weco 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- weco/__init__.py +1 -1
- weco/cli.py +11 -3
- weco/panels.py +16 -10
- {weco-0.2.5.dist-info → weco-0.2.7.dist-info}/METADATA +106 -15
- weco-0.2.7.dist-info/RECORD +11 -0
- weco-0.2.5.dist-info/RECORD +0 -11
- {weco-0.2.5.dist-info → weco-0.2.7.dist-info}/WHEEL +0 -0
- {weco-0.2.5.dist-info → weco-0.2.7.dist-info}/entry_points.txt +0 -0
- {weco-0.2.5.dist-info → weco-0.2.7.dist-info}/licenses/LICENSE +0 -0
- {weco-0.2.5.dist-info → weco-0.2.7.dist-info}/top_level.txt +0 -0
weco/__init__.py
CHANGED
weco/cli.py
CHANGED
|
@@ -50,6 +50,7 @@ def main() -> None:
|
|
|
50
50
|
)
|
|
51
51
|
parser.add_argument("--steps", type=int, required=True, help="Number of steps to run")
|
|
52
52
|
parser.add_argument("--model", type=str, required=True, help="Model to use for optimization")
|
|
53
|
+
parser.add_argument("--log-dir", type=str, default=".runs", help="Directory to store logs and results")
|
|
53
54
|
parser.add_argument(
|
|
54
55
|
"--additional-instructions",
|
|
55
56
|
default=None,
|
|
@@ -83,7 +84,9 @@ def main() -> None:
|
|
|
83
84
|
timeout = 800
|
|
84
85
|
|
|
85
86
|
# Initialize panels
|
|
86
|
-
summary_panel = SummaryPanel(
|
|
87
|
+
summary_panel = SummaryPanel(
|
|
88
|
+
maximize=maximize, metric_name=metric_name, total_steps=steps, model=args.model, runs_dir=args.log_dir
|
|
89
|
+
)
|
|
87
90
|
plan_panel = PlanPanel()
|
|
88
91
|
solution_panels = SolutionPanels(metric_name=metric_name)
|
|
89
92
|
eval_output_panel = EvaluationOutputPanel()
|
|
@@ -112,7 +115,7 @@ def main() -> None:
|
|
|
112
115
|
with Live(layout, refresh_per_second=refresh_rate, screen=True) as live:
|
|
113
116
|
# Define the runs directory (.runs/<session-id>)
|
|
114
117
|
session_id = session_response["session_id"]
|
|
115
|
-
runs_dir = pathlib.Path(
|
|
118
|
+
runs_dir = pathlib.Path(args.log_dir) / session_id
|
|
116
119
|
runs_dir.mkdir(parents=True, exist_ok=True)
|
|
117
120
|
|
|
118
121
|
# Save the original code (.runs/<session-id>/original.py)
|
|
@@ -321,7 +324,12 @@ def main() -> None:
|
|
|
321
324
|
_, best_solution_panel = solution_panels.get_display(current_step=steps)
|
|
322
325
|
|
|
323
326
|
# Update the end optimization layout
|
|
324
|
-
|
|
327
|
+
final_message = (
|
|
328
|
+
f"{summary_panel.metric_name.capitalize()} {'maximized' if summary_panel.maximize else 'minimized'}! Best solution {summary_panel.metric_name.lower()} = [green]{status_response['best_result']['metric_value']}[/] 🏆"
|
|
329
|
+
if best_solution_node is not None
|
|
330
|
+
else "[red] No solution found.[/]"
|
|
331
|
+
)
|
|
332
|
+
end_optimization_layout["summary"].update(summary_panel.get_display(final_message=final_message))
|
|
325
333
|
end_optimization_layout["tree"].update(tree_panel.get_display())
|
|
326
334
|
end_optimization_layout["best_solution"].update(best_solution_panel)
|
|
327
335
|
|
weco/panels.py
CHANGED
|
@@ -11,13 +11,16 @@ from .utils import format_number
|
|
|
11
11
|
class SummaryPanel:
|
|
12
12
|
"""Holds a summary of the optimization session."""
|
|
13
13
|
|
|
14
|
-
def __init__(self, maximize: bool, metric_name: str, total_steps: int, model: str, session_id: str = None):
|
|
15
|
-
self.
|
|
14
|
+
def __init__(self, maximize: bool, metric_name: str, total_steps: int, model: str, runs_dir: str, session_id: str = None):
|
|
15
|
+
self.maximize = maximize
|
|
16
|
+
self.metric_name = metric_name
|
|
17
|
+
self.goal = ("Maximizing" if self.maximize else "Minimizing") + f" {self.metric_name}..."
|
|
16
18
|
self.total_input_tokens = 0
|
|
17
19
|
self.total_output_tokens = 0
|
|
18
20
|
self.total_steps = total_steps
|
|
19
21
|
self.model = model
|
|
20
|
-
self.
|
|
22
|
+
self.runs_dir = runs_dir
|
|
23
|
+
self.session_id = session_id if session_id is not None else "N/A"
|
|
21
24
|
self.progress = Progress(
|
|
22
25
|
TextColumn("[progress.description]{task.description}"),
|
|
23
26
|
BarColumn(bar_width=20),
|
|
@@ -39,24 +42,27 @@ class SummaryPanel:
|
|
|
39
42
|
self.total_input_tokens += usage["input_tokens"]
|
|
40
43
|
self.total_output_tokens += usage["output_tokens"]
|
|
41
44
|
|
|
42
|
-
def get_display(self) -> Panel:
|
|
45
|
+
def get_display(self, final_message: Optional[str] = None) -> Panel:
|
|
43
46
|
"""Create a summary panel with the relevant information."""
|
|
44
47
|
layout = Layout(name="summary")
|
|
45
48
|
summary_table = Table(show_header=False, box=None, padding=(0, 1))
|
|
46
49
|
# Goal
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
summary_table.add_row(f"[bold cyan]Logs:[/] [blue underline]{runs_dir}[/]")
|
|
50
|
+
if final_message is not None:
|
|
51
|
+
summary_table.add_row(f"[bold cyan]Result:[/] {final_message}")
|
|
52
|
+
else:
|
|
53
|
+
summary_table.add_row(f"[bold cyan]Goal:[/] {self.goal}")
|
|
52
54
|
summary_table.add_row("")
|
|
53
55
|
# Model used
|
|
54
|
-
summary_table.add_row(f"[bold cyan]Model:[/]
|
|
56
|
+
summary_table.add_row(f"[bold cyan]Model:[/] {self.model}")
|
|
57
|
+
summary_table.add_row("")
|
|
58
|
+
# Log directory
|
|
59
|
+
summary_table.add_row(f"[bold cyan]Logs:[/] [blue underline]{self.runs_dir}/{self.session_id}[/]")
|
|
55
60
|
summary_table.add_row("")
|
|
56
61
|
# Token counts
|
|
57
62
|
summary_table.add_row(
|
|
58
63
|
f"[bold cyan]Tokens:[/] ↑[yellow]{format_number(self.total_input_tokens)}[/] ↓[yellow]{format_number(self.total_output_tokens)}[/] = [green]{format_number(self.total_input_tokens + self.total_output_tokens)}[/]"
|
|
59
64
|
)
|
|
65
|
+
summary_table.add_row("")
|
|
60
66
|
# Progress bar
|
|
61
67
|
summary_table.add_row(self.progress)
|
|
62
68
|
|
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: weco
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.7
|
|
4
4
|
Summary: Documentation for `weco`, a CLI for using Weco AI's code optimizer.
|
|
5
|
-
Author-email: Weco AI Team <
|
|
5
|
+
Author-email: Weco AI Team <contact@weco.ai>
|
|
6
6
|
License: MIT
|
|
7
7
|
Project-URL: Homepage, https://github.com/WecoAI/weco-cli
|
|
8
8
|
Keywords: AI,Code Optimization,Code Generation
|
|
@@ -99,32 +99,111 @@ Here's how `weco` can be applied to common ML engineering tasks:
|
|
|
99
99
|
|
|
100
100
|
### Examples
|
|
101
101
|
|
|
102
|
-
**Example 1: Optimizing PyTorch operations**
|
|
102
|
+
**Example 1: Optimizing PyTorch simple operations**
|
|
103
103
|
|
|
104
104
|
```bash
|
|
105
|
-
|
|
106
|
-
|
|
105
|
+
cd examples/hello-kernel-world
|
|
106
|
+
pip install torch
|
|
107
|
+
weco --source optimize.py \
|
|
108
|
+
--eval-command "python evaluate.py --solution-path optimize.py --device cpu" \
|
|
107
109
|
--metric speedup \
|
|
108
110
|
--maximize true \
|
|
109
111
|
--steps 15 \
|
|
110
|
-
--model
|
|
112
|
+
--model gemini-2.5-pro-exp-03-25 \
|
|
111
113
|
--additional-instructions "Fuse operations in the forward method while ensuring the max float deviation remains small. Maintain the same format of the code."
|
|
112
114
|
```
|
|
113
115
|
|
|
116
|
+
Note that if you have an NVIDIA gpu, change the device to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
|
|
117
|
+
|
|
114
118
|
**Example 2: Optimizing MLX operations with instructions from a file**
|
|
115
119
|
|
|
116
|
-
Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
|
|
120
|
+
Lets optimize a 2D convolution operation in [`mlx`](https://github.com/ml-explore/mlx) using [Metal](https://developer.apple.com/documentation/metal/). Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
|
|
117
121
|
|
|
118
122
|
```bash
|
|
119
|
-
|
|
120
|
-
|
|
123
|
+
cd examples/metal
|
|
124
|
+
pip install mlx
|
|
125
|
+
weco --source optimize.py \
|
|
126
|
+
--eval-command "python evaluate.py --solution-path optimize.py" \
|
|
121
127
|
--metric speedup \
|
|
122
128
|
--maximize true \
|
|
123
129
|
--steps 30 \
|
|
124
|
-
--model
|
|
125
|
-
--additional-instructions examples
|
|
130
|
+
--model gemini-2.5-pro-exp-03-25 \
|
|
131
|
+
--additional-instructions examples.rst
|
|
126
132
|
```
|
|
127
133
|
|
|
134
|
+
**Example 3: Level Agnostic Optimization: Causal Self Attention with Triton & CUDA**
|
|
135
|
+
|
|
136
|
+
Given how useful causal multihead self attention is to transformers, we've seen its wide adoption across ML engineering and AI research. Its great to keep things at a high-level (in PyTorch) when doing research, but when moving to production you often need to write highly customized low-level kernels to make things run as fast as they can. The `weco` CLI can optimize kernels across a variety of different abstraction levels and frameworks. Example 2 uses Metal but lets explore two more frameworks:
|
|
137
|
+
|
|
138
|
+
1. [Triton](https://github.com/triton-lang/triton)
|
|
139
|
+
```bash
|
|
140
|
+
cd examples/triton
|
|
141
|
+
pip install torch triton
|
|
142
|
+
weco --source optimize.py \
|
|
143
|
+
--eval-command "python evaluate.py --solution-path optimize.py" \
|
|
144
|
+
--metric speedup \
|
|
145
|
+
--maximize true \
|
|
146
|
+
--steps 30 \
|
|
147
|
+
--model gemini-2.5-pro-exp-03-25 \
|
|
148
|
+
--additional-instructions "Use triton to optimize the code while ensuring a small max float diff. Maintain the same code format."
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
2. [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
|
|
152
|
+
```bash
|
|
153
|
+
cd examples/cuda
|
|
154
|
+
pip install torch
|
|
155
|
+
weco --source optimize.py \
|
|
156
|
+
--eval-command "python evaluate.py --solution-path optimize.py" \
|
|
157
|
+
--metric speedup \
|
|
158
|
+
--maximize true \
|
|
159
|
+
--steps 30 \
|
|
160
|
+
--model gemini-2.5-pro-exp-03-25 \
|
|
161
|
+
--additional-instructions guide.md
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
**Example 4: Optimizing a Classification Model**
|
|
165
|
+
|
|
166
|
+
This example demonstrates optimizing a script for a Kaggle competition ([Spaceship Titanic](https://www.kaggle.com/competitions/spaceship-titanic/overview)) to improve classification accuracy. The additional instructions are provided via a separate file (`examples/spaceship-titanic/README.md`).
|
|
167
|
+
|
|
168
|
+
First, install the requirements for the example environment:
|
|
169
|
+
```bash
|
|
170
|
+
pip install -r examples/spaceship-titanic/requirements-test.txt
|
|
171
|
+
```
|
|
172
|
+
And run utility function once to prepare the dataset
|
|
173
|
+
```bash
|
|
174
|
+
python examples/spaceship-titanic/utils.py
|
|
175
|
+
```
|
|
176
|
+
|
|
177
|
+
You should see the following structure at `examples/spaceship-titanic`. You need to prepare the kaggle credentials for downloading the dataset.
|
|
178
|
+
```
|
|
179
|
+
.
|
|
180
|
+
├── baseline.py
|
|
181
|
+
├── evaluate.py
|
|
182
|
+
├── optimize.py
|
|
183
|
+
├── private
|
|
184
|
+
│ └── test.csv
|
|
185
|
+
├── public
|
|
186
|
+
│ ├── sample_submission.csv
|
|
187
|
+
│ ├── test.csv
|
|
188
|
+
│ └── train.csv
|
|
189
|
+
├── README.md
|
|
190
|
+
├── requirements-test.txt
|
|
191
|
+
└── utils.py
|
|
192
|
+
```
|
|
193
|
+
|
|
194
|
+
Then, execute the optimization command:
|
|
195
|
+
```bash
|
|
196
|
+
weco --source examples/spaceship-titanic/optimize.py \
|
|
197
|
+
--eval-command "python examples/spaceship-titanic/optimize.py && python examples/spaceship-titanic/evaluate.py" \
|
|
198
|
+
--metric accuracy \
|
|
199
|
+
--maximize true \
|
|
200
|
+
--steps 10 \
|
|
201
|
+
--model gemini-2.5-pro-exp-03-25 \
|
|
202
|
+
--additional-instructions examples/spaceship-titanic/README.md
|
|
203
|
+
```
|
|
204
|
+
|
|
205
|
+
*The [baseline.py](examples/spaceship-titanic/baseline.py) is provided as a start point for optimization*
|
|
206
|
+
|
|
128
207
|
---
|
|
129
208
|
|
|
130
209
|
### Command Line Arguments
|
|
@@ -132,16 +211,28 @@ weco --source examples/simple-mlx/optimize.py \
|
|
|
132
211
|
| Argument | Description | Required |
|
|
133
212
|
| :-------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------- |
|
|
134
213
|
| `--source` | Path to the source code file that will be optimized (e.g., `optimize.py`). | Yes |
|
|
135
|
-
| `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below.
|
|
136
|
-
| `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`.
|
|
214
|
+
| `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
|
|
215
|
+
| `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
|
|
137
216
|
| `--maximize` | Whether to maximize (`true`) or minimize (`false`) the metric. | Yes |
|
|
138
217
|
| `--steps` | Number of optimization steps (LLM iterations) to run. | Yes |
|
|
139
|
-
| `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25
|
|
140
|
-
| `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM.
|
|
218
|
+
| `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`.| Yes |
|
|
219
|
+
| `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
|
|
220
|
+
| `--log-dir` | (Optional) Path to the directory to log intermediate steps and final optimization result. Defaults to `.runs/`. | No |
|
|
141
221
|
|
|
142
222
|
---
|
|
143
223
|
|
|
224
|
+
### Performance & Expectations
|
|
225
|
+
|
|
226
|
+
Weco, powered by the AIDE algorithm, optimizes code iteratively based on your evaluation results. Achieving significant improvements, especially on complex research-level tasks, often requires substantial exploration time.
|
|
227
|
+
|
|
228
|
+
The following plot from the independent [Research Engineering Benchmark (RE-Bench)](https://metr.org/AI_R_D_Evaluation_Report.pdf) report shows the performance of AIDE (the algorithm behind Weco) on challenging ML research engineering tasks over different time budgets.
|
|
229
|
+
<p align="center">
|
|
230
|
+
<img src="https://github.com/user-attachments/assets/ff0e471d-2f50-4e2d-b718-874862f533df" alt="RE-Bench Performance Across Time" width="60%"/>
|
|
231
|
+
</p>
|
|
144
232
|
|
|
233
|
+
As shown, AIDE demonstrates strong performance gains over time, surpassing lower human expert percentiles within hours and continuing to improve. This highlights the potential of evaluation-driven optimization but also indicates that reaching high levels of performance comparable to human experts on difficult benchmarks can take considerable time (tens of hours in this specific benchmark, corresponding to many `--steps` in the Weco CLI). Factor this into your planning when setting the number of `--steps` for your optimization runs.
|
|
234
|
+
|
|
235
|
+
---
|
|
145
236
|
|
|
146
237
|
### Important Note on Evaluation
|
|
147
238
|
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
weco/__init__.py,sha256=6ZYuD51wx6bytYdLFMvzihYrpBlSxiFbmuiEl0z_AFo,124
|
|
2
|
+
weco/api.py,sha256=8rIf2Fy3tN6GW7BG1CaggtfE9pW56I1erzwLCgawcVE,3511
|
|
3
|
+
weco/cli.py,sha256=h8FevpztBob7OziDTIKh4y9CSnehkHJp2ydts6V6DhM,17317
|
|
4
|
+
weco/panels.py,sha256=HHWmrnc2EJBJ8AEHb8mxlq30m-3q0j_4axc0r17sTnE,12349
|
|
5
|
+
weco/utils.py,sha256=hhIebUPnetFMfNSFfcsKVw1TSpeu_Zw3rBPPnxDie0U,3911
|
|
6
|
+
weco-0.2.7.dist-info/licenses/LICENSE,sha256=p_GQqJBvuZgkLNboYKyH-5dhpTDlKs2wq2TVM55WrWE,1065
|
|
7
|
+
weco-0.2.7.dist-info/METADATA,sha256=AlBfVky2jZ6C2MnB8k_WkSMyucTeTE1Ias3y3_4bVsE,14577
|
|
8
|
+
weco-0.2.7.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
9
|
+
weco-0.2.7.dist-info/entry_points.txt,sha256=ixJ2uClALbCpBvnIR6BXMNck8SHAab8eVkM9pIUowcs,39
|
|
10
|
+
weco-0.2.7.dist-info/top_level.txt,sha256=F0N7v6e2zBSlsorFv-arAq2yDxQbzX3KVO8GxYhPUeE,5
|
|
11
|
+
weco-0.2.7.dist-info/RECORD,,
|
weco-0.2.5.dist-info/RECORD
DELETED
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
weco/__init__.py,sha256=uqfsknG6Jxky4ddpuNn9SYN2lWNJloPDykqCjcmU1UQ,124
|
|
2
|
-
weco/api.py,sha256=8rIf2Fy3tN6GW7BG1CaggtfE9pW56I1erzwLCgawcVE,3511
|
|
3
|
-
weco/cli.py,sha256=rb01pl0Q8sLKBpZ9Qtlz044pEppJAa8CJkv2XM9zzFo,16753
|
|
4
|
-
weco/panels.py,sha256=5HrDrYzx_vDjV41mlZmOOZYxdJIXD5RzBBNKXxUOLEY,12022
|
|
5
|
-
weco/utils.py,sha256=hhIebUPnetFMfNSFfcsKVw1TSpeu_Zw3rBPPnxDie0U,3911
|
|
6
|
-
weco-0.2.5.dist-info/licenses/LICENSE,sha256=p_GQqJBvuZgkLNboYKyH-5dhpTDlKs2wq2TVM55WrWE,1065
|
|
7
|
-
weco-0.2.5.dist-info/METADATA,sha256=bjW2DWItTu3y_lmLllZIRz43hh5vMCi_u4FXW5eKz5E,9863
|
|
8
|
-
weco-0.2.5.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
9
|
-
weco-0.2.5.dist-info/entry_points.txt,sha256=ixJ2uClALbCpBvnIR6BXMNck8SHAab8eVkM9pIUowcs,39
|
|
10
|
-
weco-0.2.5.dist-info/top_level.txt,sha256=F0N7v6e2zBSlsorFv-arAq2yDxQbzX3KVO8GxYhPUeE,5
|
|
11
|
-
weco-0.2.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|