weco 0.2.7__py3-none-any.whl → 0.2.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
weco/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
1
  # DO NOT EDIT
2
- __pkg_version__ = "0.2.7"
2
+ __pkg_version__ = "0.2.9"
3
3
  __api_version__ = "v1"
4
4
  __base_url__ = f"https://api.aide.weco.ai/{__api_version__}"
weco/api.py CHANGED
@@ -6,14 +6,9 @@ import sys
6
6
 
7
7
 
8
8
  def handle_api_error(e: requests.exceptions.HTTPError, console: rich.console.Console) -> None:
9
- """Extract and display error messages from API responses."""
10
- try:
11
- error_data = e.response.json()
12
- error_message = error_data.get("detail", str(e))
13
- console.print(f"[bold red]Server Error:[/] {error_message}")
14
- except Exception:
15
- # If we can't parse the JSON, just show the original error
16
- console.print(f"[bold red]Server Error:[/] {str(e)}")
9
+ """Extract and display error messages from API responses in a structured format."""
10
+ error_message = str(e) # Default message
11
+ console.print(f"[bold red]Error:[/] {error_message}")
17
12
  sys.exit(1)
18
13
 
19
14
 
weco/cli.py CHANGED
@@ -36,7 +36,7 @@ def main() -> None:
36
36
  parser = argparse.ArgumentParser(
37
37
  description="[bold cyan]Weco CLI[/]", formatter_class=argparse.RawDescriptionHelpFormatter
38
38
  )
39
- parser.add_argument("--source", type=str, required=True, help="Path to the Python source code (e.g. optimize.py)")
39
+ parser.add_argument("--source", type=str, required=True, help="Path to the source code (e.g. optimize.py)")
40
40
  parser.add_argument(
41
41
  "--eval-command", type=str, required=True, help="Command to run for evaluation (e.g. 'python eval.py --arg1=val1')"
42
42
  )
@@ -57,6 +57,11 @@ def main() -> None:
57
57
  type=str,
58
58
  help="Description of additional instruction or path to a file containing additional instructions",
59
59
  )
60
+ parser.add_argument(
61
+ "--preserve-source",
62
+ action="store_true",
63
+ help="If set, do not overwrite the original source file; only save modified versions in the runs directory",
64
+ )
60
65
  args = parser.parse_args()
61
66
 
62
67
  try:
@@ -73,22 +78,23 @@ def main() -> None:
73
78
  "debug_prob": 0.5,
74
79
  "max_debug_depth": max(1, math.ceil(0.1 * steps)), # 10% of steps
75
80
  }
81
+ # Read API keys
82
+ api_keys = read_api_keys_from_env()
83
+ # API request timeout
84
+ timeout = 800
85
+
76
86
  # Read additional instructions
77
87
  additional_instructions = read_additional_instructions(additional_instructions=args.additional_instructions)
78
88
  # Read source code
79
89
  source_fp = pathlib.Path(args.source)
80
90
  source_code = read_from_path(fp=source_fp, is_json=False)
81
- # Read API keys
82
- api_keys = read_api_keys_from_env()
83
- # API request timeout
84
- timeout = 800
85
91
 
86
92
  # Initialize panels
87
93
  summary_panel = SummaryPanel(
88
94
  maximize=maximize, metric_name=metric_name, total_steps=steps, model=args.model, runs_dir=args.log_dir
89
95
  )
90
96
  plan_panel = PlanPanel()
91
- solution_panels = SolutionPanels(metric_name=metric_name)
97
+ solution_panels = SolutionPanels(metric_name=metric_name, source_fp=source_fp)
92
98
  eval_output_panel = EvaluationOutputPanel()
93
99
  tree_panel = MetricTreePanel(maximize=maximize)
94
100
  layout = create_optimization_layout()
@@ -118,13 +124,14 @@ def main() -> None:
118
124
  runs_dir = pathlib.Path(args.log_dir) / session_id
119
125
  runs_dir.mkdir(parents=True, exist_ok=True)
120
126
 
121
- # Save the original code (.runs/<session-id>/original.py)
122
- runs_copy_source_fp = runs_dir / "original.py"
127
+ # Save the original code (.runs/<session-id>/original.<extension>)
128
+ runs_copy_source_fp = runs_dir / f"original.{source_fp.suffix}"
123
129
  write_to_path(fp=runs_copy_source_fp, content=source_code)
124
130
 
125
131
  # Write the code string to the source file path
126
132
  # Do this after the original code is saved
127
- write_to_path(fp=source_fp, content=session_response["code"])
133
+ if not args.preserve_source:
134
+ write_to_path(fp=source_fp, content=session_response["code"])
128
135
 
129
136
  # Update the panels with the initial solution
130
137
  # Add session id now that we have it
@@ -191,20 +198,25 @@ def main() -> None:
191
198
  )
192
199
 
193
200
  for step in range(1, steps):
201
+ # Re-read instructions from the original source (file path or string) BEFORE each suggest call
202
+ current_additional_instructions = read_additional_instructions(
203
+ additional_instructions=args.additional_instructions
204
+ )
194
205
  # Evaluate the current output and get the next solution
195
206
  eval_and_next_solution_response = evaluate_feedback_then_suggest_next_solution(
196
207
  console=console,
197
208
  session_id=session_id,
198
209
  execution_output=term_out,
199
- additional_instructions=additional_instructions,
210
+ additional_instructions=current_additional_instructions,
200
211
  api_keys=api_keys,
201
212
  timeout=timeout,
202
213
  )
203
- # Save next solution (.runs/<session-id>/step_<step>.py)
204
- write_to_path(fp=runs_dir / f"step_{step}.py", content=eval_and_next_solution_response["code"])
214
+ # Save next solution (.runs/<session-id>/step_<step>.<extension>)
215
+ write_to_path(fp=runs_dir / f"step_{step}{source_fp.suffix}", content=eval_and_next_solution_response["code"])
205
216
 
206
217
  # Write the next solution to the source file
207
- write_to_path(fp=source_fp, content=eval_and_next_solution_response["code"])
218
+ if not args.preserve_source:
219
+ write_to_path(fp=source_fp, content=eval_and_next_solution_response["code"])
208
220
 
209
221
  # Get the optimization session status for
210
222
  # the best solution, its score, and the history to plot the tree
@@ -283,12 +295,16 @@ def main() -> None:
283
295
  transition_delay=0.1, # Slightly longer delay for evaluation results
284
296
  )
285
297
 
298
+ # Re-read instructions before the final feedback step
299
+ current_additional_instructions = read_additional_instructions(
300
+ additional_instructions=args.additional_instructions
301
+ )
286
302
  # Ensure we pass evaluation results for the last step's generated solution
287
303
  eval_and_next_solution_response = evaluate_feedback_then_suggest_next_solution(
288
304
  console=console,
289
305
  session_id=session_id,
290
306
  execution_output=term_out,
291
- additional_instructions=additional_instructions,
307
+ additional_instructions=current_additional_instructions,
292
308
  api_keys=api_keys,
293
309
  timeout=timeout,
294
310
  )
@@ -351,11 +367,12 @@ def main() -> None:
351
367
  )
352
368
  best_solution_content = f"# Best solution from Weco with a score of {best_score_str}\n\n{best_solution_code}"
353
369
 
354
- # Save best solution to .runs/<session-id>/best.py
355
- write_to_path(fp=runs_dir / "best.py", content=best_solution_content)
370
+ # Save best solution to .runs/<session-id>/best.<extension>
371
+ write_to_path(fp=runs_dir / f"best.{source_fp.suffix}", content=best_solution_content)
356
372
 
357
373
  # write the best solution to the source file
358
- write_to_path(fp=source_fp, content=best_solution_content)
374
+ if not args.preserve_source:
375
+ write_to_path(fp=source_fp, content=best_solution_content)
359
376
 
360
377
  console.print(end_optimization_layout)
361
378
 
weco/panels.py CHANGED
@@ -6,6 +6,7 @@ from rich.panel import Panel
6
6
  from rich.syntax import Syntax
7
7
  from typing import Dict, List, Optional, Union, Tuple
8
8
  from .utils import format_number
9
+ import pathlib
9
10
 
10
11
 
11
12
  class SummaryPanel:
@@ -46,6 +47,8 @@ class SummaryPanel:
46
47
  """Create a summary panel with the relevant information."""
47
48
  layout = Layout(name="summary")
48
49
  summary_table = Table(show_header=False, box=None, padding=(0, 1))
50
+
51
+ summary_table.add_row("")
49
52
  # Goal
50
53
  if final_message is not None:
51
54
  summary_table.add_row(f"[bold cyan]Result:[/] {final_message}")
@@ -256,13 +259,19 @@ class EvaluationOutputPanel:
256
259
  class SolutionPanels:
257
260
  """Displays the current and best solutions side by side."""
258
261
 
259
- def __init__(self, metric_name: str):
262
+ def __init__(self, metric_name: str, source_fp: pathlib.Path):
260
263
  # Current solution
261
264
  self.current_node = None
262
265
  # Best solution
263
266
  self.best_node = None
264
267
  # Metric name
265
268
  self.metric_name = metric_name.capitalize()
269
+ # Determine the lexer for the source file
270
+ self.lexer = self._determine_lexer(source_fp)
271
+
272
+ def _determine_lexer(self, source_fp: pathlib.Path) -> str:
273
+ """Determine the lexer for the source file."""
274
+ return Syntax.from_path(source_fp).lexer
266
275
 
267
276
  def update(self, current_node: Union[Node, None], best_node: Union[Node, None]):
268
277
  """Update the current and best solutions."""
@@ -280,7 +289,7 @@ class SolutionPanels:
280
289
  # Current solution (without score)
281
290
  current_title = f"[bold]💡 Current Solution (Step {current_step})"
282
291
  current_panel = Panel(
283
- Syntax(str(current_code), "python", theme="monokai", line_numbers=True, word_wrap=False),
292
+ Syntax(str(current_code), self.lexer, theme="monokai", line_numbers=True, word_wrap=False),
284
293
  title=current_title,
285
294
  border_style="yellow",
286
295
  expand=True,
@@ -290,7 +299,7 @@ class SolutionPanels:
290
299
  # Best solution
291
300
  best_title = f"[bold]🏆 Best Solution ([green]{self.metric_name}: {f'{best_score:.4f}' if best_score is not None else 'N/A'}[/])"
292
301
  best_panel = Panel(
293
- Syntax(str(best_code), "python", theme="monokai", line_numbers=True, word_wrap=False),
302
+ Syntax(str(best_code), self.lexer, theme="monokai", line_numbers=True, word_wrap=False),
294
303
  title=best_title,
295
304
  border_style="green",
296
305
  expand=True,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: weco
3
- Version: 0.2.7
3
+ Version: 0.2.9
4
4
  Summary: Documentation for `weco`, a CLI for using Weco AI's code optimizer.
5
5
  Author-email: Weco AI Team <contact@weco.ai>
6
6
  License: MIT
@@ -9,7 +9,7 @@ Keywords: AI,Code Optimization,Code Generation
9
9
  Classifier: Programming Language :: Python :: 3
10
10
  Classifier: Operating System :: OS Independent
11
11
  Classifier: License :: OSI Approved :: MIT License
12
- Requires-Python: >=3.12
12
+ Requires-Python: >=3.8
13
13
  Description-Content-Type: text/markdown
14
14
  License-File: LICENSE
15
15
  Requires-Dist: requests
@@ -20,13 +20,19 @@ Requires-Dist: build; extra == "dev"
20
20
  Requires-Dist: setuptools_scm; extra == "dev"
21
21
  Dynamic: license-file
22
22
 
23
- # Weco CLI Code Optimizer for Machine Learning Engineers
23
+ # Weco: The Evaluation-Driven AI Code Optimizer
24
24
 
25
25
  [![Python](https://img.shields.io/badge/Python-3.12.0-blue)](https://www.python.org)
26
- [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)
27
26
  [![PyPI version](https://badge.fury.io/py/weco.svg)](https://badge.fury.io/py/weco)
27
+ [![AIDE](https://img.shields.io/badge/AI--Driven_Exploration-arXiv-orange?style=flat-square&logo=arxiv)](https://arxiv.org/abs/2502.13138)
28
28
 
29
- `weco` is a command-line interface for interacting with Weco AI's code optimizer, powered by [AI-Driven Exploration](https://arxiv.org/abs/2502.13138). It helps you automate the improvement of your code for tasks like GPU kernel optimization, feature engineering, model development, and prompt engineering.
29
+ Weco systematically optimizes your code, guided directly by your evaluation metrics.
30
+
31
+ Example applications include:
32
+
33
+ - **GPU Kernel Optimization**: Reimplement PyTorch functions using CUDA, Triton or Metal, optimizing for `latency`, `throughput`, or `memory_bandwidth`.
34
+ - **Model Development**: Tune feature transformations or architectures, optimizing for `validation_accuracy`, `AUC`, or `Sharpe Ratio`.
35
+ - **Prompt Engineering**: Refine prompts for LLMs, optimizing for `win_rate`, `relevance`, or `format_adherence`
30
36
 
31
37
  https://github.com/user-attachments/assets/cb724ef1-bff6-4757-b457-d3b2201ede81
32
38
 
@@ -40,37 +46,6 @@ The `weco` CLI leverages a tree search approach guided by Large Language Models
40
46
 
41
47
  ---
42
48
 
43
- ## Example Use Cases
44
-
45
- Here's how `weco` can be applied to common ML engineering tasks:
46
-
47
- * **GPU Kernel Optimization:**
48
- * **Goal:** Improve the speed or efficiency of low-level GPU code.
49
- * **How:** `weco` iteratively refines CUDA, Triton, Metal, or other kernel code specified in your `--source` file.
50
- * **`--eval-command`:** Typically runs a script that compiles the kernel, executes it, and benchmarks performance (e.g., latency, throughput).
51
- * **`--metric`:** Examples include `latency`, `throughput`, `TFLOPS`, `memory_bandwidth`. Optimize to `minimize` latency or `maximize` throughput.
52
-
53
- * **Feature Engineering:**
54
- * **Goal:** Discover better data transformations or feature combinations for your machine learning models.
55
- * **How:** `weco` explores different processing steps or parameters within your feature transformation code (`--source`).
56
- * **`--eval-command`:** Executes a script that applies the features, trains/validates a model using those features, and prints a performance score.
57
- * **`--metric`:** Examples include `accuracy`, `AUC`, `F1-score`, `validation_loss`. Usually optimized to `maximize` accuracy/AUC/F1 or `minimize` loss.
58
-
59
- * **Model Development:**
60
- * **Goal:** Tune hyperparameters or experiment with small architectural changes directly within your model's code.
61
- * **How:** `weco` modifies hyperparameter values (like learning rate, layer sizes if defined in the code) or structural elements in your model definition (`--source`).
62
- * **`--eval-command`:** Runs your model training and evaluation script, printing the key performance indicator.
63
- * **`--metric`:** Examples include `validation_accuracy`, `test_loss`, `inference_time`, `perplexity`. Optimize according to the metric's nature (e.g., `maximize` accuracy, `minimize` loss).
64
-
65
- * **Prompt Engineering:**
66
- * **Goal:** Refine prompts used within larger systems (e.g., for LLM interactions) to achieve better or more consistent outputs.
67
- * **How:** `weco` modifies prompt templates, examples, or instructions stored in the `--source` file.
68
- * **`--eval-command`:** Executes a script that uses the prompt, generates an output, evaluates that output against desired criteria (e.g., using another LLM, checking for keywords, format validation), and prints a score.
69
- * **`--metric`:** Examples include `quality_score`, `relevance`, `task_success_rate`, `format_adherence`. Usually optimized to `maximize`.
70
-
71
- ---
72
-
73
-
74
49
  ## Setup
75
50
 
76
51
  1. **Install the Package:**
@@ -97,13 +72,20 @@ Here's how `weco` can be applied to common ML engineering tasks:
97
72
 
98
73
  ---
99
74
 
100
- ### Examples
75
+ ### Example: Optimizing Simple PyTorch Operations
76
+
77
+ This basic example shows how to optimize a simple PyTorch function for speedup.
101
78
 
102
- **Example 1: Optimizing PyTorch simple operations**
79
+ For more advanced examples, including **[Metal/MLX](/examples/metal/README.md), [Triton](/examples/triton/README.md), [CUDA kernel optimization](/examples/cuda/README.md)**, and **[ML model optimization](/examples/spaceship-titanic/README.md)**, please see the `README.md` files within the corresponding subdirectories under the [`examples/`](./examples/) folder.
103
80
 
104
81
  ```bash
82
+ # Navigate to the example directory
105
83
  cd examples/hello-kernel-world
106
- pip install torch
84
+
85
+ # Install dependencies
86
+ pip install torch
87
+
88
+ # Run Weco
107
89
  weco --source optimize.py \
108
90
  --eval-command "python evaluate.py --solution-path optimize.py --device cpu" \
109
91
  --metric speedup \
@@ -113,96 +95,7 @@ weco --source optimize.py \
113
95
  --additional-instructions "Fuse operations in the forward method while ensuring the max float deviation remains small. Maintain the same format of the code."
114
96
  ```
115
97
 
116
- Note that if you have an NVIDIA gpu, change the device to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
117
-
118
- **Example 2: Optimizing MLX operations with instructions from a file**
119
-
120
- Lets optimize a 2D convolution operation in [`mlx`](https://github.com/ml-explore/mlx) using [Metal](https://developer.apple.com/documentation/metal/). Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
121
-
122
- ```bash
123
- cd examples/metal
124
- pip install mlx
125
- weco --source optimize.py \
126
- --eval-command "python evaluate.py --solution-path optimize.py" \
127
- --metric speedup \
128
- --maximize true \
129
- --steps 30 \
130
- --model gemini-2.5-pro-exp-03-25 \
131
- --additional-instructions examples.rst
132
- ```
133
-
134
- **Example 3: Level Agnostic Optimization: Causal Self Attention with Triton & CUDA**
135
-
136
- Given how useful causal multihead self attention is to transformers, we've seen its wide adoption across ML engineering and AI research. Its great to keep things at a high-level (in PyTorch) when doing research, but when moving to production you often need to write highly customized low-level kernels to make things run as fast as they can. The `weco` CLI can optimize kernels across a variety of different abstraction levels and frameworks. Example 2 uses Metal but lets explore two more frameworks:
137
-
138
- 1. [Triton](https://github.com/triton-lang/triton)
139
- ```bash
140
- cd examples/triton
141
- pip install torch triton
142
- weco --source optimize.py \
143
- --eval-command "python evaluate.py --solution-path optimize.py" \
144
- --metric speedup \
145
- --maximize true \
146
- --steps 30 \
147
- --model gemini-2.5-pro-exp-03-25 \
148
- --additional-instructions "Use triton to optimize the code while ensuring a small max float diff. Maintain the same code format."
149
- ```
150
-
151
- 2. [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
152
- ```bash
153
- cd examples/cuda
154
- pip install torch
155
- weco --source optimize.py \
156
- --eval-command "python evaluate.py --solution-path optimize.py" \
157
- --metric speedup \
158
- --maximize true \
159
- --steps 30 \
160
- --model gemini-2.5-pro-exp-03-25 \
161
- --additional-instructions guide.md
162
- ```
163
-
164
- **Example 4: Optimizing a Classification Model**
165
-
166
- This example demonstrates optimizing a script for a Kaggle competition ([Spaceship Titanic](https://www.kaggle.com/competitions/spaceship-titanic/overview)) to improve classification accuracy. The additional instructions are provided via a separate file (`examples/spaceship-titanic/README.md`).
167
-
168
- First, install the requirements for the example environment:
169
- ```bash
170
- pip install -r examples/spaceship-titanic/requirements-test.txt
171
- ```
172
- And run utility function once to prepare the dataset
173
- ```bash
174
- python examples/spaceship-titanic/utils.py
175
- ```
176
-
177
- You should see the following structure at `examples/spaceship-titanic`. You need to prepare the kaggle credentials for downloading the dataset.
178
- ```
179
- .
180
- ├── baseline.py
181
- ├── evaluate.py
182
- ├── optimize.py
183
- ├── private
184
- │ └── test.csv
185
- ├── public
186
- │ ├── sample_submission.csv
187
- │ ├── test.csv
188
- │ └── train.csv
189
- ├── README.md
190
- ├── requirements-test.txt
191
- └── utils.py
192
- ```
193
-
194
- Then, execute the optimization command:
195
- ```bash
196
- weco --source examples/spaceship-titanic/optimize.py \
197
- --eval-command "python examples/spaceship-titanic/optimize.py && python examples/spaceship-titanic/evaluate.py" \
198
- --metric accuracy \
199
- --maximize true \
200
- --steps 10 \
201
- --model gemini-2.5-pro-exp-03-25 \
202
- --additional-instructions examples/spaceship-titanic/README.md
203
- ```
204
-
205
- *The [baseline.py](examples/spaceship-titanic/baseline.py) is provided as a start point for optimization*
98
+ **Note:** If you have an NVIDIA GPU, change the device in the `--eval-command` to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
206
99
 
207
100
  ---
208
101
 
@@ -215,9 +108,10 @@ weco --source examples/spaceship-titanic/optimize.py \
215
108
  | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
216
109
  | `--maximize` | Whether to maximize (`true`) or minimize (`false`) the metric. | Yes |
217
110
  | `--steps` | Number of optimization steps (LLM iterations) to run. | Yes |
218
- | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`.| Yes |
111
+ | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.7-sonnet`). Recommended models to try include `o4-mini`, and `gemini-2.5-pro-exp-03-25`.| Yes |
219
112
  | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
220
113
  | `--log-dir` | (Optional) Path to the directory to log intermediate steps and final optimization result. Defaults to `.runs/`. | No |
114
+ | `--preserve-source` | (Optional) If set, do not overwrite the original `--source` file. Modifications and the best solution will still be saved in the `--log-dir`. | No |
221
115
 
222
116
  ---
223
117
 
@@ -0,0 +1,11 @@
1
+ weco/__init__.py,sha256=8vfBL3OdlOveq9nYktaI3JQLXAeR7Pnwz8TRZ3xu0nA,124
2
+ weco/api.py,sha256=89lB2572jApAxkA0DDppDnJKBwvZTa3kH9jFpC0LFDQ,3313
3
+ weco/cli.py,sha256=iTecBQ0gAqyQixj7tNU9S6f9NW7TMSGZtH8nw-85_Oc,18276
4
+ weco/panels.py,sha256=R_df-VAbWyLoqCA9A6UzbIGZ9sm2IgJO4idnyjmrHQk,12701
5
+ weco/utils.py,sha256=hhIebUPnetFMfNSFfcsKVw1TSpeu_Zw3rBPPnxDie0U,3911
6
+ weco-0.2.9.dist-info/licenses/LICENSE,sha256=p_GQqJBvuZgkLNboYKyH-5dhpTDlKs2wq2TVM55WrWE,1065
7
+ weco-0.2.9.dist-info/METADATA,sha256=Fq37xE2H8Ia3brOv6AcjsleqDeDL_U6XiV3bJHZOhCY,9378
8
+ weco-0.2.9.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
9
+ weco-0.2.9.dist-info/entry_points.txt,sha256=ixJ2uClALbCpBvnIR6BXMNck8SHAab8eVkM9pIUowcs,39
10
+ weco-0.2.9.dist-info/top_level.txt,sha256=F0N7v6e2zBSlsorFv-arAq2yDxQbzX3KVO8GxYhPUeE,5
11
+ weco-0.2.9.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.1.0)
2
+ Generator: setuptools (79.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,11 +0,0 @@
1
- weco/__init__.py,sha256=6ZYuD51wx6bytYdLFMvzihYrpBlSxiFbmuiEl0z_AFo,124
2
- weco/api.py,sha256=8rIf2Fy3tN6GW7BG1CaggtfE9pW56I1erzwLCgawcVE,3511
3
- weco/cli.py,sha256=h8FevpztBob7OziDTIKh4y9CSnehkHJp2ydts6V6DhM,17317
4
- weco/panels.py,sha256=HHWmrnc2EJBJ8AEHb8mxlq30m-3q0j_4axc0r17sTnE,12349
5
- weco/utils.py,sha256=hhIebUPnetFMfNSFfcsKVw1TSpeu_Zw3rBPPnxDie0U,3911
6
- weco-0.2.7.dist-info/licenses/LICENSE,sha256=p_GQqJBvuZgkLNboYKyH-5dhpTDlKs2wq2TVM55WrWE,1065
7
- weco-0.2.7.dist-info/METADATA,sha256=AlBfVky2jZ6C2MnB8k_WkSMyucTeTE1Ias3y3_4bVsE,14577
8
- weco-0.2.7.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
9
- weco-0.2.7.dist-info/entry_points.txt,sha256=ixJ2uClALbCpBvnIR6BXMNck8SHAab8eVkM9pIUowcs,39
10
- weco-0.2.7.dist-info/top_level.txt,sha256=F0N7v6e2zBSlsorFv-arAq2yDxQbzX3KVO8GxYhPUeE,5
11
- weco-0.2.7.dist-info/RECORD,,