westpa 2022.10__cp312-cp312-macosx_10_9_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of westpa might be problematic. Click here for more details.
- westpa/__init__.py +14 -0
- westpa/_version.py +21 -0
- westpa/analysis/__init__.py +5 -0
- westpa/analysis/core.py +746 -0
- westpa/analysis/statistics.py +27 -0
- westpa/analysis/trajectories.py +360 -0
- westpa/cli/__init__.py +0 -0
- westpa/cli/core/__init__.py +0 -0
- westpa/cli/core/w_fork.py +152 -0
- westpa/cli/core/w_init.py +230 -0
- westpa/cli/core/w_run.py +77 -0
- westpa/cli/core/w_states.py +212 -0
- westpa/cli/core/w_succ.py +99 -0
- westpa/cli/core/w_truncate.py +59 -0
- westpa/cli/tools/__init__.py +0 -0
- westpa/cli/tools/ploterr.py +506 -0
- westpa/cli/tools/plothist.py +706 -0
- westpa/cli/tools/w_assign.py +596 -0
- westpa/cli/tools/w_bins.py +166 -0
- westpa/cli/tools/w_crawl.py +119 -0
- westpa/cli/tools/w_direct.py +547 -0
- westpa/cli/tools/w_dumpsegs.py +94 -0
- westpa/cli/tools/w_eddist.py +506 -0
- westpa/cli/tools/w_fluxanl.py +378 -0
- westpa/cli/tools/w_ipa.py +833 -0
- westpa/cli/tools/w_kinavg.py +127 -0
- westpa/cli/tools/w_kinetics.py +96 -0
- westpa/cli/tools/w_multi_west.py +414 -0
- westpa/cli/tools/w_ntop.py +213 -0
- westpa/cli/tools/w_pdist.py +515 -0
- westpa/cli/tools/w_postanalysis_matrix.py +82 -0
- westpa/cli/tools/w_postanalysis_reweight.py +53 -0
- westpa/cli/tools/w_red.py +486 -0
- westpa/cli/tools/w_reweight.py +780 -0
- westpa/cli/tools/w_select.py +226 -0
- westpa/cli/tools/w_stateprobs.py +111 -0
- westpa/cli/tools/w_trace.py +599 -0
- westpa/core/__init__.py +0 -0
- westpa/core/_rc.py +673 -0
- westpa/core/binning/__init__.py +55 -0
- westpa/core/binning/_assign.cpython-312-darwin.so +0 -0
- westpa/core/binning/assign.py +449 -0
- westpa/core/binning/binless.py +96 -0
- westpa/core/binning/binless_driver.py +54 -0
- westpa/core/binning/binless_manager.py +190 -0
- westpa/core/binning/bins.py +47 -0
- westpa/core/binning/mab.py +427 -0
- westpa/core/binning/mab_driver.py +54 -0
- westpa/core/binning/mab_manager.py +198 -0
- westpa/core/data_manager.py +1694 -0
- westpa/core/extloader.py +74 -0
- westpa/core/h5io.py +995 -0
- westpa/core/kinetics/__init__.py +24 -0
- westpa/core/kinetics/_kinetics.cpython-312-darwin.so +0 -0
- westpa/core/kinetics/events.py +147 -0
- westpa/core/kinetics/matrates.py +156 -0
- westpa/core/kinetics/rate_averaging.py +266 -0
- westpa/core/progress.py +218 -0
- westpa/core/propagators/__init__.py +54 -0
- westpa/core/propagators/executable.py +715 -0
- westpa/core/reweight/__init__.py +14 -0
- westpa/core/reweight/_reweight.cpython-312-darwin.so +0 -0
- westpa/core/reweight/matrix.py +126 -0
- westpa/core/segment.py +119 -0
- westpa/core/sim_manager.py +830 -0
- westpa/core/states.py +359 -0
- westpa/core/systems.py +93 -0
- westpa/core/textio.py +74 -0
- westpa/core/trajectory.py +330 -0
- westpa/core/we_driver.py +908 -0
- westpa/core/wm_ops.py +43 -0
- westpa/core/yamlcfg.py +391 -0
- westpa/fasthist/__init__.py +34 -0
- westpa/fasthist/__main__.py +110 -0
- westpa/fasthist/_fasthist.cpython-312-darwin.so +0 -0
- westpa/mclib/__init__.py +264 -0
- westpa/mclib/__main__.py +28 -0
- westpa/mclib/_mclib.cpython-312-darwin.so +0 -0
- westpa/oldtools/__init__.py +4 -0
- westpa/oldtools/aframe/__init__.py +35 -0
- westpa/oldtools/aframe/atool.py +75 -0
- westpa/oldtools/aframe/base_mixin.py +26 -0
- westpa/oldtools/aframe/binning.py +178 -0
- westpa/oldtools/aframe/data_reader.py +560 -0
- westpa/oldtools/aframe/iter_range.py +200 -0
- westpa/oldtools/aframe/kinetics.py +117 -0
- westpa/oldtools/aframe/mcbs.py +146 -0
- westpa/oldtools/aframe/output.py +39 -0
- westpa/oldtools/aframe/plotting.py +90 -0
- westpa/oldtools/aframe/trajwalker.py +126 -0
- westpa/oldtools/aframe/transitions.py +469 -0
- westpa/oldtools/cmds/__init__.py +0 -0
- westpa/oldtools/cmds/w_ttimes.py +358 -0
- westpa/oldtools/files.py +34 -0
- westpa/oldtools/miscfn.py +23 -0
- westpa/oldtools/stats/__init__.py +4 -0
- westpa/oldtools/stats/accumulator.py +35 -0
- westpa/oldtools/stats/edfs.py +129 -0
- westpa/oldtools/stats/mcbs.py +89 -0
- westpa/tools/__init__.py +33 -0
- westpa/tools/binning.py +472 -0
- westpa/tools/core.py +340 -0
- westpa/tools/data_reader.py +159 -0
- westpa/tools/dtypes.py +31 -0
- westpa/tools/iter_range.py +198 -0
- westpa/tools/kinetics_tool.py +340 -0
- westpa/tools/plot.py +283 -0
- westpa/tools/progress.py +17 -0
- westpa/tools/selected_segs.py +154 -0
- westpa/tools/wipi.py +751 -0
- westpa/trajtree/__init__.py +4 -0
- westpa/trajtree/_trajtree.cpython-312-darwin.so +0 -0
- westpa/trajtree/trajtree.py +117 -0
- westpa/westext/__init__.py +0 -0
- westpa/westext/adaptvoronoi/__init__.py +3 -0
- westpa/westext/adaptvoronoi/adaptVor_driver.py +214 -0
- westpa/westext/hamsm_restarting/__init__.py +3 -0
- westpa/westext/hamsm_restarting/example_overrides.py +35 -0
- westpa/westext/hamsm_restarting/restart_driver.py +1165 -0
- westpa/westext/stringmethod/__init__.py +11 -0
- westpa/westext/stringmethod/fourier_fitting.py +69 -0
- westpa/westext/stringmethod/string_driver.py +253 -0
- westpa/westext/stringmethod/string_method.py +306 -0
- westpa/westext/weed/BinCluster.py +180 -0
- westpa/westext/weed/ProbAdjustEquil.py +100 -0
- westpa/westext/weed/UncertMath.py +247 -0
- westpa/westext/weed/__init__.py +10 -0
- westpa/westext/weed/weed_driver.py +182 -0
- westpa/westext/wess/ProbAdjust.py +101 -0
- westpa/westext/wess/__init__.py +6 -0
- westpa/westext/wess/wess_driver.py +207 -0
- westpa/work_managers/__init__.py +57 -0
- westpa/work_managers/core.py +396 -0
- westpa/work_managers/environment.py +134 -0
- westpa/work_managers/mpi.py +318 -0
- westpa/work_managers/processes.py +187 -0
- westpa/work_managers/serial.py +28 -0
- westpa/work_managers/threads.py +79 -0
- westpa/work_managers/zeromq/__init__.py +20 -0
- westpa/work_managers/zeromq/core.py +641 -0
- westpa/work_managers/zeromq/node.py +131 -0
- westpa/work_managers/zeromq/work_manager.py +526 -0
- westpa/work_managers/zeromq/worker.py +320 -0
- westpa-2022.10.dist-info/AUTHORS +22 -0
- westpa-2022.10.dist-info/LICENSE +21 -0
- westpa-2022.10.dist-info/METADATA +183 -0
- westpa-2022.10.dist-info/RECORD +150 -0
- westpa-2022.10.dist-info/WHEEL +5 -0
- westpa-2022.10.dist-info/entry_points.txt +29 -0
- westpa-2022.10.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
from westpa.core.binning.binless import BinlessMapper
|
|
4
|
+
from westpa.core.sim_manager import WESimManager, grouper
|
|
5
|
+
from westpa.core.states import InitialState, pare_basis_initial_states
|
|
6
|
+
from westpa.core import wm_ops
|
|
7
|
+
from westpa.core.segment import Segment
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
log = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class BinlessSimManager(WESimManager):
|
|
14
|
+
def initialize_simulation(self, basis_states, target_states, start_states, segs_per_state=1, suppress_we=False):
|
|
15
|
+
if len(target_states) > 0:
|
|
16
|
+
if isinstance(self.system.bin_mapper, BinlessMapper):
|
|
17
|
+
log.error("BinlessMapper cannot be an outer binning scheme with a target state\n")
|
|
18
|
+
|
|
19
|
+
super().initialize_simulation(
|
|
20
|
+
basis_states, target_states, start_states, segs_per_state=segs_per_state, suppress_we=suppress_we
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
def propagate(self):
|
|
24
|
+
log.debug("BinlessManager in use")
|
|
25
|
+
segments = list(self.incomplete_segments.values())
|
|
26
|
+
log.debug('iteration {:d}: propagating {:d} segments'.format(self.n_iter, len(segments)))
|
|
27
|
+
|
|
28
|
+
# all futures dispatched for this iteration
|
|
29
|
+
futures = set()
|
|
30
|
+
segment_futures = set()
|
|
31
|
+
|
|
32
|
+
# Immediately dispatch any necessary initial state generation
|
|
33
|
+
istate_gen_futures = self.get_istate_futures()
|
|
34
|
+
futures.update(istate_gen_futures)
|
|
35
|
+
|
|
36
|
+
# Dispatch propagation tasks using work manager
|
|
37
|
+
for segment_block in grouper(self.propagator_block_size, segments):
|
|
38
|
+
segment_block = [_f for _f in segment_block if _f]
|
|
39
|
+
pbstates, pistates = pare_basis_initial_states(
|
|
40
|
+
self.current_iter_bstates, list(self.current_iter_istates.values()), segment_block
|
|
41
|
+
)
|
|
42
|
+
future = self.work_manager.submit(wm_ops.propagate, args=(pbstates, pistates, segment_block))
|
|
43
|
+
futures.add(future)
|
|
44
|
+
segment_futures.add(future)
|
|
45
|
+
|
|
46
|
+
while futures:
|
|
47
|
+
# TODO: add capacity for timeout or SIGINT here
|
|
48
|
+
future = self.work_manager.wait_any(futures)
|
|
49
|
+
futures.remove(future)
|
|
50
|
+
|
|
51
|
+
if future in segment_futures:
|
|
52
|
+
segment_futures.remove(future)
|
|
53
|
+
incoming = future.get_result()
|
|
54
|
+
self.n_propagated += 1
|
|
55
|
+
|
|
56
|
+
self.segments.update({segment.seg_id: segment for segment in incoming})
|
|
57
|
+
self.completed_segments.update({segment.seg_id: segment for segment in incoming})
|
|
58
|
+
|
|
59
|
+
new_istate_futures = self.get_istate_futures()
|
|
60
|
+
istate_gen_futures.update(new_istate_futures)
|
|
61
|
+
futures.update(new_istate_futures)
|
|
62
|
+
|
|
63
|
+
with self.data_manager.expiring_flushing_lock():
|
|
64
|
+
self.data_manager.update_segments(self.n_iter, incoming)
|
|
65
|
+
|
|
66
|
+
elif future in istate_gen_futures:
|
|
67
|
+
istate_gen_futures.remove(future)
|
|
68
|
+
_basis_state, initial_state = future.get_result()
|
|
69
|
+
log.debug('received newly-prepared initial state {!r}'.format(initial_state))
|
|
70
|
+
initial_state.istate_status = InitialState.ISTATE_STATUS_PREPARED
|
|
71
|
+
with self.data_manager.expiring_flushing_lock():
|
|
72
|
+
self.data_manager.update_initial_states([initial_state], n_iter=self.n_iter + 1)
|
|
73
|
+
self.we_driver.avail_initial_states[initial_state.state_id] = initial_state
|
|
74
|
+
else:
|
|
75
|
+
log.error('unknown future {!r} received from work manager'.format(future))
|
|
76
|
+
raise AssertionError('untracked future {!r}'.format(future))
|
|
77
|
+
|
|
78
|
+
# Collectively assign all segments to their bins...
|
|
79
|
+
self.we_driver.assign(self.segments.values())
|
|
80
|
+
|
|
81
|
+
# For cases where we need even more istates for recycled trajectories
|
|
82
|
+
# futures should be empty at this point.
|
|
83
|
+
istate_gen_futures = self.get_istate_futures()
|
|
84
|
+
futures.update(istate_gen_futures)
|
|
85
|
+
|
|
86
|
+
# Wait for istate_gen_futures and catch untracked futures.
|
|
87
|
+
while futures:
|
|
88
|
+
future = self.work_manager.wait_any(futures)
|
|
89
|
+
futures.remove(future)
|
|
90
|
+
|
|
91
|
+
if future in istate_gen_futures:
|
|
92
|
+
istate_gen_futures.remove(future)
|
|
93
|
+
_basis_state, initial_state = future.get_result()
|
|
94
|
+
log.debug('received newly-prepared initial state {!r}'.format(initial_state))
|
|
95
|
+
initial_state.istate_status = InitialState.ISTATE_STATUS_PREPARED
|
|
96
|
+
with self.data_manager.expiring_flushing_lock():
|
|
97
|
+
self.data_manager.update_initial_states([initial_state], n_iter=self.n_iter + 1)
|
|
98
|
+
self.we_driver.avail_initial_states[initial_state.state_id] = initial_state
|
|
99
|
+
else:
|
|
100
|
+
log.error('unknown future {!r} received from work manager'.format(future))
|
|
101
|
+
raise AssertionError('untracked future {!r}'.format(future))
|
|
102
|
+
|
|
103
|
+
log.debug('done with propagation')
|
|
104
|
+
self.save_bin_data()
|
|
105
|
+
self.data_manager.flush_backing()
|
|
106
|
+
|
|
107
|
+
def prepare_iteration(self):
|
|
108
|
+
log.debug('beginning iteration {:d}'.format(self.n_iter))
|
|
109
|
+
|
|
110
|
+
# the WE driver needs a list of all target states for this iteration
|
|
111
|
+
# along with information about any new weights introduced (e.g. by recycling)
|
|
112
|
+
target_states = self.data_manager.get_target_states(self.n_iter)
|
|
113
|
+
new_weights = self.data_manager.get_new_weight_data(self.n_iter)
|
|
114
|
+
|
|
115
|
+
self.we_driver.new_iteration(target_states=target_states, new_weights=new_weights)
|
|
116
|
+
|
|
117
|
+
# Get basis states used in this iteration
|
|
118
|
+
self.current_iter_bstates = self.data_manager.get_basis_states(self.n_iter)
|
|
119
|
+
|
|
120
|
+
# Get the segments for this iteration and separate into complete and incomplete
|
|
121
|
+
if self.segments is None:
|
|
122
|
+
segments = self.segments = {segment.seg_id: segment for segment in self.data_manager.get_segments()}
|
|
123
|
+
log.debug('loaded {:d} segments'.format(len(segments)))
|
|
124
|
+
else:
|
|
125
|
+
segments = self.segments
|
|
126
|
+
log.debug('using {:d} pre-existing segments'.format(len(segments)))
|
|
127
|
+
|
|
128
|
+
completed_segments = self.completed_segments = {}
|
|
129
|
+
incomplete_segments = self.incomplete_segments = {}
|
|
130
|
+
for segment in segments.values():
|
|
131
|
+
if segment.status == Segment.SEG_STATUS_COMPLETE:
|
|
132
|
+
completed_segments[segment.seg_id] = segment
|
|
133
|
+
else:
|
|
134
|
+
incomplete_segments[segment.seg_id] = segment
|
|
135
|
+
log.debug('{:d} segments are complete; {:d} are incomplete'.format(len(completed_segments), len(incomplete_segments)))
|
|
136
|
+
|
|
137
|
+
if len(incomplete_segments) == len(segments):
|
|
138
|
+
# Starting a new iteration
|
|
139
|
+
self.rc.pstatus('Beginning iteration {:d}'.format(self.n_iter))
|
|
140
|
+
elif incomplete_segments:
|
|
141
|
+
self.rc.pstatus('Continuing iteration {:d}'.format(self.n_iter))
|
|
142
|
+
self.rc.pstatus(
|
|
143
|
+
'{:d} segments remain in iteration {:d} ({:d} total)'.format(len(incomplete_segments), self.n_iter, len(segments))
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
# Get the initial states active for this iteration (so that the propagator has them if necessary)
|
|
147
|
+
self.current_iter_istates = {
|
|
148
|
+
state.state_id: state for state in self.data_manager.get_segment_initial_states(list(segments.values()))
|
|
149
|
+
}
|
|
150
|
+
log.debug('This iteration uses {:d} initial states'.format(len(self.current_iter_istates)))
|
|
151
|
+
|
|
152
|
+
# Assign this iteration's segments' initial points to bins and report on bin population
|
|
153
|
+
initial_pcoords = self.system.new_pcoord_array(len(segments))
|
|
154
|
+
initial_binning = self.system.bin_mapper.construct_bins()
|
|
155
|
+
for iseg, segment in enumerate(segments.values()):
|
|
156
|
+
initial_pcoords[iseg] = segment.pcoord[0]
|
|
157
|
+
initial_assignments = self.system.bin_mapper.assign(initial_pcoords)
|
|
158
|
+
for segment, assignment in zip(iter(segments.values()), initial_assignments):
|
|
159
|
+
initial_binning[assignment].add(segment)
|
|
160
|
+
self.report_bin_statistics(initial_binning, [], save_summary=True)
|
|
161
|
+
del initial_pcoords, initial_binning
|
|
162
|
+
|
|
163
|
+
self.rc.pstatus("Binless scheme in use")
|
|
164
|
+
|
|
165
|
+
self.rc.pstatus("Waiting for segments to complete...")
|
|
166
|
+
|
|
167
|
+
# Let the WE driver assign completed segments
|
|
168
|
+
if completed_segments and len(incomplete_segments) == 0:
|
|
169
|
+
self.we_driver.assign(list(completed_segments.values()))
|
|
170
|
+
|
|
171
|
+
# load restart data
|
|
172
|
+
self.data_manager.prepare_segment_restarts(
|
|
173
|
+
incomplete_segments.values(), self.current_iter_bstates, self.current_iter_istates
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
# Get the basis states and initial states for the next iteration, necessary for doing on-the-fly recycling
|
|
177
|
+
self.next_iter_bstates = self.data_manager.get_basis_states(self.n_iter + 1)
|
|
178
|
+
self.next_iter_bstate_cprobs = np.add.accumulate([bstate.probability for bstate in self.next_iter_bstates])
|
|
179
|
+
|
|
180
|
+
self.we_driver.avail_initial_states = {
|
|
181
|
+
istate.state_id: istate for istate in self.data_manager.get_unused_initial_states(n_iter=self.n_iter + 1)
|
|
182
|
+
}
|
|
183
|
+
log.debug('{:d} unused initial states found'.format(len(self.we_driver.avail_initial_states)))
|
|
184
|
+
|
|
185
|
+
# Invoke callbacks
|
|
186
|
+
self.invoke_callbacks(self.prepare_iteration)
|
|
187
|
+
|
|
188
|
+
# dispatch and immediately wait on result for prep_iter
|
|
189
|
+
log.debug('dispatching propagator prep_iter to work manager')
|
|
190
|
+
self.work_manager.submit(wm_ops.prep_iter, args=(self.n_iter, segments)).get_result()
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
log = logging.getLogger(__name__)
|
|
6
|
+
|
|
7
|
+
EPS = np.finfo(np.float64).eps
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class Bin(set):
|
|
11
|
+
def __init__(self, iterable=None, label=None):
|
|
12
|
+
super().__init__(iterable or [])
|
|
13
|
+
self.label = label
|
|
14
|
+
|
|
15
|
+
def __repr__(self):
|
|
16
|
+
return '<{classname} at 0x{id:x}, label={label!r}, count={count:d}, weight={weight:g}>'.format(
|
|
17
|
+
classname=self.__class__.__name__, id=id(self), label=self.label, count=len(self), weight=self.weight
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
@property
|
|
21
|
+
def weight(self):
|
|
22
|
+
'Total weight of all walkers in this bin'
|
|
23
|
+
|
|
24
|
+
weight = 0.0
|
|
25
|
+
for particle in self:
|
|
26
|
+
weight += particle.weight
|
|
27
|
+
return weight
|
|
28
|
+
|
|
29
|
+
def reweight(self, new_weight):
|
|
30
|
+
"""Reweight all walkers in this bin so that the total weight is new_weight"""
|
|
31
|
+
|
|
32
|
+
if len(self) == 0 and new_weight == 0:
|
|
33
|
+
return
|
|
34
|
+
|
|
35
|
+
if len(self) == 0 and new_weight != 0:
|
|
36
|
+
raise ValueError('cannot reweight empty ParticleCollection')
|
|
37
|
+
|
|
38
|
+
current_weight = self.weight
|
|
39
|
+
log.debug('reweighting collection of {:d} particles from {:g} to {:g}'.format(len(self), current_weight, new_weight))
|
|
40
|
+
assert (new_weight == 0 and current_weight == 0) or new_weight > 0
|
|
41
|
+
|
|
42
|
+
wrat = new_weight / current_weight
|
|
43
|
+
for p in self:
|
|
44
|
+
p.weight *= wrat
|
|
45
|
+
|
|
46
|
+
log.debug('new weight: {:g}'.format(self.weight))
|
|
47
|
+
assert abs(new_weight - self.weight) <= EPS * len(self)
|
|
@@ -0,0 +1,427 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import numpy as np
|
|
3
|
+
import westpa
|
|
4
|
+
from westpa.core.binning import FuncBinMapper
|
|
5
|
+
from os.path import expandvars
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
log = logging.getLogger(__name__)
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class MABBinMapper(FuncBinMapper):
|
|
12
|
+
"""
|
|
13
|
+
Adaptively place bins in between minimum and maximum segments along
|
|
14
|
+
the progress coordinte. Extrema and bottleneck segments are assigned
|
|
15
|
+
to their own bins.
|
|
16
|
+
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
nbins,
|
|
22
|
+
direction=None,
|
|
23
|
+
skip=None,
|
|
24
|
+
bottleneck=True,
|
|
25
|
+
pca=False,
|
|
26
|
+
mab_log=False,
|
|
27
|
+
bin_log=False,
|
|
28
|
+
bin_log_path="$WEST_SIM_ROOT/binbounds.log",
|
|
29
|
+
):
|
|
30
|
+
"""
|
|
31
|
+
Parameters
|
|
32
|
+
----------
|
|
33
|
+
nbins : list of int
|
|
34
|
+
List of int for nbins in each dimension.
|
|
35
|
+
direction : Union(list of int, None), default: None
|
|
36
|
+
List of int for 'direction' in each dimension.
|
|
37
|
+
Direction options are as follows:
|
|
38
|
+
0 : default split at leading and lagging boundaries
|
|
39
|
+
1 : split at leading boundary only
|
|
40
|
+
-1 : split at lagging boundary only
|
|
41
|
+
86 : no splitting at either leading or lagging boundary
|
|
42
|
+
skip : Union(list of int, None), default: None
|
|
43
|
+
List of int for each dimension. Default None for skip=0.
|
|
44
|
+
Set to 1 to 'skip' running mab in a dimension.
|
|
45
|
+
bottleneck : bool, default: True
|
|
46
|
+
Whether to turn on or off bottleneck walker splitting.
|
|
47
|
+
pca : bool, default: False
|
|
48
|
+
Can be True or False (default) to run PCA on pcoords before bin assignment.
|
|
49
|
+
mab_log : bool, default: False
|
|
50
|
+
Whether to output mab info to west.log.
|
|
51
|
+
bin_log : bool, default: False
|
|
52
|
+
Whether to output mab bin boundaries to bin_log_path file.
|
|
53
|
+
bin_log_path : str, default: "$WEST_SIM_ROOT/binbounds.log"
|
|
54
|
+
Path to output bin boundaries.
|
|
55
|
+
|
|
56
|
+
"""
|
|
57
|
+
# Verifying parameters
|
|
58
|
+
if nbins is None:
|
|
59
|
+
raise ValueError("nbins_per_dim is missing")
|
|
60
|
+
ndim = len(nbins)
|
|
61
|
+
|
|
62
|
+
if direction is None:
|
|
63
|
+
direction = [0] * ndim
|
|
64
|
+
elif len(direction) != ndim:
|
|
65
|
+
direction = [0] * ndim
|
|
66
|
+
log.warning("Direction list is not the correct dimensions, setting to defaults.")
|
|
67
|
+
|
|
68
|
+
if skip is None:
|
|
69
|
+
skip = [0] * ndim
|
|
70
|
+
elif len(skip) != ndim:
|
|
71
|
+
skip = [0] * ndim
|
|
72
|
+
log.warning("Skip list is not the correct dimensions, setting to defaults.")
|
|
73
|
+
|
|
74
|
+
kwargs = dict(
|
|
75
|
+
nbins_per_dim=nbins,
|
|
76
|
+
direction=direction,
|
|
77
|
+
skip=skip,
|
|
78
|
+
bottleneck=bottleneck,
|
|
79
|
+
pca=pca,
|
|
80
|
+
mab_log=mab_log,
|
|
81
|
+
bin_log=bin_log,
|
|
82
|
+
bin_log_path=bin_log_path,
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
n_total_bins = self.determine_total_bins(**kwargs)
|
|
86
|
+
|
|
87
|
+
super().__init__(map_mab, n_total_bins, kwargs=kwargs)
|
|
88
|
+
|
|
89
|
+
def determine_total_bins(self, nbins_per_dim, direction, skip, bottleneck, **kwargs):
|
|
90
|
+
"""
|
|
91
|
+
The following is neccessary because functional bin mappers need to "reserve"
|
|
92
|
+
bins and tell the sim manager how many bins they will need to use, this is
|
|
93
|
+
determined by taking all direction/skipping info into account.
|
|
94
|
+
|
|
95
|
+
Parameters
|
|
96
|
+
----------
|
|
97
|
+
nbins_per_dim : int
|
|
98
|
+
Number of total bins in each direction.
|
|
99
|
+
direction : list of int
|
|
100
|
+
Direction in each dimension. See __init__ for more information.
|
|
101
|
+
skip : list of int
|
|
102
|
+
List of 0s and 1s indicating whether to skip each dimension.
|
|
103
|
+
bottleneck : bool
|
|
104
|
+
Whether to include separate bin for bottleneck walker(s).
|
|
105
|
+
**kwargs : dict
|
|
106
|
+
Arbitary keyword arguments. Contains unneeded MAB parameters.
|
|
107
|
+
|
|
108
|
+
Returns
|
|
109
|
+
-------
|
|
110
|
+
n_total_bins : int
|
|
111
|
+
Number of total bins.
|
|
112
|
+
|
|
113
|
+
"""
|
|
114
|
+
n_total_bins = np.prod(nbins_per_dim)
|
|
115
|
+
ndim = len(nbins_per_dim)
|
|
116
|
+
for i in range(ndim):
|
|
117
|
+
if skip[i] == 0:
|
|
118
|
+
if direction[i] != 0:
|
|
119
|
+
n_total_bins += 1 + 1 * bottleneck
|
|
120
|
+
else:
|
|
121
|
+
n_total_bins += 2 + 2 * bottleneck
|
|
122
|
+
else:
|
|
123
|
+
n_total_bins -= nbins_per_dim[i] - 1
|
|
124
|
+
n_total_bins += 1 * ndim # or else it will be one bin short
|
|
125
|
+
return n_total_bins
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def map_mab(coords, mask, output, *args, **kwargs):
|
|
129
|
+
"""
|
|
130
|
+
Binning which adaptively places bins based on the positions of extrema segments and
|
|
131
|
+
bottleneck segments, which are where the difference in probability is the greatest
|
|
132
|
+
along the progress coordinate. Operates per dimension and places a fixed number of
|
|
133
|
+
evenly spaced bins between the segments with the min and max pcoord values. Extrema and
|
|
134
|
+
bottleneck segments are assigned their own bins.
|
|
135
|
+
|
|
136
|
+
Parameters
|
|
137
|
+
----------
|
|
138
|
+
coords : ndarray
|
|
139
|
+
An array with pcoord and weight info.
|
|
140
|
+
mask : ndarray
|
|
141
|
+
Array of 1 (True) and 0 (False), to filter out unwanted segment info.
|
|
142
|
+
output : list
|
|
143
|
+
The main list that, for each segment, holds the bin assignment.
|
|
144
|
+
*args : list
|
|
145
|
+
Variable length arguments.
|
|
146
|
+
**kwargs : dict
|
|
147
|
+
Arbitary keyword arguments. Contains most of the MAB-needed parameters.
|
|
148
|
+
|
|
149
|
+
Returns
|
|
150
|
+
------
|
|
151
|
+
output : list
|
|
152
|
+
The main list that, for each segment, holds the bin assignment.
|
|
153
|
+
|
|
154
|
+
"""
|
|
155
|
+
|
|
156
|
+
# Argument Processing
|
|
157
|
+
nbins_per_dim = kwargs.get("nbins_per_dim")
|
|
158
|
+
ndim = len(nbins_per_dim)
|
|
159
|
+
pca = kwargs.get("pca", False)
|
|
160
|
+
bottleneck = kwargs.get("bottleneck", True)
|
|
161
|
+
direction = kwargs.get("direction", ([0] * ndim))
|
|
162
|
+
skip = kwargs.get("skip", ([0] * ndim))
|
|
163
|
+
mab_log = kwargs.get("mab_log", False)
|
|
164
|
+
bin_log = kwargs.get("bin_log", False)
|
|
165
|
+
bin_log_path = kwargs.get("bin_log_path", "$WEST_SIM_ROOT/binbounds.log")
|
|
166
|
+
|
|
167
|
+
if not np.any(mask):
|
|
168
|
+
return output
|
|
169
|
+
|
|
170
|
+
if skip is None:
|
|
171
|
+
skip = [0] * ndim
|
|
172
|
+
|
|
173
|
+
allcoords = np.copy(coords)
|
|
174
|
+
allmask = np.copy(mask)
|
|
175
|
+
|
|
176
|
+
weights = None
|
|
177
|
+
isfinal = None
|
|
178
|
+
splitting = False
|
|
179
|
+
report = False
|
|
180
|
+
|
|
181
|
+
# the segments should be sent in by the driver as half initial segments and half final segments
|
|
182
|
+
# allcoords contains all segments
|
|
183
|
+
# coords should contain ONLY final segments
|
|
184
|
+
if coords.shape[1] > ndim:
|
|
185
|
+
if coords[0, -1] == 0:
|
|
186
|
+
report = True
|
|
187
|
+
if coords.shape[1] > ndim + 1:
|
|
188
|
+
isfinal = allcoords[:, ndim + 1].astype(np.bool_)
|
|
189
|
+
else:
|
|
190
|
+
isfinal = np.ones(coords.shape[0], dtype=np.bool_)
|
|
191
|
+
coords = coords[isfinal, :ndim]
|
|
192
|
+
weights = allcoords[isfinal, ndim + 0]
|
|
193
|
+
mask = mask[isfinal]
|
|
194
|
+
splitting = True
|
|
195
|
+
|
|
196
|
+
if not np.any(mask):
|
|
197
|
+
coords = allcoords[:, :ndim]
|
|
198
|
+
mask = allmask
|
|
199
|
+
weights = None
|
|
200
|
+
splitting = False
|
|
201
|
+
|
|
202
|
+
varcoords = np.copy(coords)
|
|
203
|
+
originalcoords = np.copy(coords)
|
|
204
|
+
if pca and len(output) > 1:
|
|
205
|
+
colavg = np.mean(coords, axis=0)
|
|
206
|
+
for i in range(len(coords)):
|
|
207
|
+
for j in range(len(coords[i])):
|
|
208
|
+
varcoords[i][j] = coords[i][j] - colavg[j]
|
|
209
|
+
covcoords = np.cov(np.transpose(varcoords), aweights=weights)
|
|
210
|
+
eigval, eigvec = np.linalg.eigh(covcoords)
|
|
211
|
+
eigvec = eigvec[:, np.argmax(np.absolute(eigvec), axis=1)]
|
|
212
|
+
for i in range(len(eigvec)):
|
|
213
|
+
if eigvec[i, i] < 0:
|
|
214
|
+
eigvec[:, i] = -1 * eigvec[:, i]
|
|
215
|
+
for i in range(ndim):
|
|
216
|
+
for j in range(len(output)):
|
|
217
|
+
coords[j][i] = np.dot(varcoords[j], eigvec[:, i])
|
|
218
|
+
|
|
219
|
+
maxlist = []
|
|
220
|
+
minlist = []
|
|
221
|
+
difflist = []
|
|
222
|
+
flipdifflist = []
|
|
223
|
+
for n in range(ndim):
|
|
224
|
+
# identify the boundary segments
|
|
225
|
+
maxcoord = np.max(coords[mask, n])
|
|
226
|
+
mincoord = np.min(coords[mask, n])
|
|
227
|
+
maxlist.append(maxcoord)
|
|
228
|
+
minlist.append(mincoord)
|
|
229
|
+
|
|
230
|
+
# detect the bottleneck segments, this uses the weights
|
|
231
|
+
if splitting:
|
|
232
|
+
temp = np.column_stack((originalcoords[mask, n], weights[mask]))
|
|
233
|
+
sorted_indices = temp[:, 0].argsort()
|
|
234
|
+
temp = temp[sorted_indices]
|
|
235
|
+
for p in range(len(temp)):
|
|
236
|
+
if temp[p][1] == 0:
|
|
237
|
+
temp[p][1] = 10**-323
|
|
238
|
+
fliptemp = np.flipud(temp)
|
|
239
|
+
|
|
240
|
+
difflist.append(None)
|
|
241
|
+
flipdifflist.append(None)
|
|
242
|
+
maxdiff = 0
|
|
243
|
+
flipmaxdiff = 0
|
|
244
|
+
for i in range(1, len(temp) - 1):
|
|
245
|
+
comprob = 0
|
|
246
|
+
flipcomprob = 0
|
|
247
|
+
j = i + 1
|
|
248
|
+
while j < len(temp):
|
|
249
|
+
comprob = comprob + temp[j][1]
|
|
250
|
+
flipcomprob = flipcomprob + fliptemp[j][1]
|
|
251
|
+
j = j + 1
|
|
252
|
+
diff = -np.log(comprob) + np.log(temp[i][1])
|
|
253
|
+
if diff > maxdiff:
|
|
254
|
+
difflist[n] = temp[i][0]
|
|
255
|
+
maxdiff = diff
|
|
256
|
+
flipdiff = -np.log(flipcomprob) + np.log(fliptemp[i][1])
|
|
257
|
+
if flipdiff > flipmaxdiff:
|
|
258
|
+
flipdifflist[n] = fliptemp[i][0]
|
|
259
|
+
flipmaxdiff = flipdiff
|
|
260
|
+
|
|
261
|
+
if mab_log and report:
|
|
262
|
+
westpa.rc.pstatus("################ MAB stats ################")
|
|
263
|
+
westpa.rc.pstatus("minima in each dimension: {}".format(minlist))
|
|
264
|
+
westpa.rc.pstatus("maxima in each dimension: {}".format(maxlist))
|
|
265
|
+
westpa.rc.pstatus("direction in each dimension: {}".format(direction))
|
|
266
|
+
westpa.rc.pstatus("skip in each dimension: {}".format(skip))
|
|
267
|
+
westpa.rc.pstatus("###########################################")
|
|
268
|
+
westpa.rc.pflush()
|
|
269
|
+
|
|
270
|
+
# assign segments to bins
|
|
271
|
+
# the total number of linear bins is the boundary base
|
|
272
|
+
boundary_base = np.prod(nbins_per_dim)
|
|
273
|
+
|
|
274
|
+
# the bottleneck base is offset by the number of boundary walkers,
|
|
275
|
+
# which is two per dimension unless there is a direction specified
|
|
276
|
+
# in a particluar dimension, then it's just one
|
|
277
|
+
bottleneck_base = boundary_base
|
|
278
|
+
n_bottleneck_filled = 0
|
|
279
|
+
|
|
280
|
+
for i in range(0, ndim):
|
|
281
|
+
# for single direction, 1 boundary walker
|
|
282
|
+
if direction[i] == 1 or direction[i] == -1:
|
|
283
|
+
bottleneck_base += 1
|
|
284
|
+
# 2 boundary walkers with 0 direction
|
|
285
|
+
elif direction[i] == 0:
|
|
286
|
+
bottleneck_base += 2
|
|
287
|
+
# for 86 direction, no boundary walkers so offset of 0
|
|
288
|
+
elif direction[i] == 86:
|
|
289
|
+
bottleneck_base += 0
|
|
290
|
+
|
|
291
|
+
# if a dimension is being "skipped", leave only one bin total as
|
|
292
|
+
# the offset
|
|
293
|
+
for i in range(0, ndim):
|
|
294
|
+
if skip[i] != 0:
|
|
295
|
+
boundary_base -= nbins_per_dim[i] - 1
|
|
296
|
+
|
|
297
|
+
for i in range(len(output)):
|
|
298
|
+
if not allmask[i]:
|
|
299
|
+
continue
|
|
300
|
+
|
|
301
|
+
# special means either a boundary or bottleneck walker (not a walker in the linear space)
|
|
302
|
+
special = False
|
|
303
|
+
# this holder is the bin number, which only needs to be unique for different walker groups
|
|
304
|
+
holder = 0
|
|
305
|
+
if splitting:
|
|
306
|
+
for n in range(ndim):
|
|
307
|
+
coord = allcoords[i][n]
|
|
308
|
+
|
|
309
|
+
# if skipped, just assign the walkers to the same bin (offset of boundary base)
|
|
310
|
+
if skip[n] != 0:
|
|
311
|
+
holder = boundary_base + n
|
|
312
|
+
break
|
|
313
|
+
|
|
314
|
+
# assign bottlenecks, taking directionality into account
|
|
315
|
+
if bottleneck:
|
|
316
|
+
if direction[n] == -1:
|
|
317
|
+
if coord == flipdifflist[n]:
|
|
318
|
+
holder = bottleneck_base + n
|
|
319
|
+
special = True
|
|
320
|
+
n_bottleneck_filled += 1
|
|
321
|
+
break
|
|
322
|
+
|
|
323
|
+
if direction[n] == 1:
|
|
324
|
+
if coord == difflist[n]:
|
|
325
|
+
holder = bottleneck_base + n
|
|
326
|
+
special = True
|
|
327
|
+
n_bottleneck_filled += 1
|
|
328
|
+
break
|
|
329
|
+
|
|
330
|
+
# both directions when using 0 or with
|
|
331
|
+
# special value of 86 for no lead/lag split
|
|
332
|
+
if direction[n] == 0 or direction[n] == 86:
|
|
333
|
+
if coord == difflist[n]:
|
|
334
|
+
holder = bottleneck_base + n
|
|
335
|
+
special = True
|
|
336
|
+
n_bottleneck_filled += 1
|
|
337
|
+
break
|
|
338
|
+
elif coord == flipdifflist[n]:
|
|
339
|
+
holder = bottleneck_base + n + 1
|
|
340
|
+
special = True
|
|
341
|
+
n_bottleneck_filled += 1
|
|
342
|
+
break
|
|
343
|
+
|
|
344
|
+
# assign boundary walkers, taking directionality into account
|
|
345
|
+
if direction[n] == -1:
|
|
346
|
+
if coord == minlist[n]:
|
|
347
|
+
holder = boundary_base + n
|
|
348
|
+
special = True
|
|
349
|
+
break
|
|
350
|
+
|
|
351
|
+
elif direction[n] == 1:
|
|
352
|
+
if coord == maxlist[n]:
|
|
353
|
+
holder = boundary_base + n
|
|
354
|
+
special = True
|
|
355
|
+
break
|
|
356
|
+
|
|
357
|
+
elif direction[n] == 0:
|
|
358
|
+
if coord == minlist[n]:
|
|
359
|
+
holder = boundary_base + n
|
|
360
|
+
special = True
|
|
361
|
+
break
|
|
362
|
+
elif coord == maxlist[n]:
|
|
363
|
+
holder = boundary_base + n + 1
|
|
364
|
+
special = True
|
|
365
|
+
break
|
|
366
|
+
|
|
367
|
+
# special value for direction with no lead/lag split
|
|
368
|
+
elif direction[n] == 86:
|
|
369
|
+
# westpa.rc.pstatus(f"No lead/lag split for dim {n}")
|
|
370
|
+
# westpa.rc.pflush()
|
|
371
|
+
# nornmally adds to special bin but here just leaving it forever empty
|
|
372
|
+
# holder = boundary_base + n
|
|
373
|
+
break
|
|
374
|
+
|
|
375
|
+
# the following are for the "linear" portion
|
|
376
|
+
if not special:
|
|
377
|
+
for n in range(ndim):
|
|
378
|
+
# if skipped, it's added to the same bin as the special walkers above
|
|
379
|
+
if skip[n] != 0:
|
|
380
|
+
holder = boundary_base + n
|
|
381
|
+
break
|
|
382
|
+
|
|
383
|
+
coord = allcoords[i][n]
|
|
384
|
+
nbins = nbins_per_dim[n]
|
|
385
|
+
minp = minlist[n]
|
|
386
|
+
maxp = maxlist[n]
|
|
387
|
+
|
|
388
|
+
bins = np.linspace(minp, maxp, nbins + 1)
|
|
389
|
+
bin_number = np.digitize(coord, bins) - 1
|
|
390
|
+
|
|
391
|
+
if isfinal is None or not isfinal[i]:
|
|
392
|
+
if bin_number >= nbins:
|
|
393
|
+
bin_number = nbins - 1
|
|
394
|
+
elif bin_number < 0:
|
|
395
|
+
bin_number = 0
|
|
396
|
+
elif bin_number >= nbins or bin_number < 0:
|
|
397
|
+
if np.isclose(bins[-1], coord):
|
|
398
|
+
bin_number = nbins - 1
|
|
399
|
+
elif np.isclose(bins[0], coord):
|
|
400
|
+
bin_number = 0
|
|
401
|
+
else:
|
|
402
|
+
raise ValueError("Walker out of boundary")
|
|
403
|
+
|
|
404
|
+
holder += bin_number * np.prod(nbins_per_dim[:n])
|
|
405
|
+
|
|
406
|
+
# output is the main list that, for each segment, holds the bin assignment
|
|
407
|
+
output[i] = holder
|
|
408
|
+
|
|
409
|
+
if bin_log and report:
|
|
410
|
+
if westpa.rc.sim_manager.n_iter:
|
|
411
|
+
with open(expandvars(bin_log_path), 'a') as bb_file:
|
|
412
|
+
# Iteration Number
|
|
413
|
+
bb_file.write(f'iteration: {westpa.rc.sim_manager.n_iter}\n')
|
|
414
|
+
bb_file.write('bin boundaries: ')
|
|
415
|
+
for n in range(ndim):
|
|
416
|
+
# Write binbounds per dim
|
|
417
|
+
bb_file.write(f'{np.linspace(minlist[n], maxlist[n], nbins_per_dim[n] + 1)}\t')
|
|
418
|
+
# Min/Max pcoord
|
|
419
|
+
bb_file.write(f'\nmin/max pcoord: {minlist} {maxlist}\n')
|
|
420
|
+
bb_file.write(f'bottleneck bins: {n_bottleneck_filled}\n')
|
|
421
|
+
if n_bottleneck_filled > 0:
|
|
422
|
+
# Bottlenecks bins exist (passes any of the if bottleneck: checks)
|
|
423
|
+
bb_file.write(f'bottleneck pcoord: {flipdifflist} {difflist}\n\n')
|
|
424
|
+
else:
|
|
425
|
+
bb_file.write('\n')
|
|
426
|
+
|
|
427
|
+
return output
|