webscout 8.3.6__py3-none-any.whl → 2025.10.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (304) hide show
  1. webscout/AIauto.py +250 -250
  2. webscout/AIbase.py +379 -379
  3. webscout/AIutel.py +60 -58
  4. webscout/Bard.py +1012 -1012
  5. webscout/Bing_search.py +417 -417
  6. webscout/DWEBS.py +529 -529
  7. webscout/Extra/Act.md +309 -309
  8. webscout/Extra/GitToolkit/__init__.py +10 -10
  9. webscout/Extra/GitToolkit/gitapi/README.md +110 -110
  10. webscout/Extra/GitToolkit/gitapi/__init__.py +11 -11
  11. webscout/Extra/GitToolkit/gitapi/repository.py +195 -195
  12. webscout/Extra/GitToolkit/gitapi/user.py +96 -96
  13. webscout/Extra/GitToolkit/gitapi/utils.py +61 -61
  14. webscout/Extra/YTToolkit/README.md +375 -375
  15. webscout/Extra/YTToolkit/YTdownloader.py +956 -956
  16. webscout/Extra/YTToolkit/__init__.py +2 -2
  17. webscout/Extra/YTToolkit/transcriber.py +475 -475
  18. webscout/Extra/YTToolkit/ytapi/README.md +44 -44
  19. webscout/Extra/YTToolkit/ytapi/__init__.py +6 -6
  20. webscout/Extra/YTToolkit/ytapi/channel.py +307 -307
  21. webscout/Extra/YTToolkit/ytapi/errors.py +13 -13
  22. webscout/Extra/YTToolkit/ytapi/extras.py +118 -118
  23. webscout/Extra/YTToolkit/ytapi/https.py +88 -88
  24. webscout/Extra/YTToolkit/ytapi/patterns.py +61 -61
  25. webscout/Extra/YTToolkit/ytapi/playlist.py +58 -58
  26. webscout/Extra/YTToolkit/ytapi/pool.py +7 -7
  27. webscout/Extra/YTToolkit/ytapi/query.py +39 -39
  28. webscout/Extra/YTToolkit/ytapi/stream.py +62 -62
  29. webscout/Extra/YTToolkit/ytapi/utils.py +62 -62
  30. webscout/Extra/YTToolkit/ytapi/video.py +232 -232
  31. webscout/Extra/autocoder/__init__.py +9 -9
  32. webscout/Extra/autocoder/autocoder.py +1105 -1105
  33. webscout/Extra/autocoder/autocoder_utiles.py +332 -332
  34. webscout/Extra/gguf.md +429 -429
  35. webscout/Extra/gguf.py +1213 -1213
  36. webscout/Extra/tempmail/README.md +487 -487
  37. webscout/Extra/tempmail/__init__.py +27 -27
  38. webscout/Extra/tempmail/async_utils.py +140 -140
  39. webscout/Extra/tempmail/base.py +160 -160
  40. webscout/Extra/tempmail/cli.py +186 -186
  41. webscout/Extra/tempmail/emailnator.py +84 -84
  42. webscout/Extra/tempmail/mail_tm.py +360 -360
  43. webscout/Extra/tempmail/temp_mail_io.py +291 -291
  44. webscout/Extra/weather.md +281 -281
  45. webscout/Extra/weather.py +193 -193
  46. webscout/Litlogger/README.md +10 -10
  47. webscout/Litlogger/__init__.py +15 -15
  48. webscout/Litlogger/formats.py +13 -13
  49. webscout/Litlogger/handlers.py +121 -121
  50. webscout/Litlogger/levels.py +13 -13
  51. webscout/Litlogger/logger.py +134 -134
  52. webscout/Provider/AISEARCH/Perplexity.py +332 -332
  53. webscout/Provider/AISEARCH/README.md +279 -279
  54. webscout/Provider/AISEARCH/__init__.py +33 -11
  55. webscout/Provider/AISEARCH/felo_search.py +206 -206
  56. webscout/Provider/AISEARCH/genspark_search.py +323 -323
  57. webscout/Provider/AISEARCH/hika_search.py +185 -185
  58. webscout/Provider/AISEARCH/iask_search.py +410 -410
  59. webscout/Provider/AISEARCH/monica_search.py +219 -219
  60. webscout/Provider/AISEARCH/scira_search.py +316 -314
  61. webscout/Provider/AISEARCH/stellar_search.py +177 -177
  62. webscout/Provider/AISEARCH/webpilotai_search.py +255 -255
  63. webscout/Provider/Aitopia.py +314 -315
  64. webscout/Provider/Andi.py +3 -3
  65. webscout/Provider/Apriel.py +306 -0
  66. webscout/Provider/ChatGPTClone.py +236 -236
  67. webscout/Provider/ChatSandbox.py +343 -342
  68. webscout/Provider/Cloudflare.py +324 -324
  69. webscout/Provider/Cohere.py +208 -207
  70. webscout/Provider/Deepinfra.py +370 -369
  71. webscout/Provider/ExaAI.py +260 -260
  72. webscout/Provider/ExaChat.py +308 -387
  73. webscout/Provider/Flowith.py +221 -221
  74. webscout/Provider/GMI.py +293 -0
  75. webscout/Provider/Gemini.py +164 -162
  76. webscout/Provider/GeminiProxy.py +167 -166
  77. webscout/Provider/GithubChat.py +371 -370
  78. webscout/Provider/Groq.py +800 -800
  79. webscout/Provider/HeckAI.py +383 -379
  80. webscout/Provider/Jadve.py +282 -297
  81. webscout/Provider/K2Think.py +308 -0
  82. webscout/Provider/Koboldai.py +206 -384
  83. webscout/Provider/LambdaChat.py +423 -425
  84. webscout/Provider/Nemotron.py +244 -245
  85. webscout/Provider/Netwrck.py +248 -247
  86. webscout/Provider/OLLAMA.py +395 -394
  87. webscout/Provider/OPENAI/Cloudflare.py +394 -395
  88. webscout/Provider/OPENAI/FalconH1.py +452 -457
  89. webscout/Provider/OPENAI/FreeGemini.py +297 -299
  90. webscout/Provider/OPENAI/{monochat.py → K2Think.py} +432 -329
  91. webscout/Provider/OPENAI/NEMOTRON.py +241 -244
  92. webscout/Provider/OPENAI/PI.py +428 -427
  93. webscout/Provider/OPENAI/README.md +959 -959
  94. webscout/Provider/OPENAI/TogetherAI.py +345 -345
  95. webscout/Provider/OPENAI/TwoAI.py +466 -467
  96. webscout/Provider/OPENAI/__init__.py +33 -59
  97. webscout/Provider/OPENAI/ai4chat.py +313 -303
  98. webscout/Provider/OPENAI/base.py +249 -269
  99. webscout/Provider/OPENAI/chatglm.py +528 -0
  100. webscout/Provider/OPENAI/chatgpt.py +593 -588
  101. webscout/Provider/OPENAI/chatgptclone.py +521 -524
  102. webscout/Provider/OPENAI/chatsandbox.py +202 -177
  103. webscout/Provider/OPENAI/deepinfra.py +319 -315
  104. webscout/Provider/OPENAI/e2b.py +1665 -1665
  105. webscout/Provider/OPENAI/exaai.py +420 -420
  106. webscout/Provider/OPENAI/exachat.py +452 -452
  107. webscout/Provider/OPENAI/friendli.py +232 -232
  108. webscout/Provider/OPENAI/{refact.py → gmi.py} +324 -274
  109. webscout/Provider/OPENAI/groq.py +364 -364
  110. webscout/Provider/OPENAI/heckai.py +314 -311
  111. webscout/Provider/OPENAI/llmchatco.py +337 -337
  112. webscout/Provider/OPENAI/netwrck.py +355 -354
  113. webscout/Provider/OPENAI/oivscode.py +290 -290
  114. webscout/Provider/OPENAI/opkfc.py +518 -518
  115. webscout/Provider/OPENAI/pydantic_imports.py +1 -1
  116. webscout/Provider/OPENAI/scirachat.py +535 -529
  117. webscout/Provider/OPENAI/sonus.py +308 -308
  118. webscout/Provider/OPENAI/standardinput.py +442 -442
  119. webscout/Provider/OPENAI/textpollinations.py +340 -348
  120. webscout/Provider/OPENAI/toolbaz.py +419 -413
  121. webscout/Provider/OPENAI/typefully.py +362 -362
  122. webscout/Provider/OPENAI/utils.py +295 -295
  123. webscout/Provider/OPENAI/venice.py +436 -436
  124. webscout/Provider/OPENAI/wisecat.py +387 -387
  125. webscout/Provider/OPENAI/writecream.py +166 -166
  126. webscout/Provider/OPENAI/x0gpt.py +378 -378
  127. webscout/Provider/OPENAI/yep.py +389 -389
  128. webscout/Provider/OpenGPT.py +230 -230
  129. webscout/Provider/Openai.py +244 -496
  130. webscout/Provider/PI.py +405 -404
  131. webscout/Provider/Perplexitylabs.py +430 -431
  132. webscout/Provider/QwenLM.py +272 -254
  133. webscout/Provider/STT/__init__.py +32 -2
  134. webscout/Provider/{Llama3.py → Sambanova.py} +257 -258
  135. webscout/Provider/StandardInput.py +309 -309
  136. webscout/Provider/TTI/README.md +82 -82
  137. webscout/Provider/TTI/__init__.py +33 -12
  138. webscout/Provider/TTI/aiarta.py +413 -413
  139. webscout/Provider/TTI/base.py +136 -136
  140. webscout/Provider/TTI/bing.py +243 -243
  141. webscout/Provider/TTI/gpt1image.py +149 -149
  142. webscout/Provider/TTI/imagen.py +196 -196
  143. webscout/Provider/TTI/infip.py +211 -211
  144. webscout/Provider/TTI/magicstudio.py +232 -232
  145. webscout/Provider/TTI/monochat.py +219 -219
  146. webscout/Provider/TTI/piclumen.py +214 -214
  147. webscout/Provider/TTI/pixelmuse.py +232 -232
  148. webscout/Provider/TTI/pollinations.py +232 -232
  149. webscout/Provider/TTI/together.py +288 -288
  150. webscout/Provider/TTI/utils.py +12 -12
  151. webscout/Provider/TTI/venice.py +367 -367
  152. webscout/Provider/TTS/README.md +192 -192
  153. webscout/Provider/TTS/__init__.py +33 -10
  154. webscout/Provider/TTS/parler.py +110 -110
  155. webscout/Provider/TTS/streamElements.py +333 -333
  156. webscout/Provider/TTS/utils.py +280 -280
  157. webscout/Provider/TeachAnything.py +237 -236
  158. webscout/Provider/TextPollinationsAI.py +311 -318
  159. webscout/Provider/TogetherAI.py +356 -357
  160. webscout/Provider/TwoAI.py +313 -569
  161. webscout/Provider/TypliAI.py +312 -311
  162. webscout/Provider/UNFINISHED/ChatHub.py +208 -208
  163. webscout/Provider/UNFINISHED/ChutesAI.py +313 -313
  164. webscout/Provider/{GizAI.py → UNFINISHED/GizAI.py} +294 -294
  165. webscout/Provider/{Marcus.py → UNFINISHED/Marcus.py} +198 -198
  166. webscout/Provider/{Qodo.py → UNFINISHED/Qodo.py} +477 -477
  167. webscout/Provider/UNFINISHED/VercelAIGateway.py +338 -338
  168. webscout/Provider/{XenAI.py → UNFINISHED/XenAI.py} +324 -324
  169. webscout/Provider/UNFINISHED/Youchat.py +330 -330
  170. webscout/Provider/UNFINISHED/liner.py +334 -0
  171. webscout/Provider/UNFINISHED/liner_api_request.py +262 -262
  172. webscout/Provider/UNFINISHED/puterjs.py +634 -634
  173. webscout/Provider/UNFINISHED/samurai.py +223 -223
  174. webscout/Provider/UNFINISHED/test_lmarena.py +119 -119
  175. webscout/Provider/Venice.py +251 -250
  176. webscout/Provider/VercelAI.py +256 -255
  177. webscout/Provider/WiseCat.py +232 -231
  178. webscout/Provider/WrDoChat.py +367 -366
  179. webscout/Provider/__init__.py +33 -86
  180. webscout/Provider/ai4chat.py +174 -174
  181. webscout/Provider/akashgpt.py +331 -334
  182. webscout/Provider/cerebras.py +446 -340
  183. webscout/Provider/chatglm.py +394 -214
  184. webscout/Provider/cleeai.py +211 -212
  185. webscout/Provider/deepseek_assistant.py +1 -1
  186. webscout/Provider/elmo.py +282 -282
  187. webscout/Provider/geminiapi.py +208 -208
  188. webscout/Provider/granite.py +261 -261
  189. webscout/Provider/hermes.py +263 -265
  190. webscout/Provider/julius.py +223 -222
  191. webscout/Provider/learnfastai.py +309 -309
  192. webscout/Provider/llama3mitril.py +214 -214
  193. webscout/Provider/llmchat.py +243 -243
  194. webscout/Provider/llmchatco.py +290 -290
  195. webscout/Provider/meta.py +801 -801
  196. webscout/Provider/oivscode.py +309 -309
  197. webscout/Provider/scira_chat.py +384 -457
  198. webscout/Provider/searchchat.py +292 -291
  199. webscout/Provider/sonus.py +258 -258
  200. webscout/Provider/toolbaz.py +370 -364
  201. webscout/Provider/turboseek.py +274 -265
  202. webscout/Provider/typefully.py +208 -207
  203. webscout/Provider/x0gpt.py +1 -0
  204. webscout/Provider/yep.py +372 -371
  205. webscout/__init__.py +30 -31
  206. webscout/__main__.py +5 -5
  207. webscout/auth/api_key_manager.py +189 -189
  208. webscout/auth/config.py +175 -175
  209. webscout/auth/models.py +185 -185
  210. webscout/auth/routes.py +664 -664
  211. webscout/auth/simple_logger.py +236 -236
  212. webscout/cli.py +523 -523
  213. webscout/conversation.py +438 -438
  214. webscout/exceptions.py +361 -361
  215. webscout/litagent/Readme.md +298 -298
  216. webscout/litagent/__init__.py +28 -28
  217. webscout/litagent/agent.py +581 -581
  218. webscout/litagent/constants.py +59 -59
  219. webscout/litprinter/__init__.py +58 -58
  220. webscout/models.py +181 -181
  221. webscout/optimizers.py +419 -419
  222. webscout/prompt_manager.py +288 -288
  223. webscout/sanitize.py +1078 -1078
  224. webscout/scout/README.md +401 -401
  225. webscout/scout/__init__.py +8 -8
  226. webscout/scout/core/__init__.py +6 -6
  227. webscout/scout/core/crawler.py +297 -297
  228. webscout/scout/core/scout.py +706 -706
  229. webscout/scout/core/search_result.py +95 -95
  230. webscout/scout/core/text_analyzer.py +62 -62
  231. webscout/scout/core/text_utils.py +277 -277
  232. webscout/scout/core/web_analyzer.py +51 -51
  233. webscout/scout/element.py +599 -599
  234. webscout/scout/parsers/__init__.py +69 -69
  235. webscout/scout/parsers/html5lib_parser.py +172 -172
  236. webscout/scout/parsers/html_parser.py +236 -236
  237. webscout/scout/parsers/lxml_parser.py +178 -178
  238. webscout/scout/utils.py +37 -37
  239. webscout/swiftcli/Readme.md +323 -323
  240. webscout/swiftcli/__init__.py +95 -95
  241. webscout/swiftcli/core/__init__.py +7 -7
  242. webscout/swiftcli/core/cli.py +308 -308
  243. webscout/swiftcli/core/context.py +104 -104
  244. webscout/swiftcli/core/group.py +241 -241
  245. webscout/swiftcli/decorators/__init__.py +28 -28
  246. webscout/swiftcli/decorators/command.py +221 -221
  247. webscout/swiftcli/decorators/options.py +220 -220
  248. webscout/swiftcli/decorators/output.py +302 -302
  249. webscout/swiftcli/exceptions.py +21 -21
  250. webscout/swiftcli/plugins/__init__.py +9 -9
  251. webscout/swiftcli/plugins/base.py +135 -135
  252. webscout/swiftcli/plugins/manager.py +269 -269
  253. webscout/swiftcli/utils/__init__.py +59 -59
  254. webscout/swiftcli/utils/formatting.py +252 -252
  255. webscout/swiftcli/utils/parsing.py +267 -267
  256. webscout/update_checker.py +117 -117
  257. webscout/version.py +1 -1
  258. webscout/webscout_search.py +1183 -1183
  259. webscout/webscout_search_async.py +649 -649
  260. webscout/yep_search.py +346 -346
  261. webscout/zeroart/README.md +89 -89
  262. webscout/zeroart/__init__.py +134 -134
  263. webscout/zeroart/base.py +66 -66
  264. webscout/zeroart/effects.py +100 -100
  265. webscout/zeroart/fonts.py +1238 -1238
  266. {webscout-8.3.6.dist-info → webscout-2025.10.11.dist-info}/METADATA +937 -936
  267. webscout-2025.10.11.dist-info/RECORD +300 -0
  268. webscout/Provider/AISEARCH/DeepFind.py +0 -254
  269. webscout/Provider/AllenAI.py +0 -440
  270. webscout/Provider/Blackboxai.py +0 -793
  271. webscout/Provider/FreeGemini.py +0 -250
  272. webscout/Provider/GptOss.py +0 -207
  273. webscout/Provider/Hunyuan.py +0 -283
  274. webscout/Provider/Kimi.py +0 -445
  275. webscout/Provider/MCPCore.py +0 -322
  276. webscout/Provider/MiniMax.py +0 -207
  277. webscout/Provider/OPENAI/BLACKBOXAI.py +0 -1045
  278. webscout/Provider/OPENAI/MiniMax.py +0 -298
  279. webscout/Provider/OPENAI/Qwen3.py +0 -304
  280. webscout/Provider/OPENAI/autoproxy.py +0 -1067
  281. webscout/Provider/OPENAI/copilot.py +0 -321
  282. webscout/Provider/OPENAI/gptoss.py +0 -288
  283. webscout/Provider/OPENAI/kimi.py +0 -469
  284. webscout/Provider/OPENAI/mcpcore.py +0 -431
  285. webscout/Provider/OPENAI/multichat.py +0 -378
  286. webscout/Provider/OPENAI/qodo.py +0 -630
  287. webscout/Provider/OPENAI/xenai.py +0 -514
  288. webscout/Provider/Reka.py +0 -214
  289. webscout/Provider/UNFINISHED/fetch_together_models.py +0 -90
  290. webscout/Provider/asksteve.py +0 -220
  291. webscout/Provider/copilot.py +0 -441
  292. webscout/Provider/freeaichat.py +0 -294
  293. webscout/Provider/koala.py +0 -182
  294. webscout/Provider/lmarena.py +0 -198
  295. webscout/Provider/monochat.py +0 -275
  296. webscout/Provider/multichat.py +0 -375
  297. webscout/Provider/scnet.py +0 -244
  298. webscout/Provider/talkai.py +0 -194
  299. webscout/tempid.py +0 -128
  300. webscout-8.3.6.dist-info/RECORD +0 -327
  301. {webscout-8.3.6.dist-info → webscout-2025.10.11.dist-info}/WHEEL +0 -0
  302. {webscout-8.3.6.dist-info → webscout-2025.10.11.dist-info}/entry_points.txt +0 -0
  303. {webscout-8.3.6.dist-info → webscout-2025.10.11.dist-info}/licenses/LICENSE.md +0 -0
  304. {webscout-8.3.6.dist-info → webscout-2025.10.11.dist-info}/top_level.txt +0 -0
webscout/Extra/gguf.md CHANGED
@@ -1,430 +1,430 @@
1
- <div align="center">
2
- <a href="https://github.com/OEvortex/Webscout">
3
- <img src="https://img.shields.io/badge/WebScout-GGUF%20Converter-blue?style=for-the-badge&logo=python&logoColor=white" alt="GGUF Converter Logo">
4
- </a>
5
-
6
- <h1>GGUF Converter</h1>
7
-
8
- <p><strong>Convert Hugging Face models to GGUF format with advanced quantization options</strong></p>
9
-
10
- <p>
11
- Transform large language models from Hugging Face into optimized GGUF format for efficient inference on consumer hardware.
12
- Balance size, speed, and quality with multiple quantization methods.
13
- </p>
14
-
15
- <!-- Badges -->
16
- <p>
17
- <a href="https://github.com/ggerganov/llama.cpp"><img src="https://img.shields.io/badge/Powered%20by-llama.cpp-orange?style=flat-square" alt="Powered by llama.cpp"></a>
18
- <a href="https://huggingface.co/"><img src="https://img.shields.io/badge/Hugging%20Face-compatible-yellow?style=flat-square" alt="Hugging Face compatible"></a>
19
- <a href="#"><img src="https://img.shields.io/badge/GPU-acceleration-green?style=flat-square" alt="GPU acceleration"></a>
20
- </p>
21
- </div>
22
-
23
- <hr/>
24
-
25
- ## 📋 Table of Contents
26
-
27
- - [🌟 Features](#-features)
28
- - [⚙️ Installation](#️-installation)
29
- - [🛠️ Basic Usage](#️-basic-usage)
30
- - [🧩 Advanced Options](#-advanced-options)
31
- - [📊 Quantization Methods](#-quantization-methods)
32
- - [📏 Size & Quality Comparison](#-size--quality-comparison)
33
- - [📦 Hardware Requirements](#-hardware-requirements)
34
- - [⚡ Examples](#-examples)
35
- - [🔍 Troubleshooting](#-troubleshooting)
36
- - [🧠 Technical Details](#-technical-details)
37
-
38
- <hr/>
39
-
40
- ## 🌟 Features
41
-
42
- <details open>
43
- <summary><b>Core Capabilities</b></summary>
44
- <p>
45
-
46
- * **Multiple Quantization Methods**: Support for various precision levels from 2-bit to 16-bit floating point
47
- * **Importance Matrix Quantization**: Enhanced precision by focusing bits on the most important weights
48
- * **Model Splitting**: Split large models into manageable chunks for easier distribution
49
- * **Hardware Acceleration Detection**: Automatically detects and utilizes CUDA, Metal, OpenCL, Vulkan, and ROCm
50
- * **Hugging Face Integration**: Direct download from and upload to Hugging Face repositories
51
- * **README Generation**: Automatically creates documentation for your quantized models
52
- </p>
53
- </details>
54
-
55
- <hr/>
56
-
57
- ## ⚙️ Installation
58
-
59
- <div class="installation-box">
60
- <p>The GGUF Converter is included with the WebScout package:</p>
61
-
62
- ```bash
63
- pip install -U webscout
64
- ```
65
- </div>
66
-
67
- <hr/>
68
-
69
- ## 🛠️ Basic Usage
70
-
71
- The simplest way to convert a model is with the default settings:
72
-
73
- ```bash
74
- python -m webscout.Extra.gguf convert -m "organization/model-name"
75
- ```
76
-
77
- This will:
78
- 1. Download the model from Hugging Face
79
- 2. Convert it to GGUF format with q4_k_m quantization (a good balance of size and quality)
80
- 3. Save the converted model in your current directory
81
-
82
- <hr/>
83
-
84
- ## 🧩 Advanced Options
85
-
86
- <details open>
87
- <summary><b>Command Reference</b></summary>
88
- <p>
89
-
90
- The full command syntax is:
91
-
92
- ```
93
- python -m webscout.Extra.gguf convert [OPTIONS]
94
- ```
95
-
96
- | Option | Description | Default |
97
- |--------|-------------|---------|
98
- | `-m, --model-id` | The HuggingFace model ID (e.g., 'OEvortex/HelpingAI-Lite-1.5T') | **Required** |
99
- | `-u, --username` | Your HuggingFace username for uploads | None |
100
- | `-t, --token` | Your HuggingFace API token for uploads | None |
101
- | `-q, --quantization` | Comma-separated quantization methods | "q4_k_m" |
102
- | `-i, --use-imatrix` | Use importance matrix for quantization | False |
103
- | `--train-data` | Training data file for imatrix quantization | None |
104
- | `-s, --split-model` | Split the model into smaller chunks | False |
105
- | `--split-max-tensors` | Maximum number of tensors per file when splitting | 256 |
106
- | `--split-max-size` | Maximum file size when splitting (e.g., '256M', '5G') | None |
107
- </p>
108
- </details>
109
-
110
- <details>
111
- <summary><b>Multiple Quantization Methods</b></summary>
112
- <p>
113
-
114
- Apply multiple quantization methods at once:
115
-
116
- ```bash
117
- python -m webscout.Extra.gguf convert -m "organization/model-name" -q "q4_k_m,q5_k_m"
118
- ```
119
-
120
- This will create two versions of the model with different quantization methods.
121
- </p>
122
- </details>
123
-
124
- <details>
125
- <summary><b>Uploading to Hugging Face</b></summary>
126
- <p>
127
-
128
- Convert and upload the model to your Hugging Face account:
129
-
130
- ```bash
131
- python -m webscout.Extra.gguf convert -m "organization/model-name" -u "your-username" -t "your-token"
132
- ```
133
-
134
- This will create a new repository in your account named `model-name-GGUF` containing the converted model.
135
- </p>
136
- </details>
137
-
138
- <details>
139
- <summary><b>Importance Matrix Quantization</b></summary>
140
- <p>
141
-
142
- Use importance matrix for more efficient quantization:
143
-
144
- ```bash
145
- python -m webscout.Extra.gguf convert -m "organization/model-name" -i --train-data "train_data.txt"
146
- ```
147
-
148
- Importance matrix helps focus more bits on weights that matter most for the model's performance.
149
- </p>
150
- </details>
151
-
152
- <details>
153
- <summary><b>Model Splitting</b></summary>
154
- <p>
155
-
156
- Split large models for easier distribution:
157
-
158
- ```bash
159
- # Split by number of tensors
160
- python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-tensors 256
161
-
162
- # Split by file size
163
- python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-size "2G"
164
- ```
165
-
166
- This is useful for very large models that may be difficult to distribute as a single file.
167
- </p>
168
- </details>
169
-
170
- <hr/>
171
-
172
- ## 📊 Quantization Methods
173
-
174
- <details open>
175
- <summary><b>Standard Methods</b></summary>
176
- <p>
177
-
178
- | Method | Description |
179
- |--------|-------------|
180
- | `fp16` | 16-bit floating point - maximum accuracy, largest size |
181
- | `q2_k` | 2-bit quantization (smallest size, lowest accuracy) |
182
- | `q3_k_l` | 3-bit quantization (large) - balanced for size/accuracy |
183
- | `q3_k_m` | 3-bit quantization (medium) - good balance for most use cases |
184
- | `q3_k_s` | 3-bit quantization (small) - optimized for speed |
185
- | `q4_0` | 4-bit quantization (version 0) - standard 4-bit compression |
186
- | `q4_1` | 4-bit quantization (version 1) - improved accuracy over q4_0 |
187
- | `q4_k_m` | 4-bit quantization (medium) - balanced for most models |
188
- | `q4_k_s` | 4-bit quantization (small) - optimized for speed |
189
- | `q5_0` | 5-bit quantization (version 0) - high accuracy, larger size |
190
- | `q5_1` | 5-bit quantization (version 1) - improved accuracy over q5_0 |
191
- | `q5_k_m` | 5-bit quantization (medium) - best balance for quality/size |
192
- | `q5_k_s` | 5-bit quantization (small) - optimized for speed |
193
- | `q6_k` | 6-bit quantization - highest accuracy, larger size |
194
- | `q8_0` | 8-bit quantization - maximum accuracy, largest size |
195
- </p>
196
- </details>
197
-
198
- <details>
199
- <summary><b>Importance Matrix Methods</b></summary>
200
- <p>
201
-
202
- | Method | Description |
203
- |--------|-------------|
204
- | `iq3_m` | 3-bit imatrix quantization (medium) - balanced importance-based |
205
- | `iq3_xxs` | 3-bit imatrix quantization (extra extra small) - maximum compression |
206
- | `q4_k_m` | 4-bit imatrix quantization (medium) - balanced importance-based |
207
- | `q4_k_s` | 4-bit imatrix quantization (small) - optimized for speed |
208
- | `iq4_nl` | 4-bit imatrix quantization (non-linear) - best accuracy for 4-bit |
209
- | `iq4_xs` | 4-bit imatrix quantization (extra small) - maximum compression |
210
- | `q5_k_m` | 5-bit imatrix quantization (medium) - balanced importance-based |
211
- | `q5_k_s` | 5-bit imatrix quantization (small) - optimized for speed |
212
- </p>
213
- </details>
214
-
215
- <hr/>
216
-
217
- ## 📏 Size & Quality Comparison
218
-
219
- > **TIP:**
220
- > When choosing a quantization method, consider the tradeoff between model size and quality. Here's a quick guide:
221
-
222
- <div class="comparison-table">
223
-
224
- ### 1. Maximum Quality (largest size)
225
- - **fp16**: 100% of original size, best quality
226
- - **q8_0**: 50% of original size, nearly identical to fp16
227
-
228
- ### 2. Balanced Quality/Size
229
- - **q5_k_m with imatrix**: 31% of original size, excellent quality
230
- - **q4_k_m with imatrix**: 25% of original size, good quality for most use cases
231
-
232
- ### 3. Minimum Size (reduced quality)
233
- - **q3_k_s**: 18% of original size, acceptable for some tasks
234
- - **q2_k**: 12% of original size, significantly reduced quality
235
- </div>
236
-
237
- <hr/>
238
-
239
- ## 📦 Hardware Requirements
240
-
241
- Hardware requirements vary based on quantization method and model size:
242
-
243
- <details open>
244
- <summary><b>Memory Requirements</b></summary>
245
- <p>
246
-
247
- | Quantization | RAM Required |
248
- |--------------|--------------|
249
- | fp16 | ~2x model size |
250
- | q8_0 | ~1x model size |
251
- | q4_k_m | ~0.5x model size |
252
- | q2_k | ~0.25x model size |
253
-
254
- For example, a 7B parameter model requires:
255
- - fp16: ~14GB RAM
256
- - q4_k_m: ~3.5GB RAM
257
- </p>
258
- </details>
259
-
260
- <details>
261
- <summary><b>Hardware Acceleration</b></summary>
262
- <p>
263
-
264
- The converter automatically detects and utilizes:
265
- - **CUDA** for NVIDIA GPUs
266
- - **Metal** for Apple Silicon and AMD GPUs on macOS
267
- - **OpenCL** for cross-platform GPU acceleration
268
- - **Vulkan** for cross-platform GPU acceleration
269
- - **ROCm** for AMD GPUs on Linux
270
-
271
- If no acceleration is available, the converter will use CPU-only mode.
272
- </p>
273
- </details>
274
-
275
- > **NOTE:**
276
- > **GPU acceleration is highly recommended** for converting larger models (13B+).
277
-
278
- <hr/>
279
-
280
- ## ⚡ Examples
281
-
282
- <details open>
283
- <summary><b>Basic Conversion with Upload</b></summary>
284
- <p>
285
-
286
- ```bash
287
- python -m webscout.Extra.gguf convert \
288
- -m "mistralai/Mistral-7B-Instruct-v0.2" \
289
- -q "q4_k_m" \
290
- -u "your-username" \
291
- -t "your-token"
292
- ```
293
-
294
- This will convert Mistral-7B to q4_k_m quantization and upload it to your Hugging Face account.
295
- </p>
296
- </details>
297
-
298
- <details>
299
- <summary><b>Multiple Quantizations with Importance Matrix</b></summary>
300
- <p>
301
-
302
- ```bash
303
- python -m webscout.Extra.gguf convert \
304
- -m "mistralai/Mistral-7B-Instruct-v0.2" \
305
- -q "q4_k_m,q5_k_m" \
306
- -i \
307
- --train-data "my_training_data.txt"
308
- ```
309
-
310
- This will create two versions of the model with different quantizations, both using importance matrix.
311
- </p>
312
- </details>
313
-
314
- <details>
315
- <summary><b>Split Large Model</b></summary>
316
- <p>
317
-
318
- ```bash
319
- python -m webscout.Extra.gguf convert \
320
- -m "meta-llama/Llama-2-70b-chat-hf" \
321
- -q "q4_k_m" \
322
- -s \
323
- --split-max-size "4G"
324
- ```
325
-
326
- This will split the large 70B model into multiple files, each no larger than 4GB.
327
- </p>
328
- </details>
329
-
330
- <hr/>
331
-
332
- ## 🔍 Troubleshooting
333
-
334
- <details>
335
- <summary><b>Missing Dependencies</b></summary>
336
- <p>
337
-
338
- ```
339
- Error: Missing required dependencies: git, cmake
340
- ```
341
-
342
- **Solution:** Install the required system dependencies:
343
-
344
- - **Ubuntu/Debian:** `sudo apt install git cmake python3-dev build-essential`
345
- - **macOS:** `brew install git cmake`
346
- - **Windows:** Install Git and CMake from their respective websites
347
-
348
- For hardware acceleration, install relevant drivers (CUDA, ROCm, etc.)
349
- </p>
350
- </details>
351
-
352
- <details>
353
- <summary><b>Out of Memory</b></summary>
354
- <p>
355
-
356
- ```
357
- Error: CUDA out of memory
358
- ```
359
-
360
- **Solutions:**
361
- 1. Try a lower precision quantization method: `q3_k_s` or `q2_k`
362
- 2. Enable model splitting with `-s`
363
- 3. Increase your system's swap space/virtual memory
364
- 4. Use a machine with more RAM
365
- </p>
366
- </details>
367
-
368
- <details>
369
- <summary><b>Download Failures</b></summary>
370
- <p>
371
-
372
- ```
373
- Error: Failed to download model
374
- ```
375
-
376
- **Solutions:**
377
- 1. Check your internet connection
378
- 2. Verify you have access to the model on Hugging Face
379
- 3. Try using a Hugging Face token with `-t`
380
- 4. Check if the model repository exists and is public
381
- </p>
382
- </details>
383
-
384
- <details>
385
- <summary><b>Build Failures</b></summary>
386
- <p>
387
-
388
- ```
389
- Error: Failed to build llama.cpp
390
- ```
391
-
392
- **Solutions:**
393
- 1. Check if you have a C++ compiler installed
394
- 2. Ensure you have sufficient disk space
395
- 3. Try building with CPU-only mode if GPU builds fail
396
- 4. Update your GPU drivers if using acceleration
397
- </p>
398
- </details>
399
-
400
- <hr/>
401
-
402
- ## 🧠 Technical Details
403
-
404
- The converter works by following these steps:
405
-
406
- 1. **Setup**: Clone and build llama.cpp with appropriate hardware acceleration
407
- 2. **Download**: Fetch the model from Hugging Face
408
- 3. **Convert**: Transform the model to fp16 GGUF format
409
- 4. **Quantize**: Apply the requested quantization methods
410
- 5. **Split**: Optionally split the model into smaller chunks
411
- 6. **Upload**: If credentials are provided, upload to Hugging Face
412
-
413
- <details>
414
- <summary><b>Advanced Configuration</b></summary>
415
- <p>
416
-
417
- For special cases, you may want to modify llama.cpp's build parameters. The converter automatically detects and enables available hardware acceleration, but you can also build llama.cpp manually with custom options before running the converter.
418
- </p>
419
- </details>
420
-
421
- <hr/>
422
-
423
- <div align="center">
424
- <p>
425
- <a href="https://github.com/OEvortex/Webscout">🔗 Part of the WebScout Project</a> |
426
- <a href="https://github.com/ggerganov/llama.cpp">🚀 Powered by llama.cpp</a>
427
- </p>
428
-
429
- <p>Made with ❤️ by the Webscout team</p>
1
+ <div align="center">
2
+ <a href="https://github.com/OEvortex/Webscout">
3
+ <img src="https://img.shields.io/badge/WebScout-GGUF%20Converter-blue?style=for-the-badge&logo=python&logoColor=white" alt="GGUF Converter Logo">
4
+ </a>
5
+
6
+ <h1>GGUF Converter</h1>
7
+
8
+ <p><strong>Convert Hugging Face models to GGUF format with advanced quantization options</strong></p>
9
+
10
+ <p>
11
+ Transform large language models from Hugging Face into optimized GGUF format for efficient inference on consumer hardware.
12
+ Balance size, speed, and quality with multiple quantization methods.
13
+ </p>
14
+
15
+ <!-- Badges -->
16
+ <p>
17
+ <a href="https://github.com/ggerganov/llama.cpp"><img src="https://img.shields.io/badge/Powered%20by-llama.cpp-orange?style=flat-square" alt="Powered by llama.cpp"></a>
18
+ <a href="https://huggingface.co/"><img src="https://img.shields.io/badge/Hugging%20Face-compatible-yellow?style=flat-square" alt="Hugging Face compatible"></a>
19
+ <a href="#"><img src="https://img.shields.io/badge/GPU-acceleration-green?style=flat-square" alt="GPU acceleration"></a>
20
+ </p>
21
+ </div>
22
+
23
+ <hr/>
24
+
25
+ ## 📋 Table of Contents
26
+
27
+ - [🌟 Features](#-features)
28
+ - [⚙️ Installation](#️-installation)
29
+ - [🛠️ Basic Usage](#️-basic-usage)
30
+ - [🧩 Advanced Options](#-advanced-options)
31
+ - [📊 Quantization Methods](#-quantization-methods)
32
+ - [📏 Size & Quality Comparison](#-size--quality-comparison)
33
+ - [📦 Hardware Requirements](#-hardware-requirements)
34
+ - [⚡ Examples](#-examples)
35
+ - [🔍 Troubleshooting](#-troubleshooting)
36
+ - [🧠 Technical Details](#-technical-details)
37
+
38
+ <hr/>
39
+
40
+ ## 🌟 Features
41
+
42
+ <details open>
43
+ <summary><b>Core Capabilities</b></summary>
44
+ <p>
45
+
46
+ * **Multiple Quantization Methods**: Support for various precision levels from 2-bit to 16-bit floating point
47
+ * **Importance Matrix Quantization**: Enhanced precision by focusing bits on the most important weights
48
+ * **Model Splitting**: Split large models into manageable chunks for easier distribution
49
+ * **Hardware Acceleration Detection**: Automatically detects and utilizes CUDA, Metal, OpenCL, Vulkan, and ROCm
50
+ * **Hugging Face Integration**: Direct download from and upload to Hugging Face repositories
51
+ * **README Generation**: Automatically creates documentation for your quantized models
52
+ </p>
53
+ </details>
54
+
55
+ <hr/>
56
+
57
+ ## ⚙️ Installation
58
+
59
+ <div class="installation-box">
60
+ <p>The GGUF Converter is included with the WebScout package:</p>
61
+
62
+ ```bash
63
+ pip install -U webscout
64
+ ```
65
+ </div>
66
+
67
+ <hr/>
68
+
69
+ ## 🛠️ Basic Usage
70
+
71
+ The simplest way to convert a model is with the default settings:
72
+
73
+ ```bash
74
+ python -m webscout.Extra.gguf convert -m "organization/model-name"
75
+ ```
76
+
77
+ This will:
78
+ 1. Download the model from Hugging Face
79
+ 2. Convert it to GGUF format with q4_k_m quantization (a good balance of size and quality)
80
+ 3. Save the converted model in your current directory
81
+
82
+ <hr/>
83
+
84
+ ## 🧩 Advanced Options
85
+
86
+ <details open>
87
+ <summary><b>Command Reference</b></summary>
88
+ <p>
89
+
90
+ The full command syntax is:
91
+
92
+ ```
93
+ python -m webscout.Extra.gguf convert [OPTIONS]
94
+ ```
95
+
96
+ | Option | Description | Default |
97
+ |--------|-------------|---------|
98
+ | `-m, --model-id` | The HuggingFace model ID (e.g., 'OEvortex/HelpingAI-Lite-1.5T') | **Required** |
99
+ | `-u, --username` | Your HuggingFace username for uploads | None |
100
+ | `-t, --token` | Your HuggingFace API token for uploads | None |
101
+ | `-q, --quantization` | Comma-separated quantization methods | "q4_k_m" |
102
+ | `-i, --use-imatrix` | Use importance matrix for quantization | False |
103
+ | `--train-data` | Training data file for imatrix quantization | None |
104
+ | `-s, --split-model` | Split the model into smaller chunks | False |
105
+ | `--split-max-tensors` | Maximum number of tensors per file when splitting | 256 |
106
+ | `--split-max-size` | Maximum file size when splitting (e.g., '256M', '5G') | None |
107
+ </p>
108
+ </details>
109
+
110
+ <details>
111
+ <summary><b>Multiple Quantization Methods</b></summary>
112
+ <p>
113
+
114
+ Apply multiple quantization methods at once:
115
+
116
+ ```bash
117
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -q "q4_k_m,q5_k_m"
118
+ ```
119
+
120
+ This will create two versions of the model with different quantization methods.
121
+ </p>
122
+ </details>
123
+
124
+ <details>
125
+ <summary><b>Uploading to Hugging Face</b></summary>
126
+ <p>
127
+
128
+ Convert and upload the model to your Hugging Face account:
129
+
130
+ ```bash
131
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -u "your-username" -t "your-token"
132
+ ```
133
+
134
+ This will create a new repository in your account named `model-name-GGUF` containing the converted model.
135
+ </p>
136
+ </details>
137
+
138
+ <details>
139
+ <summary><b>Importance Matrix Quantization</b></summary>
140
+ <p>
141
+
142
+ Use importance matrix for more efficient quantization:
143
+
144
+ ```bash
145
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -i --train-data "train_data.txt"
146
+ ```
147
+
148
+ Importance matrix helps focus more bits on weights that matter most for the model's performance.
149
+ </p>
150
+ </details>
151
+
152
+ <details>
153
+ <summary><b>Model Splitting</b></summary>
154
+ <p>
155
+
156
+ Split large models for easier distribution:
157
+
158
+ ```bash
159
+ # Split by number of tensors
160
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-tensors 256
161
+
162
+ # Split by file size
163
+ python -m webscout.Extra.gguf convert -m "organization/model-name" -s --split-max-size "2G"
164
+ ```
165
+
166
+ This is useful for very large models that may be difficult to distribute as a single file.
167
+ </p>
168
+ </details>
169
+
170
+ <hr/>
171
+
172
+ ## 📊 Quantization Methods
173
+
174
+ <details open>
175
+ <summary><b>Standard Methods</b></summary>
176
+ <p>
177
+
178
+ | Method | Description |
179
+ |--------|-------------|
180
+ | `fp16` | 16-bit floating point - maximum accuracy, largest size |
181
+ | `q2_k` | 2-bit quantization (smallest size, lowest accuracy) |
182
+ | `q3_k_l` | 3-bit quantization (large) - balanced for size/accuracy |
183
+ | `q3_k_m` | 3-bit quantization (medium) - good balance for most use cases |
184
+ | `q3_k_s` | 3-bit quantization (small) - optimized for speed |
185
+ | `q4_0` | 4-bit quantization (version 0) - standard 4-bit compression |
186
+ | `q4_1` | 4-bit quantization (version 1) - improved accuracy over q4_0 |
187
+ | `q4_k_m` | 4-bit quantization (medium) - balanced for most models |
188
+ | `q4_k_s` | 4-bit quantization (small) - optimized for speed |
189
+ | `q5_0` | 5-bit quantization (version 0) - high accuracy, larger size |
190
+ | `q5_1` | 5-bit quantization (version 1) - improved accuracy over q5_0 |
191
+ | `q5_k_m` | 5-bit quantization (medium) - best balance for quality/size |
192
+ | `q5_k_s` | 5-bit quantization (small) - optimized for speed |
193
+ | `q6_k` | 6-bit quantization - highest accuracy, larger size |
194
+ | `q8_0` | 8-bit quantization - maximum accuracy, largest size |
195
+ </p>
196
+ </details>
197
+
198
+ <details>
199
+ <summary><b>Importance Matrix Methods</b></summary>
200
+ <p>
201
+
202
+ | Method | Description |
203
+ |--------|-------------|
204
+ | `iq3_m` | 3-bit imatrix quantization (medium) - balanced importance-based |
205
+ | `iq3_xxs` | 3-bit imatrix quantization (extra extra small) - maximum compression |
206
+ | `q4_k_m` | 4-bit imatrix quantization (medium) - balanced importance-based |
207
+ | `q4_k_s` | 4-bit imatrix quantization (small) - optimized for speed |
208
+ | `iq4_nl` | 4-bit imatrix quantization (non-linear) - best accuracy for 4-bit |
209
+ | `iq4_xs` | 4-bit imatrix quantization (extra small) - maximum compression |
210
+ | `q5_k_m` | 5-bit imatrix quantization (medium) - balanced importance-based |
211
+ | `q5_k_s` | 5-bit imatrix quantization (small) - optimized for speed |
212
+ </p>
213
+ </details>
214
+
215
+ <hr/>
216
+
217
+ ## 📏 Size & Quality Comparison
218
+
219
+ > **TIP:**
220
+ > When choosing a quantization method, consider the tradeoff between model size and quality. Here's a quick guide:
221
+
222
+ <div class="comparison-table">
223
+
224
+ ### 1. Maximum Quality (largest size)
225
+ - **fp16**: 100% of original size, best quality
226
+ - **q8_0**: 50% of original size, nearly identical to fp16
227
+
228
+ ### 2. Balanced Quality/Size
229
+ - **q5_k_m with imatrix**: 31% of original size, excellent quality
230
+ - **q4_k_m with imatrix**: 25% of original size, good quality for most use cases
231
+
232
+ ### 3. Minimum Size (reduced quality)
233
+ - **q3_k_s**: 18% of original size, acceptable for some tasks
234
+ - **q2_k**: 12% of original size, significantly reduced quality
235
+ </div>
236
+
237
+ <hr/>
238
+
239
+ ## 📦 Hardware Requirements
240
+
241
+ Hardware requirements vary based on quantization method and model size:
242
+
243
+ <details open>
244
+ <summary><b>Memory Requirements</b></summary>
245
+ <p>
246
+
247
+ | Quantization | RAM Required |
248
+ |--------------|--------------|
249
+ | fp16 | ~2x model size |
250
+ | q8_0 | ~1x model size |
251
+ | q4_k_m | ~0.5x model size |
252
+ | q2_k | ~0.25x model size |
253
+
254
+ For example, a 7B parameter model requires:
255
+ - fp16: ~14GB RAM
256
+ - q4_k_m: ~3.5GB RAM
257
+ </p>
258
+ </details>
259
+
260
+ <details>
261
+ <summary><b>Hardware Acceleration</b></summary>
262
+ <p>
263
+
264
+ The converter automatically detects and utilizes:
265
+ - **CUDA** for NVIDIA GPUs
266
+ - **Metal** for Apple Silicon and AMD GPUs on macOS
267
+ - **OpenCL** for cross-platform GPU acceleration
268
+ - **Vulkan** for cross-platform GPU acceleration
269
+ - **ROCm** for AMD GPUs on Linux
270
+
271
+ If no acceleration is available, the converter will use CPU-only mode.
272
+ </p>
273
+ </details>
274
+
275
+ > **NOTE:**
276
+ > **GPU acceleration is highly recommended** for converting larger models (13B+).
277
+
278
+ <hr/>
279
+
280
+ ## ⚡ Examples
281
+
282
+ <details open>
283
+ <summary><b>Basic Conversion with Upload</b></summary>
284
+ <p>
285
+
286
+ ```bash
287
+ python -m webscout.Extra.gguf convert \
288
+ -m "mistralai/Mistral-7B-Instruct-v0.2" \
289
+ -q "q4_k_m" \
290
+ -u "your-username" \
291
+ -t "your-token"
292
+ ```
293
+
294
+ This will convert Mistral-7B to q4_k_m quantization and upload it to your Hugging Face account.
295
+ </p>
296
+ </details>
297
+
298
+ <details>
299
+ <summary><b>Multiple Quantizations with Importance Matrix</b></summary>
300
+ <p>
301
+
302
+ ```bash
303
+ python -m webscout.Extra.gguf convert \
304
+ -m "mistralai/Mistral-7B-Instruct-v0.2" \
305
+ -q "q4_k_m,q5_k_m" \
306
+ -i \
307
+ --train-data "my_training_data.txt"
308
+ ```
309
+
310
+ This will create two versions of the model with different quantizations, both using importance matrix.
311
+ </p>
312
+ </details>
313
+
314
+ <details>
315
+ <summary><b>Split Large Model</b></summary>
316
+ <p>
317
+
318
+ ```bash
319
+ python -m webscout.Extra.gguf convert \
320
+ -m "meta-llama/Llama-2-70b-chat-hf" \
321
+ -q "q4_k_m" \
322
+ -s \
323
+ --split-max-size "4G"
324
+ ```
325
+
326
+ This will split the large 70B model into multiple files, each no larger than 4GB.
327
+ </p>
328
+ </details>
329
+
330
+ <hr/>
331
+
332
+ ## 🔍 Troubleshooting
333
+
334
+ <details>
335
+ <summary><b>Missing Dependencies</b></summary>
336
+ <p>
337
+
338
+ ```
339
+ Error: Missing required dependencies: git, cmake
340
+ ```
341
+
342
+ **Solution:** Install the required system dependencies:
343
+
344
+ - **Ubuntu/Debian:** `sudo apt install git cmake python3-dev build-essential`
345
+ - **macOS:** `brew install git cmake`
346
+ - **Windows:** Install Git and CMake from their respective websites
347
+
348
+ For hardware acceleration, install relevant drivers (CUDA, ROCm, etc.)
349
+ </p>
350
+ </details>
351
+
352
+ <details>
353
+ <summary><b>Out of Memory</b></summary>
354
+ <p>
355
+
356
+ ```
357
+ Error: CUDA out of memory
358
+ ```
359
+
360
+ **Solutions:**
361
+ 1. Try a lower precision quantization method: `q3_k_s` or `q2_k`
362
+ 2. Enable model splitting with `-s`
363
+ 3. Increase your system's swap space/virtual memory
364
+ 4. Use a machine with more RAM
365
+ </p>
366
+ </details>
367
+
368
+ <details>
369
+ <summary><b>Download Failures</b></summary>
370
+ <p>
371
+
372
+ ```
373
+ Error: Failed to download model
374
+ ```
375
+
376
+ **Solutions:**
377
+ 1. Check your internet connection
378
+ 2. Verify you have access to the model on Hugging Face
379
+ 3. Try using a Hugging Face token with `-t`
380
+ 4. Check if the model repository exists and is public
381
+ </p>
382
+ </details>
383
+
384
+ <details>
385
+ <summary><b>Build Failures</b></summary>
386
+ <p>
387
+
388
+ ```
389
+ Error: Failed to build llama.cpp
390
+ ```
391
+
392
+ **Solutions:**
393
+ 1. Check if you have a C++ compiler installed
394
+ 2. Ensure you have sufficient disk space
395
+ 3. Try building with CPU-only mode if GPU builds fail
396
+ 4. Update your GPU drivers if using acceleration
397
+ </p>
398
+ </details>
399
+
400
+ <hr/>
401
+
402
+ ## 🧠 Technical Details
403
+
404
+ The converter works by following these steps:
405
+
406
+ 1. **Setup**: Clone and build llama.cpp with appropriate hardware acceleration
407
+ 2. **Download**: Fetch the model from Hugging Face
408
+ 3. **Convert**: Transform the model to fp16 GGUF format
409
+ 4. **Quantize**: Apply the requested quantization methods
410
+ 5. **Split**: Optionally split the model into smaller chunks
411
+ 6. **Upload**: If credentials are provided, upload to Hugging Face
412
+
413
+ <details>
414
+ <summary><b>Advanced Configuration</b></summary>
415
+ <p>
416
+
417
+ For special cases, you may want to modify llama.cpp's build parameters. The converter automatically detects and enables available hardware acceleration, but you can also build llama.cpp manually with custom options before running the converter.
418
+ </p>
419
+ </details>
420
+
421
+ <hr/>
422
+
423
+ <div align="center">
424
+ <p>
425
+ <a href="https://github.com/OEvortex/Webscout">🔗 Part of the WebScout Project</a> |
426
+ <a href="https://github.com/ggerganov/llama.cpp">🚀 Powered by llama.cpp</a>
427
+ </p>
428
+
429
+ <p>Made with ❤️ by the Webscout team</p>
430
430
  </div>