webscout 8.3.7__py3-none-any.whl → 2025.10.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (273) hide show
  1. webscout/AIauto.py +250 -250
  2. webscout/AIbase.py +379 -379
  3. webscout/AIutel.py +60 -60
  4. webscout/Bard.py +1012 -1012
  5. webscout/Bing_search.py +417 -417
  6. webscout/DWEBS.py +529 -529
  7. webscout/Extra/Act.md +309 -309
  8. webscout/Extra/GitToolkit/__init__.py +10 -10
  9. webscout/Extra/GitToolkit/gitapi/README.md +110 -110
  10. webscout/Extra/GitToolkit/gitapi/__init__.py +11 -11
  11. webscout/Extra/GitToolkit/gitapi/repository.py +195 -195
  12. webscout/Extra/GitToolkit/gitapi/user.py +96 -96
  13. webscout/Extra/GitToolkit/gitapi/utils.py +61 -61
  14. webscout/Extra/YTToolkit/README.md +375 -375
  15. webscout/Extra/YTToolkit/YTdownloader.py +956 -956
  16. webscout/Extra/YTToolkit/__init__.py +2 -2
  17. webscout/Extra/YTToolkit/transcriber.py +475 -475
  18. webscout/Extra/YTToolkit/ytapi/README.md +44 -44
  19. webscout/Extra/YTToolkit/ytapi/__init__.py +6 -6
  20. webscout/Extra/YTToolkit/ytapi/channel.py +307 -307
  21. webscout/Extra/YTToolkit/ytapi/errors.py +13 -13
  22. webscout/Extra/YTToolkit/ytapi/extras.py +118 -118
  23. webscout/Extra/YTToolkit/ytapi/https.py +88 -88
  24. webscout/Extra/YTToolkit/ytapi/patterns.py +61 -61
  25. webscout/Extra/YTToolkit/ytapi/playlist.py +58 -58
  26. webscout/Extra/YTToolkit/ytapi/pool.py +7 -7
  27. webscout/Extra/YTToolkit/ytapi/query.py +39 -39
  28. webscout/Extra/YTToolkit/ytapi/stream.py +62 -62
  29. webscout/Extra/YTToolkit/ytapi/utils.py +62 -62
  30. webscout/Extra/YTToolkit/ytapi/video.py +232 -232
  31. webscout/Extra/autocoder/__init__.py +9 -9
  32. webscout/Extra/autocoder/autocoder.py +1105 -1105
  33. webscout/Extra/autocoder/autocoder_utiles.py +332 -332
  34. webscout/Extra/gguf.md +429 -429
  35. webscout/Extra/gguf.py +1213 -1213
  36. webscout/Extra/tempmail/README.md +487 -487
  37. webscout/Extra/tempmail/__init__.py +27 -27
  38. webscout/Extra/tempmail/async_utils.py +140 -140
  39. webscout/Extra/tempmail/base.py +160 -160
  40. webscout/Extra/tempmail/cli.py +186 -186
  41. webscout/Extra/tempmail/emailnator.py +84 -84
  42. webscout/Extra/tempmail/mail_tm.py +360 -360
  43. webscout/Extra/tempmail/temp_mail_io.py +291 -291
  44. webscout/Extra/weather.md +281 -281
  45. webscout/Extra/weather.py +193 -193
  46. webscout/Litlogger/README.md +10 -10
  47. webscout/Litlogger/__init__.py +15 -15
  48. webscout/Litlogger/formats.py +13 -13
  49. webscout/Litlogger/handlers.py +121 -121
  50. webscout/Litlogger/levels.py +13 -13
  51. webscout/Litlogger/logger.py +134 -134
  52. webscout/Provider/AISEARCH/Perplexity.py +332 -332
  53. webscout/Provider/AISEARCH/README.md +279 -279
  54. webscout/Provider/AISEARCH/__init__.py +16 -1
  55. webscout/Provider/AISEARCH/felo_search.py +206 -206
  56. webscout/Provider/AISEARCH/genspark_search.py +323 -323
  57. webscout/Provider/AISEARCH/hika_search.py +185 -185
  58. webscout/Provider/AISEARCH/iask_search.py +410 -410
  59. webscout/Provider/AISEARCH/monica_search.py +219 -219
  60. webscout/Provider/AISEARCH/scira_search.py +316 -316
  61. webscout/Provider/AISEARCH/stellar_search.py +177 -177
  62. webscout/Provider/AISEARCH/webpilotai_search.py +255 -255
  63. webscout/Provider/Aitopia.py +314 -314
  64. webscout/Provider/Apriel.py +306 -0
  65. webscout/Provider/ChatGPTClone.py +236 -236
  66. webscout/Provider/ChatSandbox.py +343 -343
  67. webscout/Provider/Cloudflare.py +324 -324
  68. webscout/Provider/Cohere.py +208 -208
  69. webscout/Provider/Deepinfra.py +370 -366
  70. webscout/Provider/ExaAI.py +260 -260
  71. webscout/Provider/ExaChat.py +308 -308
  72. webscout/Provider/Flowith.py +221 -221
  73. webscout/Provider/GMI.py +293 -0
  74. webscout/Provider/Gemini.py +164 -164
  75. webscout/Provider/GeminiProxy.py +167 -167
  76. webscout/Provider/GithubChat.py +371 -372
  77. webscout/Provider/Groq.py +800 -800
  78. webscout/Provider/HeckAI.py +383 -383
  79. webscout/Provider/Jadve.py +282 -282
  80. webscout/Provider/K2Think.py +307 -307
  81. webscout/Provider/Koboldai.py +205 -205
  82. webscout/Provider/LambdaChat.py +423 -423
  83. webscout/Provider/Nemotron.py +244 -244
  84. webscout/Provider/Netwrck.py +248 -248
  85. webscout/Provider/OLLAMA.py +395 -395
  86. webscout/Provider/OPENAI/Cloudflare.py +393 -393
  87. webscout/Provider/OPENAI/FalconH1.py +451 -451
  88. webscout/Provider/OPENAI/FreeGemini.py +296 -296
  89. webscout/Provider/OPENAI/K2Think.py +431 -431
  90. webscout/Provider/OPENAI/NEMOTRON.py +240 -240
  91. webscout/Provider/OPENAI/PI.py +427 -427
  92. webscout/Provider/OPENAI/README.md +959 -959
  93. webscout/Provider/OPENAI/TogetherAI.py +345 -345
  94. webscout/Provider/OPENAI/TwoAI.py +465 -465
  95. webscout/Provider/OPENAI/__init__.py +33 -18
  96. webscout/Provider/OPENAI/base.py +248 -248
  97. webscout/Provider/OPENAI/chatglm.py +528 -0
  98. webscout/Provider/OPENAI/chatgpt.py +592 -592
  99. webscout/Provider/OPENAI/chatgptclone.py +521 -521
  100. webscout/Provider/OPENAI/chatsandbox.py +202 -202
  101. webscout/Provider/OPENAI/deepinfra.py +318 -314
  102. webscout/Provider/OPENAI/e2b.py +1665 -1665
  103. webscout/Provider/OPENAI/exaai.py +420 -420
  104. webscout/Provider/OPENAI/exachat.py +452 -452
  105. webscout/Provider/OPENAI/friendli.py +232 -232
  106. webscout/Provider/OPENAI/{refact.py → gmi.py} +324 -274
  107. webscout/Provider/OPENAI/groq.py +364 -364
  108. webscout/Provider/OPENAI/heckai.py +314 -314
  109. webscout/Provider/OPENAI/llmchatco.py +337 -337
  110. webscout/Provider/OPENAI/netwrck.py +355 -355
  111. webscout/Provider/OPENAI/oivscode.py +290 -290
  112. webscout/Provider/OPENAI/opkfc.py +518 -518
  113. webscout/Provider/OPENAI/pydantic_imports.py +1 -1
  114. webscout/Provider/OPENAI/scirachat.py +535 -535
  115. webscout/Provider/OPENAI/sonus.py +308 -308
  116. webscout/Provider/OPENAI/standardinput.py +442 -442
  117. webscout/Provider/OPENAI/textpollinations.py +340 -340
  118. webscout/Provider/OPENAI/toolbaz.py +419 -416
  119. webscout/Provider/OPENAI/typefully.py +362 -362
  120. webscout/Provider/OPENAI/utils.py +295 -295
  121. webscout/Provider/OPENAI/venice.py +436 -436
  122. webscout/Provider/OPENAI/wisecat.py +387 -387
  123. webscout/Provider/OPENAI/writecream.py +166 -166
  124. webscout/Provider/OPENAI/x0gpt.py +378 -378
  125. webscout/Provider/OPENAI/yep.py +389 -389
  126. webscout/Provider/OpenGPT.py +230 -230
  127. webscout/Provider/Openai.py +243 -243
  128. webscout/Provider/PI.py +405 -405
  129. webscout/Provider/Perplexitylabs.py +430 -430
  130. webscout/Provider/QwenLM.py +272 -272
  131. webscout/Provider/STT/__init__.py +16 -1
  132. webscout/Provider/Sambanova.py +257 -257
  133. webscout/Provider/StandardInput.py +309 -309
  134. webscout/Provider/TTI/README.md +82 -82
  135. webscout/Provider/TTI/__init__.py +33 -18
  136. webscout/Provider/TTI/aiarta.py +413 -413
  137. webscout/Provider/TTI/base.py +136 -136
  138. webscout/Provider/TTI/bing.py +243 -243
  139. webscout/Provider/TTI/gpt1image.py +149 -149
  140. webscout/Provider/TTI/imagen.py +196 -196
  141. webscout/Provider/TTI/infip.py +211 -211
  142. webscout/Provider/TTI/magicstudio.py +232 -232
  143. webscout/Provider/TTI/monochat.py +219 -219
  144. webscout/Provider/TTI/piclumen.py +214 -214
  145. webscout/Provider/TTI/pixelmuse.py +232 -232
  146. webscout/Provider/TTI/pollinations.py +232 -232
  147. webscout/Provider/TTI/together.py +288 -288
  148. webscout/Provider/TTI/utils.py +12 -12
  149. webscout/Provider/TTI/venice.py +367 -367
  150. webscout/Provider/TTS/README.md +192 -192
  151. webscout/Provider/TTS/__init__.py +33 -18
  152. webscout/Provider/TTS/parler.py +110 -110
  153. webscout/Provider/TTS/streamElements.py +333 -333
  154. webscout/Provider/TTS/utils.py +280 -280
  155. webscout/Provider/TeachAnything.py +237 -237
  156. webscout/Provider/TextPollinationsAI.py +310 -310
  157. webscout/Provider/TogetherAI.py +356 -356
  158. webscout/Provider/TwoAI.py +312 -312
  159. webscout/Provider/TypliAI.py +311 -311
  160. webscout/Provider/UNFINISHED/ChatHub.py +208 -208
  161. webscout/Provider/UNFINISHED/ChutesAI.py +313 -313
  162. webscout/Provider/UNFINISHED/GizAI.py +294 -294
  163. webscout/Provider/UNFINISHED/Marcus.py +198 -198
  164. webscout/Provider/UNFINISHED/Qodo.py +477 -477
  165. webscout/Provider/UNFINISHED/VercelAIGateway.py +338 -338
  166. webscout/Provider/UNFINISHED/XenAI.py +324 -324
  167. webscout/Provider/UNFINISHED/Youchat.py +330 -330
  168. webscout/Provider/UNFINISHED/liner.py +334 -0
  169. webscout/Provider/UNFINISHED/liner_api_request.py +262 -262
  170. webscout/Provider/UNFINISHED/puterjs.py +634 -634
  171. webscout/Provider/UNFINISHED/samurai.py +223 -223
  172. webscout/Provider/UNFINISHED/test_lmarena.py +119 -119
  173. webscout/Provider/Venice.py +250 -250
  174. webscout/Provider/VercelAI.py +256 -256
  175. webscout/Provider/WiseCat.py +231 -231
  176. webscout/Provider/WrDoChat.py +366 -366
  177. webscout/Provider/__init__.py +33 -18
  178. webscout/Provider/ai4chat.py +174 -174
  179. webscout/Provider/akashgpt.py +331 -331
  180. webscout/Provider/cerebras.py +446 -446
  181. webscout/Provider/chatglm.py +394 -301
  182. webscout/Provider/cleeai.py +211 -211
  183. webscout/Provider/elmo.py +282 -282
  184. webscout/Provider/geminiapi.py +208 -208
  185. webscout/Provider/granite.py +261 -261
  186. webscout/Provider/hermes.py +263 -263
  187. webscout/Provider/julius.py +223 -223
  188. webscout/Provider/learnfastai.py +309 -309
  189. webscout/Provider/llama3mitril.py +214 -214
  190. webscout/Provider/llmchat.py +243 -243
  191. webscout/Provider/llmchatco.py +290 -290
  192. webscout/Provider/meta.py +801 -801
  193. webscout/Provider/oivscode.py +309 -309
  194. webscout/Provider/scira_chat.py +383 -383
  195. webscout/Provider/searchchat.py +292 -292
  196. webscout/Provider/sonus.py +258 -258
  197. webscout/Provider/toolbaz.py +370 -367
  198. webscout/Provider/turboseek.py +273 -273
  199. webscout/Provider/typefully.py +207 -207
  200. webscout/Provider/yep.py +372 -372
  201. webscout/__init__.py +30 -31
  202. webscout/__main__.py +5 -5
  203. webscout/auth/api_key_manager.py +189 -189
  204. webscout/auth/config.py +175 -175
  205. webscout/auth/models.py +185 -185
  206. webscout/auth/routes.py +664 -664
  207. webscout/auth/simple_logger.py +236 -236
  208. webscout/cli.py +523 -523
  209. webscout/conversation.py +438 -438
  210. webscout/exceptions.py +361 -361
  211. webscout/litagent/Readme.md +298 -298
  212. webscout/litagent/__init__.py +28 -28
  213. webscout/litagent/agent.py +581 -581
  214. webscout/litagent/constants.py +59 -59
  215. webscout/litprinter/__init__.py +58 -58
  216. webscout/models.py +181 -181
  217. webscout/optimizers.py +419 -419
  218. webscout/prompt_manager.py +288 -288
  219. webscout/sanitize.py +1078 -1078
  220. webscout/scout/README.md +401 -401
  221. webscout/scout/__init__.py +8 -8
  222. webscout/scout/core/__init__.py +6 -6
  223. webscout/scout/core/crawler.py +297 -297
  224. webscout/scout/core/scout.py +706 -706
  225. webscout/scout/core/search_result.py +95 -95
  226. webscout/scout/core/text_analyzer.py +62 -62
  227. webscout/scout/core/text_utils.py +277 -277
  228. webscout/scout/core/web_analyzer.py +51 -51
  229. webscout/scout/element.py +599 -599
  230. webscout/scout/parsers/__init__.py +69 -69
  231. webscout/scout/parsers/html5lib_parser.py +172 -172
  232. webscout/scout/parsers/html_parser.py +236 -236
  233. webscout/scout/parsers/lxml_parser.py +178 -178
  234. webscout/scout/utils.py +37 -37
  235. webscout/swiftcli/Readme.md +323 -323
  236. webscout/swiftcli/__init__.py +95 -95
  237. webscout/swiftcli/core/__init__.py +7 -7
  238. webscout/swiftcli/core/cli.py +308 -308
  239. webscout/swiftcli/core/context.py +104 -104
  240. webscout/swiftcli/core/group.py +241 -241
  241. webscout/swiftcli/decorators/__init__.py +28 -28
  242. webscout/swiftcli/decorators/command.py +221 -221
  243. webscout/swiftcli/decorators/options.py +220 -220
  244. webscout/swiftcli/decorators/output.py +302 -302
  245. webscout/swiftcli/exceptions.py +21 -21
  246. webscout/swiftcli/plugins/__init__.py +9 -9
  247. webscout/swiftcli/plugins/base.py +135 -135
  248. webscout/swiftcli/plugins/manager.py +269 -269
  249. webscout/swiftcli/utils/__init__.py +59 -59
  250. webscout/swiftcli/utils/formatting.py +252 -252
  251. webscout/swiftcli/utils/parsing.py +267 -267
  252. webscout/update_checker.py +117 -117
  253. webscout/version.py +1 -1
  254. webscout/webscout_search.py +1183 -1183
  255. webscout/webscout_search_async.py +649 -649
  256. webscout/yep_search.py +346 -346
  257. webscout/zeroart/README.md +89 -89
  258. webscout/zeroart/__init__.py +134 -134
  259. webscout/zeroart/base.py +66 -66
  260. webscout/zeroart/effects.py +100 -100
  261. webscout/zeroart/fonts.py +1238 -1238
  262. {webscout-8.3.7.dist-info → webscout-2025.10.11.dist-info}/METADATA +937 -937
  263. webscout-2025.10.11.dist-info/RECORD +300 -0
  264. webscout/Provider/AISEARCH/DeepFind.py +0 -254
  265. webscout/Provider/OPENAI/Qwen3.py +0 -303
  266. webscout/Provider/OPENAI/qodo.py +0 -630
  267. webscout/Provider/OPENAI/xenai.py +0 -514
  268. webscout/tempid.py +0 -134
  269. webscout-8.3.7.dist-info/RECORD +0 -301
  270. {webscout-8.3.7.dist-info → webscout-2025.10.11.dist-info}/WHEEL +0 -0
  271. {webscout-8.3.7.dist-info → webscout-2025.10.11.dist-info}/entry_points.txt +0 -0
  272. {webscout-8.3.7.dist-info → webscout-2025.10.11.dist-info}/licenses/LICENSE.md +0 -0
  273. {webscout-8.3.7.dist-info → webscout-2025.10.11.dist-info}/top_level.txt +0 -0
webscout/Extra/gguf.md CHANGED
@@ -1,430 +1,430 @@
1
- <div align="center">
2
- <a href="https://github.com/OEvortex/Webscout">
3
- <img src="https://img.shields.io/badge/WebScout-GGUF%20Converter-blue?style=for-the-badge&logo=python&logoColor=white" alt="GGUF Converter Logo">
4
- </a>
5
-
6
- <h1>GGUF Converter</h1>
7
-
8
- <p><strong>Convert Hugging Face models to GGUF format with advanced quantization options</strong></p>
9
-
10
- <p>
11
- Transform large language models from Hugging Face into optimized GGUF format for efficient inference on consumer hardware.
12
- Balance size, speed, and quality with multiple quantization methods.
13
- </p>
14
-
15
- <!-- Badges -->
16
- <p>
17
- <a href="https://github.com/ggerganov/llama.cpp"><img src="https://img.shields.io/badge/Powered%20by-llama.cpp-orange?style=flat-square" alt="Powered by llama.cpp"></a>
18
- <a href="https://huggingface.co/"><img src="https://img.shields.io/badge/Hugging%20Face-compatible-yellow?style=flat-square" alt="Hugging Face compatible"></a>
19
- <a href="#"><img src="https://img.shields.io/badge/GPU-acceleration-green?style=flat-square" alt="GPU acceleration"></a>
20
- </p>
21
- </div>
22
-
23
- <hr/>
24
-
25
- ## 📋 Table of Contents
26
-
27
- - [🌟 Features](#-features)
28
- - [⚙️ Installation](#️-installation)
29
- - [🛠️ Basic Usage](#️-basic-usage)
30
- - [🧩 Advanced Options](#-advanced-options)
31
- - [📊 Quantization Methods](#-quantization-methods)
32
- - [📏 Size & Quality Comparison](#-size--quality-comparison)
33
- - [📦 Hardware Requirements](#-hardware-requirements)
34
- - [⚡ Examples](#-examples)
35
- - [🔍 Troubleshooting](#-troubleshooting)
36
- - [🧠 Technical Details](#-technical-details)
37
-
38
- <hr/>
39
-
40
- ## 🌟 Features
41
-
42
- <details open>
43
- <summary><b>Core Capabilities</b></summary>
44
- <p>
45
-
46
- * **Multiple Quantization Methods**: Support for various precision levels from 2-bit to 16-bit floating point
47
- * **Importance Matrix Quantization**: Enhanced precision by focusing bits on the most important weights
48
- * **Model Splitting**: Split large models into manageable chunks for easier distribution
49
- * **Hardware Acceleration Detection**: Automatically detects and utilizes CUDA, Metal, OpenCL, Vulkan, and ROCm
50
- * **Hugging Face Integration**: Direct download from and upload to Hugging Face repositories
51
- * **README Generation**: Automatically creates documentation for your quantized models
52
- </p>
53
- </details>
54
-
55
- <hr/>
56
-
57
- ## ⚙️ Installation
58
-
59
- <div class="installation-box">
60
- <p>The GGUF Converter is included with the WebScout package:</p>
61
-
62
- ```bash
63
- pip install -U webscout
64
- ```
65
- </div>
66
-
67
- <hr/>
68
-
69
- ## 🛠️ Basic Usage
70
-
71
- The simplest way to convert a model is with the default settings:
72
-
73
- ```bash
74
- python -m webscout.Extra.gguf convert -m "organization/model-name"
75
- ```
76
-
77
- This will:
78
- 1. Download the model from Hugging Face
79
- 2. Convert it to GGUF format with q4_k_m quantization (a good balance of size and quality)
80
- 3. Save the converted model in your current directory
81
-
82
- <hr/>
83
-
84
- ## 🧩 Advanced Options
85
-
86
- <details open>
87
- <summary><b>Command Reference</b></summary>
88
- <p>
89
-
90
- The full command syntax is:
91
-
92
- ```
93
- python -m webscout.Extra.gguf convert [OPTIONS]
94
- ```
95
-
96
- | Option | Description | Default |
97
- |--------|-------------|---------|
98
- | `-m, --model-id` | The HuggingFace model ID (e.g., 'OEvortex/HelpingAI-Lite-1.5T') | **Required** |
99
- | `-u, --username` | Your HuggingFace username for uploads | None |
100
- | `-t, --token` | Your HuggingFace API token for uploads | None |
101
- | `-q, --quantization` | Comma-separated quantization methods | "q4_k_m" |
102
- | `-i, --use-imatrix` | Use importance matrix for quantization | False |
103
- | `--train-data` | Training data file for imatrix quantization | None |
104
- | `-s, --split-model` | Split the model into smaller chunks | False |
105
- | `--split-max-tensors` | Maximum number of tensors per file when splitting | 256 |
106
- | `--split-max-size` | Maximum file size when splitting (e.g., '256M', '5G') | None |
107
- </p>
108
- </details>
109
-
110
- <details>
111
- <summary><b>Multiple Quantization Methods</b></summary>
112
- <p>
113
-
114
- Apply multiple quantization methods at once:
115
-
116
- ```bash
117
- python -m webscout.Extra.gguf convert -m "organization/model-name" -q "q4_k_m,q5_k_m"
118
- ```
119
-
120
- This will create two versions of the model with different quantization methods.
121
- </p>
122
- </details>
123
-
124
- <details>
125
- <summary><b>Uploading to Hugging Face</b></summary>
126
- <p>
127
-
128
- Convert and upload the model to your Hugging Face account:
129
-
130
- ```bash
131
- python -m webscout.Extra.gguf convert -m "organization/model-name" -u "your-username" -t "your-token"
132
- ```
133
-
134
- This will create a new repository in your account named `model-name-GGUF` containing the converted model.
135
- </p>
136
- </details>
137
-
138
- <details>
139
- <summary><b>Importance Matrix Quantization</b></summary>
140
- <p>
141
-
142
- Use importance matrix for more efficient quantization:
143
-
144
- ```bash
145
- python -m webscout.Extra.gguf convert -m "organization/model-name" -i --train-data "train_data.txt"
146
- ```
147
-
148
- Importance matrix helps focus more bits on weights that matter most for the model's performance.
149
- </p>
150
- </details>
151
-
152
- <details>
153
- <summary><b>Model Splitting</b></summary>
154
- <p>
155
-
156
- Split large models for easier distribution:
157
-
158
- ```bash
159
- # Split by number of tensors
160
- python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-tensors 256
161
-
162
- # Split by file size
163
- python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-size "2G"
164
- ```
165
-
166
- This is useful for very large models that may be difficult to distribute as a single file.
167
- </p>
168
- </details>
169
-
170
- <hr/>
171
-
172
- ## 📊 Quantization Methods
173
-
174
- <details open>
175
- <summary><b>Standard Methods</b></summary>
176
- <p>
177
-
178
- | Method | Description |
179
- |--------|-------------|
180
- | `fp16` | 16-bit floating point - maximum accuracy, largest size |
181
- | `q2_k` | 2-bit quantization (smallest size, lowest accuracy) |
182
- | `q3_k_l` | 3-bit quantization (large) - balanced for size/accuracy |
183
- | `q3_k_m` | 3-bit quantization (medium) - good balance for most use cases |
184
- | `q3_k_s` | 3-bit quantization (small) - optimized for speed |
185
- | `q4_0` | 4-bit quantization (version 0) - standard 4-bit compression |
186
- | `q4_1` | 4-bit quantization (version 1) - improved accuracy over q4_0 |
187
- | `q4_k_m` | 4-bit quantization (medium) - balanced for most models |
188
- | `q4_k_s` | 4-bit quantization (small) - optimized for speed |
189
- | `q5_0` | 5-bit quantization (version 0) - high accuracy, larger size |
190
- | `q5_1` | 5-bit quantization (version 1) - improved accuracy over q5_0 |
191
- | `q5_k_m` | 5-bit quantization (medium) - best balance for quality/size |
192
- | `q5_k_s` | 5-bit quantization (small) - optimized for speed |
193
- | `q6_k` | 6-bit quantization - highest accuracy, larger size |
194
- | `q8_0` | 8-bit quantization - maximum accuracy, largest size |
195
- </p>
196
- </details>
197
-
198
- <details>
199
- <summary><b>Importance Matrix Methods</b></summary>
200
- <p>
201
-
202
- | Method | Description |
203
- |--------|-------------|
204
- | `iq3_m` | 3-bit imatrix quantization (medium) - balanced importance-based |
205
- | `iq3_xxs` | 3-bit imatrix quantization (extra extra small) - maximum compression |
206
- | `q4_k_m` | 4-bit imatrix quantization (medium) - balanced importance-based |
207
- | `q4_k_s` | 4-bit imatrix quantization (small) - optimized for speed |
208
- | `iq4_nl` | 4-bit imatrix quantization (non-linear) - best accuracy for 4-bit |
209
- | `iq4_xs` | 4-bit imatrix quantization (extra small) - maximum compression |
210
- | `q5_k_m` | 5-bit imatrix quantization (medium) - balanced importance-based |
211
- | `q5_k_s` | 5-bit imatrix quantization (small) - optimized for speed |
212
- </p>
213
- </details>
214
-
215
- <hr/>
216
-
217
- ## 📏 Size & Quality Comparison
218
-
219
- > **TIP:**
220
- > When choosing a quantization method, consider the tradeoff between model size and quality. Here's a quick guide:
221
-
222
- <div class="comparison-table">
223
-
224
- ### 1. Maximum Quality (largest size)
225
- - **fp16**: 100% of original size, best quality
226
- - **q8_0**: 50% of original size, nearly identical to fp16
227
-
228
- ### 2. Balanced Quality/Size
229
- - **q5_k_m with imatrix**: 31% of original size, excellent quality
230
- - **q4_k_m with imatrix**: 25% of original size, good quality for most use cases
231
-
232
- ### 3. Minimum Size (reduced quality)
233
- - **q3_k_s**: 18% of original size, acceptable for some tasks
234
- - **q2_k**: 12% of original size, significantly reduced quality
235
- </div>
236
-
237
- <hr/>
238
-
239
- ## 📦 Hardware Requirements
240
-
241
- Hardware requirements vary based on quantization method and model size:
242
-
243
- <details open>
244
- <summary><b>Memory Requirements</b></summary>
245
- <p>
246
-
247
- | Quantization | RAM Required |
248
- |--------------|--------------|
249
- | fp16 | ~2x model size |
250
- | q8_0 | ~1x model size |
251
- | q4_k_m | ~0.5x model size |
252
- | q2_k | ~0.25x model size |
253
-
254
- For example, a 7B parameter model requires:
255
- - fp16: ~14GB RAM
256
- - q4_k_m: ~3.5GB RAM
257
- </p>
258
- </details>
259
-
260
- <details>
261
- <summary><b>Hardware Acceleration</b></summary>
262
- <p>
263
-
264
- The converter automatically detects and utilizes:
265
- - **CUDA** for NVIDIA GPUs
266
- - **Metal** for Apple Silicon and AMD GPUs on macOS
267
- - **OpenCL** for cross-platform GPU acceleration
268
- - **Vulkan** for cross-platform GPU acceleration
269
- - **ROCm** for AMD GPUs on Linux
270
-
271
- If no acceleration is available, the converter will use CPU-only mode.
272
- </p>
273
- </details>
274
-
275
- > **NOTE:**
276
- > **GPU acceleration is highly recommended** for converting larger models (13B+).
277
-
278
- <hr/>
279
-
280
- ## ⚡ Examples
281
-
282
- <details open>
283
- <summary><b>Basic Conversion with Upload</b></summary>
284
- <p>
285
-
286
- ```bash
287
- python -m webscout.Extra.gguf convert \
288
- -m "mistralai/Mistral-7B-Instruct-v0.2" \
289
- -q "q4_k_m" \
290
- -u "your-username" \
291
- -t "your-token"
292
- ```
293
-
294
- This will convert Mistral-7B to q4_k_m quantization and upload it to your Hugging Face account.
295
- </p>
296
- </details>
297
-
298
- <details>
299
- <summary><b>Multiple Quantizations with Importance Matrix</b></summary>
300
- <p>
301
-
302
- ```bash
303
- python -m webscout.Extra.gguf convert \
304
- -m "mistralai/Mistral-7B-Instruct-v0.2" \
305
- -q "q4_k_m,q5_k_m" \
306
- -i \
307
- --train-data "my_training_data.txt"
308
- ```
309
-
310
- This will create two versions of the model with different quantizations, both using importance matrix.
311
- </p>
312
- </details>
313
-
314
- <details>
315
- <summary><b>Split Large Model</b></summary>
316
- <p>
317
-
318
- ```bash
319
- python -m webscout.Extra.gguf convert \
320
- -m "meta-llama/Llama-2-70b-chat-hf" \
321
- -q "q4_k_m" \
322
- -s \
323
- --split-max-size "4G"
324
- ```
325
-
326
- This will split the large 70B model into multiple files, each no larger than 4GB.
327
- </p>
328
- </details>
329
-
330
- <hr/>
331
-
332
- ## 🔍 Troubleshooting
333
-
334
- <details>
335
- <summary><b>Missing Dependencies</b></summary>
336
- <p>
337
-
338
- ```
339
- Error: Missing required dependencies: git, cmake
340
- ```
341
-
342
- **Solution:** Install the required system dependencies:
343
-
344
- - **Ubuntu/Debian:** `sudo apt install git cmake python3-dev build-essential`
345
- - **macOS:** `brew install git cmake`
346
- - **Windows:** Install Git and CMake from their respective websites
347
-
348
- For hardware acceleration, install relevant drivers (CUDA, ROCm, etc.)
349
- </p>
350
- </details>
351
-
352
- <details>
353
- <summary><b>Out of Memory</b></summary>
354
- <p>
355
-
356
- ```
357
- Error: CUDA out of memory
358
- ```
359
-
360
- **Solutions:**
361
- 1. Try a lower precision quantization method: `q3_k_s` or `q2_k`
362
- 2. Enable model splitting with `-s`
363
- 3. Increase your system's swap space/virtual memory
364
- 4. Use a machine with more RAM
365
- </p>
366
- </details>
367
-
368
- <details>
369
- <summary><b>Download Failures</b></summary>
370
- <p>
371
-
372
- ```
373
- Error: Failed to download model
374
- ```
375
-
376
- **Solutions:**
377
- 1. Check your internet connection
378
- 2. Verify you have access to the model on Hugging Face
379
- 3. Try using a Hugging Face token with `-t`
380
- 4. Check if the model repository exists and is public
381
- </p>
382
- </details>
383
-
384
- <details>
385
- <summary><b>Build Failures</b></summary>
386
- <p>
387
-
388
- ```
389
- Error: Failed to build llama.cpp
390
- ```
391
-
392
- **Solutions:**
393
- 1. Check if you have a C++ compiler installed
394
- 2. Ensure you have sufficient disk space
395
- 3. Try building with CPU-only mode if GPU builds fail
396
- 4. Update your GPU drivers if using acceleration
397
- </p>
398
- </details>
399
-
400
- <hr/>
401
-
402
- ## 🧠 Technical Details
403
-
404
- The converter works by following these steps:
405
-
406
- 1. **Setup**: Clone and build llama.cpp with appropriate hardware acceleration
407
- 2. **Download**: Fetch the model from Hugging Face
408
- 3. **Convert**: Transform the model to fp16 GGUF format
409
- 4. **Quantize**: Apply the requested quantization methods
410
- 5. **Split**: Optionally split the model into smaller chunks
411
- 6. **Upload**: If credentials are provided, upload to Hugging Face
412
-
413
- <details>
414
- <summary><b>Advanced Configuration</b></summary>
415
- <p>
416
-
417
- For special cases, you may want to modify llama.cpp's build parameters. The converter automatically detects and enables available hardware acceleration, but you can also build llama.cpp manually with custom options before running the converter.
418
- </p>
419
- </details>
420
-
421
- <hr/>
422
-
423
- <div align="center">
424
- <p>
425
- <a href="https://github.com/OEvortex/Webscout">🔗 Part of the WebScout Project</a> |
426
- <a href="https://github.com/ggerganov/llama.cpp">🚀 Powered by llama.cpp</a>
427
- </p>
428
-
429
- <p>Made with ❤️ by the Webscout team</p>
1
+ <div align="center">
2
+ <a href="https://github.com/OEvortex/Webscout">
3
+ <img src="https://img.shields.io/badge/WebScout-GGUF%20Converter-blue?style=for-the-badge&logo=python&logoColor=white" alt="GGUF Converter Logo">
4
+ </a>
5
+
6
+ <h1>GGUF Converter</h1>
7
+
8
+ <p><strong>Convert Hugging Face models to GGUF format with advanced quantization options</strong></p>
9
+
10
+ <p>
11
+ Transform large language models from Hugging Face into optimized GGUF format for efficient inference on consumer hardware.
12
+ Balance size, speed, and quality with multiple quantization methods.
13
+ </p>
14
+
15
+ <!-- Badges -->
16
+ <p>
17
+ <a href="https://github.com/ggerganov/llama.cpp"><img src="https://img.shields.io/badge/Powered%20by-llama.cpp-orange?style=flat-square" alt="Powered by llama.cpp"></a>
18
+ <a href="https://huggingface.co/"><img src="https://img.shields.io/badge/Hugging%20Face-compatible-yellow?style=flat-square" alt="Hugging Face compatible"></a>
19
+ <a href="#"><img src="https://img.shields.io/badge/GPU-acceleration-green?style=flat-square" alt="GPU acceleration"></a>
20
+ </p>
21
+ </div>
22
+
23
+ <hr/>
24
+
25
+ ## 📋 Table of Contents
26
+
27
+ - [🌟 Features](#-features)
28
+ - [⚙️ Installation](#️-installation)
29
+ - [🛠️ Basic Usage](#️-basic-usage)
30
+ - [🧩 Advanced Options](#-advanced-options)
31
+ - [📊 Quantization Methods](#-quantization-methods)
32
+ - [📏 Size & Quality Comparison](#-size--quality-comparison)
33
+ - [📦 Hardware Requirements](#-hardware-requirements)
34
+ - [⚡ Examples](#-examples)
35
+ - [🔍 Troubleshooting](#-troubleshooting)
36
+ - [🧠 Technical Details](#-technical-details)
37
+
38
+ <hr/>
39
+
40
+ ## 🌟 Features
41
+
42
+ <details open>
43
+ <summary><b>Core Capabilities</b></summary>
44
+ <p>
45
+
46
+ * **Multiple Quantization Methods**: Support for various precision levels from 2-bit to 16-bit floating point
47
+ * **Importance Matrix Quantization**: Enhanced precision by focusing bits on the most important weights
48
+ * **Model Splitting**: Split large models into manageable chunks for easier distribution
49
+ * **Hardware Acceleration Detection**: Automatically detects and utilizes CUDA, Metal, OpenCL, Vulkan, and ROCm
50
+ * **Hugging Face Integration**: Direct download from and upload to Hugging Face repositories
51
+ * **README Generation**: Automatically creates documentation for your quantized models
52
+ </p>
53
+ </details>
54
+
55
+ <hr/>
56
+
57
+ ## ⚙️ Installation
58
+
59
+ <div class="installation-box">
60
+ <p>The GGUF Converter is included with the WebScout package:</p>
61
+
62
+ ```bash
63
+ pip install -U webscout
64
+ ```
65
+ </div>
66
+
67
+ <hr/>
68
+
69
+ ## 🛠️ Basic Usage
70
+
71
+ The simplest way to convert a model is with the default settings:
72
+
73
+ ```bash
74
+ python -m webscout.Extra.gguf convert -m "organization/model-name"
75
+ ```
76
+
77
+ This will:
78
+ 1. Download the model from Hugging Face
79
+ 2. Convert it to GGUF format with q4_k_m quantization (a good balance of size and quality)
80
+ 3. Save the converted model in your current directory
81
+
82
+ <hr/>
83
+
84
+ ## 🧩 Advanced Options
85
+
86
+ <details open>
87
+ <summary><b>Command Reference</b></summary>
88
+ <p>
89
+
90
+ The full command syntax is:
91
+
92
+ ```
93
+ python -m webscout.Extra.gguf convert [OPTIONS]
94
+ ```
95
+
96
+ | Option | Description | Default |
97
+ |--------|-------------|---------|
98
+ | `-m, --model-id` | The HuggingFace model ID (e.g., 'OEvortex/HelpingAI-Lite-1.5T') | **Required** |
99
+ | `-u, --username` | Your HuggingFace username for uploads | None |
100
+ | `-t, --token` | Your HuggingFace API token for uploads | None |
101
+ | `-q, --quantization` | Comma-separated quantization methods | "q4_k_m" |
102
+ | `-i, --use-imatrix` | Use importance matrix for quantization | False |
103
+ | `--train-data` | Training data file for imatrix quantization | None |
104
+ | `-s, --split-model` | Split the model into smaller chunks | False |
105
+ | `--split-max-tensors` | Maximum number of tensors per file when splitting | 256 |
106
+ | `--split-max-size` | Maximum file size when splitting (e.g., '256M', '5G') | None |
107
+ </p>
108
+ </details>
109
+
110
+ <details>
111
+ <summary><b>Multiple Quantization Methods</b></summary>
112
+ <p>
113
+
114
+ Apply multiple quantization methods at once:
115
+
116
+ ```bash
117
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -q "q4_k_m,q5_k_m"
118
+ ```
119
+
120
+ This will create two versions of the model with different quantization methods.
121
+ </p>
122
+ </details>
123
+
124
+ <details>
125
+ <summary><b>Uploading to Hugging Face</b></summary>
126
+ <p>
127
+
128
+ Convert and upload the model to your Hugging Face account:
129
+
130
+ ```bash
131
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -u "your-username" -t "your-token"
132
+ ```
133
+
134
+ This will create a new repository in your account named `model-name-GGUF` containing the converted model.
135
+ </p>
136
+ </details>
137
+
138
+ <details>
139
+ <summary><b>Importance Matrix Quantization</b></summary>
140
+ <p>
141
+
142
+ Use importance matrix for more efficient quantization:
143
+
144
+ ```bash
145
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -i --train-data "train_data.txt"
146
+ ```
147
+
148
+ Importance matrix helps focus more bits on weights that matter most for the model's performance.
149
+ </p>
150
+ </details>
151
+
152
+ <details>
153
+ <summary><b>Model Splitting</b></summary>
154
+ <p>
155
+
156
+ Split large models for easier distribution:
157
+
158
+ ```bash
159
+ # Split by number of tensors
160
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-tensors 256
161
+
162
+ # Split by file size
163
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-size "2G"
164
+ ```
165
+
166
+ This is useful for very large models that may be difficult to distribute as a single file.
167
+ </p>
168
+ </details>
169
+
170
+ <hr/>
171
+
172
+ ## 📊 Quantization Methods
173
+
174
+ <details open>
175
+ <summary><b>Standard Methods</b></summary>
176
+ <p>
177
+
178
+ | Method | Description |
179
+ |--------|-------------|
180
+ | `fp16` | 16-bit floating point - maximum accuracy, largest size |
181
+ | `q2_k` | 2-bit quantization (smallest size, lowest accuracy) |
182
+ | `q3_k_l` | 3-bit quantization (large) - balanced for size/accuracy |
183
+ | `q3_k_m` | 3-bit quantization (medium) - good balance for most use cases |
184
+ | `q3_k_s` | 3-bit quantization (small) - optimized for speed |
185
+ | `q4_0` | 4-bit quantization (version 0) - standard 4-bit compression |
186
+ | `q4_1` | 4-bit quantization (version 1) - improved accuracy over q4_0 |
187
+ | `q4_k_m` | 4-bit quantization (medium) - balanced for most models |
188
+ | `q4_k_s` | 4-bit quantization (small) - optimized for speed |
189
+ | `q5_0` | 5-bit quantization (version 0) - high accuracy, larger size |
190
+ | `q5_1` | 5-bit quantization (version 1) - improved accuracy over q5_0 |
191
+ | `q5_k_m` | 5-bit quantization (medium) - best balance for quality/size |
192
+ | `q5_k_s` | 5-bit quantization (small) - optimized for speed |
193
+ | `q6_k` | 6-bit quantization - highest accuracy, larger size |
194
+ | `q8_0` | 8-bit quantization - maximum accuracy, largest size |
195
+ </p>
196
+ </details>
197
+
198
+ <details>
199
+ <summary><b>Importance Matrix Methods</b></summary>
200
+ <p>
201
+
202
+ | Method | Description |
203
+ |--------|-------------|
204
+ | `iq3_m` | 3-bit imatrix quantization (medium) - balanced importance-based |
205
+ | `iq3_xxs` | 3-bit imatrix quantization (extra extra small) - maximum compression |
206
+ | `q4_k_m` | 4-bit imatrix quantization (medium) - balanced importance-based |
207
+ | `q4_k_s` | 4-bit imatrix quantization (small) - optimized for speed |
208
+ | `iq4_nl` | 4-bit imatrix quantization (non-linear) - best accuracy for 4-bit |
209
+ | `iq4_xs` | 4-bit imatrix quantization (extra small) - maximum compression |
210
+ | `q5_k_m` | 5-bit imatrix quantization (medium) - balanced importance-based |
211
+ | `q5_k_s` | 5-bit imatrix quantization (small) - optimized for speed |
212
+ </p>
213
+ </details>
214
+
215
+ <hr/>
216
+
217
+ ## 📏 Size & Quality Comparison
218
+
219
+ > **TIP:**
220
+ > When choosing a quantization method, consider the tradeoff between model size and quality. Here's a quick guide:
221
+
222
+ <div class="comparison-table">
223
+
224
+ ### 1. Maximum Quality (largest size)
225
+ - **fp16**: 100% of original size, best quality
226
+ - **q8_0**: 50% of original size, nearly identical to fp16
227
+
228
+ ### 2. Balanced Quality/Size
229
+ - **q5_k_m with imatrix**: 31% of original size, excellent quality
230
+ - **q4_k_m with imatrix**: 25% of original size, good quality for most use cases
231
+
232
+ ### 3. Minimum Size (reduced quality)
233
+ - **q3_k_s**: 18% of original size, acceptable for some tasks
234
+ - **q2_k**: 12% of original size, significantly reduced quality
235
+ </div>
236
+
237
+ <hr/>
238
+
239
+ ## 📦 Hardware Requirements
240
+
241
+ Hardware requirements vary based on quantization method and model size:
242
+
243
+ <details open>
244
+ <summary><b>Memory Requirements</b></summary>
245
+ <p>
246
+
247
+ | Quantization | RAM Required |
248
+ |--------------|--------------|
249
+ | fp16 | ~2x model size |
250
+ | q8_0 | ~1x model size |
251
+ | q4_k_m | ~0.5x model size |
252
+ | q2_k | ~0.25x model size |
253
+
254
+ For example, a 7B parameter model requires:
255
+ - fp16: ~14GB RAM
256
+ - q4_k_m: ~3.5GB RAM
257
+ </p>
258
+ </details>
259
+
260
+ <details>
261
+ <summary><b>Hardware Acceleration</b></summary>
262
+ <p>
263
+
264
+ The converter automatically detects and utilizes:
265
+ - **CUDA** for NVIDIA GPUs
266
+ - **Metal** for Apple Silicon and AMD GPUs on macOS
267
+ - **OpenCL** for cross-platform GPU acceleration
268
+ - **Vulkan** for cross-platform GPU acceleration
269
+ - **ROCm** for AMD GPUs on Linux
270
+
271
+ If no acceleration is available, the converter will use CPU-only mode.
272
+ </p>
273
+ </details>
274
+
275
+ > **NOTE:**
276
+ > **GPU acceleration is highly recommended** for converting larger models (13B+).
277
+
278
+ <hr/>
279
+
280
+ ## ⚡ Examples
281
+
282
+ <details open>
283
+ <summary><b>Basic Conversion with Upload</b></summary>
284
+ <p>
285
+
286
+ ```bash
287
+ python -m webscout.Extra.gguf convert \
288
+ -m "mistralai/Mistral-7B-Instruct-v0.2" \
289
+ -q "q4_k_m" \
290
+ -u "your-username" \
291
+ -t "your-token"
292
+ ```
293
+
294
+ This will convert Mistral-7B to q4_k_m quantization and upload it to your Hugging Face account.
295
+ </p>
296
+ </details>
297
+
298
+ <details>
299
+ <summary><b>Multiple Quantizations with Importance Matrix</b></summary>
300
+ <p>
301
+
302
+ ```bash
303
+ python -m webscout.Extra.gguf convert \
304
+ -m "mistralai/Mistral-7B-Instruct-v0.2" \
305
+ -q "q4_k_m,q5_k_m" \
306
+ -i \
307
+ --train-data "my_training_data.txt"
308
+ ```
309
+
310
+ This will create two versions of the model with different quantizations, both using importance matrix.
311
+ </p>
312
+ </details>
313
+
314
+ <details>
315
+ <summary><b>Split Large Model</b></summary>
316
+ <p>
317
+
318
+ ```bash
319
+ python -m webscout.Extra.gguf convert \
320
+ -m "meta-llama/Llama-2-70b-chat-hf" \
321
+ -q "q4_k_m" \
322
+ -s \
323
+ --split-max-size "4G"
324
+ ```
325
+
326
+ This will split the large 70B model into multiple files, each no larger than 4GB.
327
+ </p>
328
+ </details>
329
+
330
+ <hr/>
331
+
332
+ ## 🔍 Troubleshooting
333
+
334
+ <details>
335
+ <summary><b>Missing Dependencies</b></summary>
336
+ <p>
337
+
338
+ ```
339
+ Error: Missing required dependencies: git, cmake
340
+ ```
341
+
342
+ **Solution:** Install the required system dependencies:
343
+
344
+ - **Ubuntu/Debian:** `sudo apt install git cmake python3-dev build-essential`
345
+ - **macOS:** `brew install git cmake`
346
+ - **Windows:** Install Git and CMake from their respective websites
347
+
348
+ For hardware acceleration, install relevant drivers (CUDA, ROCm, etc.)
349
+ </p>
350
+ </details>
351
+
352
+ <details>
353
+ <summary><b>Out of Memory</b></summary>
354
+ <p>
355
+
356
+ ```
357
+ Error: CUDA out of memory
358
+ ```
359
+
360
+ **Solutions:**
361
+ 1. Try a lower precision quantization method: `q3_k_s` or `q2_k`
362
+ 2. Enable model splitting with `-s`
363
+ 3. Increase your system's swap space/virtual memory
364
+ 4. Use a machine with more RAM
365
+ </p>
366
+ </details>
367
+
368
+ <details>
369
+ <summary><b>Download Failures</b></summary>
370
+ <p>
371
+
372
+ ```
373
+ Error: Failed to download model
374
+ ```
375
+
376
+ **Solutions:**
377
+ 1. Check your internet connection
378
+ 2. Verify you have access to the model on Hugging Face
379
+ 3. Try using a Hugging Face token with `-t`
380
+ 4. Check if the model repository exists and is public
381
+ </p>
382
+ </details>
383
+
384
+ <details>
385
+ <summary><b>Build Failures</b></summary>
386
+ <p>
387
+
388
+ ```
389
+ Error: Failed to build llama.cpp
390
+ ```
391
+
392
+ **Solutions:**
393
+ 1. Check if you have a C++ compiler installed
394
+ 2. Ensure you have sufficient disk space
395
+ 3. Try building with CPU-only mode if GPU builds fail
396
+ 4. Update your GPU drivers if using acceleration
397
+ </p>
398
+ </details>
399
+
400
+ <hr/>
401
+
402
+ ## 🧠 Technical Details
403
+
404
+ The converter works by following these steps:
405
+
406
+ 1. **Setup**: Clone and build llama.cpp with appropriate hardware acceleration
407
+ 2. **Download**: Fetch the model from Hugging Face
408
+ 3. **Convert**: Transform the model to fp16 GGUF format
409
+ 4. **Quantize**: Apply the requested quantization methods
410
+ 5. **Split**: Optionally split the model into smaller chunks
411
+ 6. **Upload**: If credentials are provided, upload to Hugging Face
412
+
413
+ <details>
414
+ <summary><b>Advanced Configuration</b></summary>
415
+ <p>
416
+
417
+ For special cases, you may want to modify llama.cpp's build parameters. The converter automatically detects and enables available hardware acceleration, but you can also build llama.cpp manually with custom options before running the converter.
418
+ </p>
419
+ </details>
420
+
421
+ <hr/>
422
+
423
+ <div align="center">
424
+ <p>
425
+ <a href="https://github.com/OEvortex/Webscout">🔗 Part of the WebScout Project</a> |
426
+ <a href="https://github.com/ggerganov/llama.cpp">🚀 Powered by llama.cpp</a>
427
+ </p>
428
+
429
+ <p>Made with ❤️ by the Webscout team</p>
430
430
  </div>