
The output generated by this program (-o/--output, default "pdist.h5") may be
|
|
168
|
+
plotted by the ``plothist`` program. See ``plothist --help`` for more
|
|
169
|
+
information.
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
-----------------------------------------------------------------------------
|
|
173
|
+
Parallelization
|
|
174
|
+
-----------------------------------------------------------------------------
|
|
175
|
+
|
|
176
|
+
This tool supports parallelized binning, including reading of input data.
|
|
177
|
+
Parallel processing is the default. For simple cases (reading pre-computed
|
|
178
|
+
input data, modest numbers of segments), serial processing (--serial) may be
|
|
179
|
+
more efficient.
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
-----------------------------------------------------------------------------
|
|
183
|
+
Command-line options
|
|
184
|
+
-----------------------------------------------------------------------------
|
|
185
|
+
|
|
186
|
+
'''
|
|
187
|
+
|
|
188
|
+
def __init__(self):
|
|
189
|
+
super().__init__()
|
|
190
|
+
|
|
191
|
+
# Parallel processing by default (this is not actually necessary, but it is
|
|
192
|
+
# informative!)
|
|
193
|
+
self.wm_env.default_work_manager = self.wm_env.default_parallel_work_manager
|
|
194
|
+
|
|
195
|
+
# These are used throughout
|
|
196
|
+
self.progress = ProgressIndicatorComponent()
|
|
197
|
+
self.data_reader = WESTDataReader()
|
|
198
|
+
self.input_dssynth = WESTDSSynthesizer(default_dsname='pcoord')
|
|
199
|
+
self.input_wdssynth = WESTWDSSynthesizer(default_dsname='seg_index')
|
|
200
|
+
self.iter_range = IterRangeSelection(self.data_reader)
|
|
201
|
+
self.iter_range.include_args['iter_step'] = False
|
|
202
|
+
self.binspec = None
|
|
203
|
+
self.output_filename = None
|
|
204
|
+
self.output_file = None
|
|
205
|
+
|
|
206
|
+
self.dsspec = None
|
|
207
|
+
self.wt_dsspec = None # dsspec for weights
|
|
208
|
+
|
|
209
|
+
# These are used during histogram generation only
|
|
210
|
+
self.iter_start = None
|
|
211
|
+
self.iter_stop = None
|
|
212
|
+
self.ndim = None
|
|
213
|
+
self.ntimepoints = None
|
|
214
|
+
self.dset_dtype = None
|
|
215
|
+
self.binbounds = None # bin boundaries for each dimension
|
|
216
|
+
self.midpoints = None # bin midpoints for each dimension
|
|
217
|
+
self.data_range = None # data range for each dimension, as the pairs (min,max)
|
|
218
|
+
self.ignore_out_of_range = False
|
|
219
|
+
self.compress_output = False
|
|
220
|
+
|
|
221
|
+
def add_args(self, parser):
|
|
222
|
+
self.data_reader.add_args(parser)
|
|
223
|
+
|
|
224
|
+
self.iter_range.add_args(parser)
|
|
225
|
+
|
|
226
|
+
parser.add_argument(
|
|
227
|
+
'-b',
|
|
228
|
+
'--bins',
|
|
229
|
+
dest='bins',
|
|
230
|
+
metavar='BINEXPR',
|
|
231
|
+
default='100',
|
|
232
|
+
help='''Use BINEXPR for bins. This may be an integer, which will be used for each
|
|
233
|
+
dimension of the progress coordinate; a list of integers (formatted as [n1,n2,...])
|
|
234
|
+
which will use n1 bins for the first dimension, n2 for the second dimension, and so on;
|
|
235
|
+
or a list of lists of boundaries (formatted as [[a1, a2, ...], [b1, b2, ...], ... ]), which
|
|
236
|
+
will use [a1, a2, ...] as bin boundaries for the first dimension, [b1, b2, ...] as bin boundaries
|
|
237
|
+
for the second dimension, and so on. (Default: 100 bins in each dimension.)''',
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
parser.add_argument(
|
|
241
|
+
'-o', '--output', dest='output', default='pdist.h5', help='''Store results in OUTPUT (default: %(default)s).'''
|
|
242
|
+
)
|
|
243
|
+
parser.add_argument(
|
|
244
|
+
'-C',
|
|
245
|
+
'--compress',
|
|
246
|
+
action='store_true',
|
|
247
|
+
help='''Compress histograms. May make storage of higher-dimensional histograms
|
|
248
|
+
more tractable, at the (possible extreme) expense of increased analysis time.
|
|
249
|
+
(Default: no compression.)''',
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
parser.add_argument(
|
|
253
|
+
'--loose',
|
|
254
|
+
dest='ignore_out_of_range',
|
|
255
|
+
action='store_true',
|
|
256
|
+
help='''Ignore values that do not fall within bins. (Risky, as this can make buggy bin
|
|
257
|
+
boundaries appear as reasonable data. Only use if you are
|
|
258
|
+
sure of your bin boundary specification.)''',
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
igroup = parser.add_argument_group('input dataset options').add_mutually_exclusive_group(required=False)
|
|
262
|
+
|
|
263
|
+
igroup.add_argument(
|
|
264
|
+
'--construct-dataset',
|
|
265
|
+
help='''Use the given function (as in module.function) to extract source data.
|
|
266
|
+
This function will be called once per iteration as function(n_iter, iter_group)
|
|
267
|
+
to construct data for one iteration. Data returned must be indexable as
|
|
268
|
+
[seg_id][timepoint][dimension]''',
|
|
269
|
+
)
|
|
270
|
+
|
|
271
|
+
igroup.add_argument(
|
|
272
|
+
'--dsspecs', nargs='+', metavar='DSSPEC', help='''Construct probability distribution from one or more DSSPECs.'''
|
|
273
|
+
)
|
|
274
|
+
|
|
275
|
+
wgroup = parser.add_argument_group('input weight dataset options').add_mutually_exclusive_group(required=False)
|
|
276
|
+
wgroup.add_argument(
|
|
277
|
+
'--construct-wdataset',
|
|
278
|
+
help='''Use the given function (as in module.function) to extract weight data.
|
|
279
|
+
This function will be called once per iteration as function(n_iter, iter_group)
|
|
280
|
+
to construct data for one iteration. Data returned must be indexable as
|
|
281
|
+
[seg_id]''',
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
self.progress.add_args(parser)
|
|
285
|
+
|
|
286
|
+
def process_args(self, args):
|
|
287
|
+
self.progress.process_args(args)
|
|
288
|
+
self.data_reader.process_args(args)
|
|
289
|
+
self.input_dssynth.h5filename = self.data_reader.we_h5filename
|
|
290
|
+
self.input_dssynth.process_args(args)
|
|
291
|
+
self.dsspec = self.input_dssynth.dsspec
|
|
292
|
+
|
|
293
|
+
# Carrying an open HDF5 file across a fork() seems to corrupt the entire HDF5 library
|
|
294
|
+
# Open the WEST HDF5 file just long enough to process our iteration range, then close
|
|
295
|
+
# and reopen in go() [which executes after the fork]
|
|
296
|
+
with self.data_reader:
|
|
297
|
+
self.iter_range.process_args(args)
|
|
298
|
+
|
|
299
|
+
# Reading potential custom weights
|
|
300
|
+
self.input_wdssynth.h5filename = self.data_reader.we_h5filename
|
|
301
|
+
self.input_wdssynth.process_args(args)
|
|
302
|
+
self.wt_dsspec = self.input_wdssynth.dsspec
|
|
303
|
+
|
|
304
|
+
self.binspec = args.bins
|
|
305
|
+
self.output_filename = args.output
|
|
306
|
+
self.ignore_out_of_range = bool(args.ignore_out_of_range)
|
|
307
|
+
self.compress_output = args.compress or False
|
|
308
|
+
|
|
309
|
+
def go(self):
|
|
310
|
+
self.data_reader.open('r')
|
|
311
|
+
pi = self.progress.indicator
|
|
312
|
+
pi.operation = 'Initializing'
|
|
313
|
+
with pi:
|
|
314
|
+
self.output_file = h5py.File(self.output_filename, 'w')
|
|
315
|
+
h5io.stamp_creator_data(self.output_file)
|
|
316
|
+
|
|
317
|
+
self.iter_start = self.iter_range.iter_start
|
|
318
|
+
self.iter_stop = self.iter_range.iter_stop
|
|
319
|
+
|
|
320
|
+
# Construct bin boundaries
|
|
321
|
+
self.construct_bins(self.parse_binspec(self.binspec))
|
|
322
|
+
for idim, (binbounds, midpoints) in enumerate(zip(self.binbounds, self.midpoints)):
|
|
323
|
+
self.output_file['binbounds_{}'.format(idim)] = binbounds
|
|
324
|
+
self.output_file['midpoints_{}'.format(idim)] = midpoints
|
|
325
|
+
|
|
326
|
+
# construct histogram
|
|
327
|
+
self.construct_histogram()
|
|
328
|
+
|
|
329
|
+
# Record iteration range
|
|
330
|
+
iter_range = self.iter_range.iter_range()
|
|
331
|
+
self.output_file['n_iter'] = iter_range
|
|
332
|
+
self.iter_range.record_data_iter_range(self.output_file['histograms'])
|
|
333
|
+
|
|
334
|
+
self.output_file.close()
|
|
335
|
+
|
|
336
|
+
@staticmethod
|
|
337
|
+
def parse_binspec(binspec):
|
|
338
|
+
namespace = {'numpy': np, 'np': np, 'inf': float('inf')}
|
|
339
|
+
|
|
340
|
+
try:
|
|
341
|
+
binspec_compiled = eval(binspec, namespace)
|
|
342
|
+
except Exception as e:
|
|
343
|
+
raise ValueError('invalid bin specification: {!r}'.format(e))
|
|
344
|
+
else:
|
|
345
|
+
if log.isEnabledFor(logging.DEBUG):
|
|
346
|
+
log.debug('bin specs: {!r}'.format(binspec_compiled))
|
|
347
|
+
return binspec_compiled
|
|
348
|
+
|
|
349
|
+
def construct_bins(self, bins):
|
|
350
|
+
'''
|
|
351
|
+
Construct bins according to ``bins``, which may be:
|
|
352
|
+
|
|
353
|
+
1) A scalar integer (for that number of bins in each dimension)
|
|
354
|
+
2) A sequence of integers (specifying number of bins for each dimension)
|
|
355
|
+
3) A sequence of sequences of bin boundaries (specifying boundaries for each dimension)
|
|
356
|
+
|
|
357
|
+
Sets ``self.binbounds`` to a list of arrays of bin boundaries appropriate for passing to
|
|
358
|
+
fasthist.histnd, along with ``self.midpoints`` to the midpoints of the bins.
|
|
359
|
+
'''
|
|
360
|
+
|
|
361
|
+
if not isiterable(bins):
|
|
362
|
+
self._construct_bins_from_scalar(bins)
|
|
363
|
+
elif not isiterable(bins[0]):
|
|
364
|
+
self._construct_bins_from_int_seq(bins)
|
|
365
|
+
else:
|
|
366
|
+
self._construct_bins_from_bound_seqs(bins)
|
|
367
|
+
|
|
368
|
+
if log.isEnabledFor(logging.DEBUG):
|
|
369
|
+
log.debug('binbounds: {!r}'.format(self.binbounds))
|
|
370
|
+
|
|
371
|
+
def scan_data_shape(self):
|
|
372
|
+
if self.ndim is None:
|
|
373
|
+
dset = self.dsspec.get_iter_data(self.iter_start)
|
|
374
|
+
self.ntimepoints = dset.shape[1]
|
|
375
|
+
self.ndim = dset.shape[2]
|
|
376
|
+
self.dset_dtype = dset.dtype
|
|
377
|
+
|
|
378
|
+
def scan_data_range(self):
|
|
379
|
+
'''Scan input data for range in each dimension. The number of dimensions is determined
|
|
380
|
+
from the shape of the progress coordinate as of self.iter_start.'''
|
|
381
|
+
|
|
382
|
+
self.progress.indicator.new_operation('Scanning for data range', self.iter_stop - self.iter_start)
|
|
383
|
+
self.scan_data_shape()
|
|
384
|
+
|
|
385
|
+
dset_dtype = self.dset_dtype
|
|
386
|
+
ndim = self.ndim
|
|
387
|
+
dsspec = self.dsspec
|
|
388
|
+
|
|
389
|
+
try:
|
|
390
|
+
minval = np.finfo(dset_dtype).min
|
|
391
|
+
maxval = np.finfo(dset_dtype).max
|
|
392
|
+
except ValueError:
|
|
393
|
+
minval = np.iinfo(dset_dtype).min
|
|
394
|
+
maxval = np.iinfo(dset_dtype).max
|
|
395
|
+
|
|
396
|
+
data_range = self.data_range = [(maxval, minval) for _i in range(self.ndim)]
|
|
397
|
+
|
|
398
|
+
# futures = []
|
|
399
|
+
# for n_iter in xrange(self.iter_start, self.iter_stop):
|
|
400
|
+
# _remote_min_max(ndim, dset_dtype, n_iter, dsspec)
|
|
401
|
+
# futures.append(self.work_manager.submit(_remote_min_max, args=(ndim, dset_dtype, n_iter, dsspec)))
|
|
402
|
+
|
|
403
|
+
# for future in self.work_manager.as_completed(futures):
|
|
404
|
+
for future in self.work_manager.submit_as_completed(
|
|
405
|
+
((_remote_min_max, (ndim, dset_dtype, n_iter, dsspec), {}) for n_iter in range(self.iter_start, self.iter_stop)),
|
|
406
|
+
self.max_queue_len,
|
|
407
|
+
):
|
|
408
|
+
bounds = future.get_result(discard=True)
|
|
409
|
+
for idim in range(ndim):
|
|
410
|
+
current_min, current_max = data_range[idim]
|
|
411
|
+
current_min = min(current_min, bounds[idim][0])
|
|
412
|
+
current_max = max(current_max, bounds[idim][1])
|
|
413
|
+
data_range[idim] = (current_min, current_max)
|
|
414
|
+
self.progress.indicator.progress += 1
|
|
415
|
+
|
|
416
|
+
def _construct_bins_from_scalar(self, bins):
|
|
417
|
+
if self.data_range is None:
|
|
418
|
+
self.scan_data_range()
|
|
419
|
+
|
|
420
|
+
self.binbounds = []
|
|
421
|
+
self.midpoints = []
|
|
422
|
+
for idim in range(self.ndim):
|
|
423
|
+
lb, ub = self.data_range[idim]
|
|
424
|
+
# Advance just beyond the upper bound of the range, so that we catch
|
|
425
|
+
# the maximum in the histogram
|
|
426
|
+
if ub > 0:
|
|
427
|
+
ub *= 1.01
|
|
428
|
+
else:
|
|
429
|
+
ub /= 1.01
|
|
430
|
+
|
|
431
|
+
boundset = np.linspace(lb, ub, bins + 1)
|
|
432
|
+
midpoints = (boundset[:-1] + boundset[1:]) / 2.0
|
|
433
|
+
self.binbounds.append(boundset)
|
|
434
|
+
self.midpoints.append(midpoints)
|
|
435
|
+
|
|
436
|
+
def _construct_bins_from_int_seq(self, bins):
|
|
437
|
+
if self.data_range is None:
|
|
438
|
+
self.scan_data_range()
|
|
439
|
+
|
|
440
|
+
self.binbounds = []
|
|
441
|
+
self.midpoints = []
|
|
442
|
+
for idim in range(self.ndim):
|
|
443
|
+
lb, ub = self.data_range[idim]
|
|
444
|
+
# Advance just beyond the upper bound of the range, so that we catch
|
|
445
|
+
# the maximum in the histogram
|
|
446
|
+
if ub > 0:
|
|
447
|
+
ub *= 1.01
|
|
448
|
+
else:
|
|
449
|
+
ub /= 1.01
|
|
450
|
+
|
|
451
|
+
boundset = np.linspace(lb, ub, bins[idim] + 1)
|
|
452
|
+
midpoints = (boundset[:-1] + boundset[1:]) / 2.0
|
|
453
|
+
self.binbounds.append(boundset)
|
|
454
|
+
self.midpoints.append(midpoints)
|
|
455
|
+
|
|
456
|
+
def _construct_bins_from_bound_seqs(self, bins):
|
|
457
|
+
self.binbounds = []
|
|
458
|
+
self.midpoints = []
|
|
459
|
+
for boundset in bins:
|
|
460
|
+
boundset = np.asarray(boundset)
|
|
461
|
+
if (np.diff(boundset) <= 0).any():
|
|
462
|
+
raise ValueError('boundary set {!r} is not strictly monotonically increasing'.format(boundset))
|
|
463
|
+
self.binbounds.append(boundset)
|
|
464
|
+
self.midpoints.append((boundset[:-1] + boundset[1:]) / 2.0)
|
|
465
|
+
|
|
466
|
+
def construct_histogram(self):
|
|
467
|
+
'''Construct a histogram using bins previously constructed with ``construct_bins()``.
|
|
468
|
+
The time series of histogram values is stored in ``histograms``.
|
|
469
|
+
Each histogram in the time series is normalized.'''
|
|
470
|
+
|
|
471
|
+
self.scan_data_shape()
|
|
472
|
+
|
|
473
|
+
iter_count = self.iter_stop - self.iter_start
|
|
474
|
+
histograms_ds = self.output_file.create_dataset(
|
|
475
|
+
'histograms',
|
|
476
|
+
dtype=np.float64,
|
|
477
|
+
shape=((iter_count,) + tuple(len(bounds) - 1 for bounds in self.binbounds)),
|
|
478
|
+
compression=9 if self.compress_output else None,
|
|
479
|
+
)
|
|
480
|
+
binbounds = [np.require(boundset, self.dset_dtype, 'C') for boundset in self.binbounds]
|
|
481
|
+
|
|
482
|
+
self.progress.indicator.new_operation('Constructing histograms', self.iter_stop - self.iter_start)
|
|
483
|
+
task_gen = (
|
|
484
|
+
(
|
|
485
|
+
_remote_bin_iter,
|
|
486
|
+
(iiter, n_iter, self.dsspec, self.wt_dsspec, 1 if iiter > 0 else 0, binbounds, self.ignore_out_of_range),
|
|
487
|
+
{},
|
|
488
|
+
)
|
|
489
|
+
for (iiter, n_iter) in enumerate(range(self.iter_start, self.iter_stop))
|
|
490
|
+
)
|
|
491
|
+
# futures = set()
|
|
492
|
+
# for iiter, n_iter in enumerate(xrange(self.iter_start, self.iter_stop)):
|
|
493
|
+
# initpoint = 1 if iiter > 0 else 0
|
|
494
|
+
# futures.add(self.work_manager.submit(_remote_bin_iter,
|
|
495
|
+
# args=(iiter, n_iter, self.dsspec, self.wt_dsspec, initpoint, binbounds)))
|
|
496
|
+
|
|
497
|
+
# for future in self.work_manager.as_completed(futures):
|
|
498
|
+
# future = self.work_manager.wait_any(futures)
|
|
499
|
+
# for future in self.work_manager.submit_as_completed(task_gen, self.queue_size):
|
|
500
|
+
log.debug('max queue length: {!r}'.format(self.max_queue_len))
|
|
501
|
+
for future in self.work_manager.submit_as_completed(task_gen, self.max_queue_len):
|
|
502
|
+
iiter, n_iter, iter_hist = future.get_result(discard=True)
|
|
503
|
+
self.progress.indicator.progress += 1
|
|
504
|
+
|
|
505
|
+
# store histogram
|
|
506
|
+
histograms_ds[iiter] = iter_hist
|
|
507
|
+
del iter_hist, future
|
|
508
|
+
|
|
509
|
+
|
|
510
|
+
def entry_point():
|
|
511
|
+
WPDist().main()
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
if __name__ == '__main__':
|
|
515
|
+
entry_point()
|
|
@@ -0,0 +1,82 @@
|
|
|
1
|
+
from westpa.tools import WESTMasterCommand, WESTParallelTool
|
|
2
|
+
from warnings import warn
|
|
3
|
+
|
|
4
|
+
from westpa.cli.tools.w_reweight import RWMatrix
|
|
5
|
+
|
|
6
|
+
# Just a shim to make sure everything works and is backwards compatible.
|
|
7
|
+
# We're making sure it has the appropriate functions so that it can be called
|
|
8
|
+
# as a regular tool, and not a subcommand.
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class PAMatrix(RWMatrix):
|
|
12
|
+
subcommand = 'init'
|
|
13
|
+
help_text = 'averages and CIs for path-tracing kinetics analysis'
|
|
14
|
+
default_output_file = 'flux_matrices.h5'
|
|
15
|
+
# This isn't strictly necessary, but for the moment, here it is.
|
|
16
|
+
# We really need to modify the underlying class so that we don't pull this sort of stuff if it isn't necessary.
|
|
17
|
+
# That'll take some case handling, which is fine.
|
|
18
|
+
# default_kinetics_file = 'assign.h5'
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class WReweight(WESTMasterCommand, WESTParallelTool):
|
|
22
|
+
prog = 'w_postanalysis_matrix'
|
|
23
|
+
subcommands = [PAMatrix]
|
|
24
|
+
subparsers_title = 'calculate state-to-state kinetics by tracing trajectories'
|
|
25
|
+
description = '''\
|
|
26
|
+
Generate a colored transition matrix from a WE assignment file. The subsequent
|
|
27
|
+
analysis requires that the assignments are calculated using only the initial and
|
|
28
|
+
final time points of each trajectory segment. This may require downsampling the
|
|
29
|
+
h5file generated by a WE simulation. In the future w_assign may be enhanced to optionally
|
|
30
|
+
generate the necessary assignment file from a h5file with intermediate time points.
|
|
31
|
+
Additionally, this analysis is currently only valid on simulations performed under
|
|
32
|
+
either equilibrium or steady-state conditions without recycling target states.
|
|
33
|
+
|
|
34
|
+
-----------------------------------------------------------------------------
|
|
35
|
+
Output format
|
|
36
|
+
-----------------------------------------------------------------------------
|
|
37
|
+
|
|
38
|
+
The output file (-o/--output, by default "reweight.h5") contains the
|
|
39
|
+
following datasets:
|
|
40
|
+
|
|
41
|
+
``/bin_populations`` [window, bin]
|
|
42
|
+
The reweighted populations of each bin based on windows. Bins contain
|
|
43
|
+
one color each, so to recover the original un-colored spatial bins,
|
|
44
|
+
one must sum over all states.
|
|
45
|
+
|
|
46
|
+
``/iterations`` [iteration]
|
|
47
|
+
*(Structured -- see below)* Sparse matrix data from each
|
|
48
|
+
iteration. They are reconstructed and averaged within the
|
|
49
|
+
w_reweight {kinetics/probs} routines so that observables may
|
|
50
|
+
be calculated. Each group contains 4 vectors of data:
|
|
51
|
+
|
|
52
|
+
flux
|
|
53
|
+
*(Floating-point)* The weight of a series of flux events
|
|
54
|
+
cols
|
|
55
|
+
*(Integer)* The bin from which a flux event began.
|
|
56
|
+
cols
|
|
57
|
+
*(Integer)* The bin into which the walker fluxed.
|
|
58
|
+
obs
|
|
59
|
+
*(Integer)* How many flux events were observed during this
|
|
60
|
+
iteration.
|
|
61
|
+
|
|
62
|
+
-----------------------------------------------------------------------------
|
|
63
|
+
Command-line options
|
|
64
|
+
-----------------------------------------------------------------------------
|
|
65
|
+
'''
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def entry_point():
|
|
69
|
+
warn('{} is being deprecated. Please use w_reweight instead.'.format(WReweight.prog))
|
|
70
|
+
# If we're not really supporting subcommands...
|
|
71
|
+
import sys
|
|
72
|
+
|
|
73
|
+
try:
|
|
74
|
+
if sys.argv[1] != 'init':
|
|
75
|
+
sys.argv.insert(1, 'init')
|
|
76
|
+
except Exception:
|
|
77
|
+
sys.argv.insert(1, 'init')
|
|
78
|
+
WReweight().main()
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
if __name__ == '__main__':
|
|
82
|
+
entry_point()
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
from westpa.tools import WESTMasterCommand, WESTParallelTool
|
|
2
|
+
from warnings import warn
|
|
3
|
+
|
|
4
|
+
from westpa.cli.tools.w_reweight import RWAverage
|
|
5
|
+
|
|
6
|
+
# Just a shim to make sure everything works and is backwards compatible.
|
|
7
|
+
# We're making sure it has the appropriate functions so that it can be called
|
|
8
|
+
# as a regular tool, and not a subcommand.
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class PAAverage(RWAverage):
|
|
12
|
+
subcommand = 'average'
|
|
13
|
+
help_text = ''
|
|
14
|
+
default_output_file = 'kinrw.h5'
|
|
15
|
+
# This isn't strictly necessary, but for the moment, here it is.
|
|
16
|
+
# We really need to modify the underlying class so that we don't pull this sort of stuff if it isn't necessary.
|
|
17
|
+
# That'll take some case handling, which is fine.
|
|
18
|
+
default_kinetics_file = 'flux_matrices.h5'
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class WReweight(WESTMasterCommand, WESTParallelTool):
|
|
22
|
+
prog = 'w_postanalysis_reweight'
|
|
23
|
+
subcommands = [PAAverage]
|
|
24
|
+
subparsers_title = 'calculate state-to-state kinetics by tracing trajectories'
|
|
25
|
+
description = '''\
|
|
26
|
+
A convenience function to run kinetics/probs. Bin assignments,
|
|
27
|
+
including macrostate definitions, are required. (See
|
|
28
|
+
"w_assign --help" for more information).
|
|
29
|
+
|
|
30
|
+
For more information on the individual subcommands this subs in for, run
|
|
31
|
+
w_reweight {kinetics/probs} --help.
|
|
32
|
+
|
|
33
|
+
-----------------------------------------------------------------------------
|
|
34
|
+
Command-line options
|
|
35
|
+
-----------------------------------------------------------------------------
|
|
36
|
+
'''
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def entry_point():
|
|
40
|
+
warn('{} is being deprecated. Please use w_reweight instead.'.format(WReweight.prog))
|
|
41
|
+
# If we're not really supporting subcommands...
|
|
42
|
+
import sys
|
|
43
|
+
|
|
44
|
+
try:
|
|
45
|
+
if sys.argv[1] != 'average':
|
|
46
|
+
sys.argv.insert(1, 'average')
|
|
47
|
+
except Exception:
|
|
48
|
+
sys.argv.insert(1, 'average')
|
|
49
|
+
WReweight().main()
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
if __name__ == '__main__':
|
|
53
|
+
entry_point()
|