webscout 8.3.4__py3-none-any.whl → 8.3.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/AIutel.py +52 -1016
- webscout/Bard.py +12 -6
- webscout/DWEBS.py +66 -57
- webscout/Provider/AISEARCH/PERPLEXED_search.py +214 -0
- webscout/Provider/AISEARCH/__init__.py +11 -10
- webscout/Provider/AISEARCH/felo_search.py +7 -3
- webscout/Provider/AISEARCH/scira_search.py +2 -0
- webscout/Provider/AISEARCH/stellar_search.py +53 -8
- webscout/Provider/Deepinfra.py +13 -1
- webscout/Provider/Flowith.py +6 -1
- webscout/Provider/GithubChat.py +1 -0
- webscout/Provider/GptOss.py +207 -0
- webscout/Provider/Kimi.py +445 -0
- webscout/Provider/Netwrck.py +3 -6
- webscout/Provider/OPENAI/README.md +2 -1
- webscout/Provider/OPENAI/TogetherAI.py +12 -8
- webscout/Provider/OPENAI/TwoAI.py +94 -1
- webscout/Provider/OPENAI/__init__.py +4 -4
- webscout/Provider/OPENAI/copilot.py +20 -4
- webscout/Provider/OPENAI/deepinfra.py +12 -0
- webscout/Provider/OPENAI/e2b.py +60 -8
- webscout/Provider/OPENAI/flowith.py +4 -3
- webscout/Provider/OPENAI/generate_api_key.py +48 -0
- webscout/Provider/OPENAI/gptoss.py +288 -0
- webscout/Provider/OPENAI/kimi.py +469 -0
- webscout/Provider/OPENAI/netwrck.py +8 -12
- webscout/Provider/OPENAI/refact.py +274 -0
- webscout/Provider/OPENAI/scirachat.py +4 -0
- webscout/Provider/OPENAI/textpollinations.py +11 -10
- webscout/Provider/OPENAI/toolbaz.py +1 -0
- webscout/Provider/OPENAI/venice.py +1 -0
- webscout/Provider/Perplexitylabs.py +163 -147
- webscout/Provider/Qodo.py +30 -6
- webscout/Provider/TTI/__init__.py +1 -0
- webscout/Provider/TTI/bing.py +14 -2
- webscout/Provider/TTI/together.py +11 -9
- webscout/Provider/TTI/venice.py +368 -0
- webscout/Provider/TTS/README.md +0 -1
- webscout/Provider/TTS/__init__.py +0 -1
- webscout/Provider/TTS/base.py +479 -159
- webscout/Provider/TTS/deepgram.py +409 -156
- webscout/Provider/TTS/elevenlabs.py +425 -111
- webscout/Provider/TTS/freetts.py +317 -140
- webscout/Provider/TTS/gesserit.py +192 -128
- webscout/Provider/TTS/murfai.py +248 -113
- webscout/Provider/TTS/openai_fm.py +347 -129
- webscout/Provider/TTS/speechma.py +620 -586
- webscout/Provider/TextPollinationsAI.py +11 -10
- webscout/Provider/TogetherAI.py +12 -4
- webscout/Provider/TwoAI.py +96 -2
- webscout/Provider/TypliAI.py +33 -27
- webscout/Provider/UNFINISHED/VercelAIGateway.py +339 -0
- webscout/Provider/UNFINISHED/fetch_together_models.py +6 -11
- webscout/Provider/Venice.py +1 -0
- webscout/Provider/WiseCat.py +18 -20
- webscout/Provider/__init__.py +2 -96
- webscout/Provider/cerebras.py +83 -33
- webscout/Provider/copilot.py +42 -23
- webscout/Provider/scira_chat.py +4 -0
- webscout/Provider/toolbaz.py +6 -10
- webscout/Provider/typefully.py +1 -11
- webscout/__init__.py +3 -15
- webscout/auth/__init__.py +19 -4
- webscout/auth/api_key_manager.py +189 -189
- webscout/auth/auth_system.py +25 -40
- webscout/auth/config.py +105 -6
- webscout/auth/database.py +377 -22
- webscout/auth/models.py +185 -130
- webscout/auth/request_processing.py +175 -11
- webscout/auth/routes.py +99 -2
- webscout/auth/server.py +9 -2
- webscout/auth/simple_logger.py +236 -0
- webscout/conversation.py +22 -20
- webscout/sanitize.py +1078 -0
- webscout/scout/README.md +20 -23
- webscout/scout/core/crawler.py +125 -38
- webscout/scout/core/scout.py +26 -5
- webscout/version.py +1 -1
- webscout/webscout_search.py +13 -6
- webscout/webscout_search_async.py +10 -8
- webscout/yep_search.py +13 -5
- {webscout-8.3.4.dist-info → webscout-8.3.6.dist-info}/METADATA +10 -149
- {webscout-8.3.4.dist-info → webscout-8.3.6.dist-info}/RECORD +88 -87
- webscout/Provider/Glider.py +0 -225
- webscout/Provider/OPENAI/README_AUTOPROXY.md +0 -238
- webscout/Provider/OPENAI/c4ai.py +0 -394
- webscout/Provider/OPENAI/glider.py +0 -330
- webscout/Provider/OPENAI/typegpt.py +0 -368
- webscout/Provider/OPENAI/uncovrAI.py +0 -477
- webscout/Provider/TTS/sthir.py +0 -94
- webscout/Provider/WritingMate.py +0 -273
- webscout/Provider/typegpt.py +0 -284
- webscout/Provider/uncovr.py +0 -333
- /webscout/Provider/{samurai.py → UNFINISHED/samurai.py} +0 -0
- {webscout-8.3.4.dist-info → webscout-8.3.6.dist-info}/WHEEL +0 -0
- {webscout-8.3.4.dist-info → webscout-8.3.6.dist-info}/entry_points.txt +0 -0
- {webscout-8.3.4.dist-info → webscout-8.3.6.dist-info}/licenses/LICENSE.md +0 -0
- {webscout-8.3.4.dist-info → webscout-8.3.6.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,368 @@
|
|
|
1
|
+
"""Venice AI TTI-Compatible Provider - Generate images with Venice AI! 🎨
|
|
2
|
+
|
|
3
|
+
Examples:
|
|
4
|
+
>>> from webscout.Provider.TTI.venice import VeniceAI
|
|
5
|
+
>>> client = VeniceAI()
|
|
6
|
+
>>> response = client.images.create(
|
|
7
|
+
... model="stable-diffusion-3.5-rev2",
|
|
8
|
+
... prompt="red car",
|
|
9
|
+
... n=1
|
|
10
|
+
... )
|
|
11
|
+
>>> print(response)
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
import requests
|
|
15
|
+
from typing import Optional, List, Dict, Any
|
|
16
|
+
from webscout.Provider.TTI.utils import (
|
|
17
|
+
ImageData,
|
|
18
|
+
ImageResponse
|
|
19
|
+
)
|
|
20
|
+
from webscout.Provider.TTI.base import TTICompatibleProvider, BaseImages
|
|
21
|
+
from io import BytesIO
|
|
22
|
+
import os
|
|
23
|
+
import tempfile
|
|
24
|
+
from webscout.litagent import LitAgent
|
|
25
|
+
import time
|
|
26
|
+
import json
|
|
27
|
+
import random
|
|
28
|
+
import string
|
|
29
|
+
|
|
30
|
+
try:
|
|
31
|
+
from PIL import Image
|
|
32
|
+
except ImportError:
|
|
33
|
+
Image = None
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class Images(BaseImages):
|
|
37
|
+
def __init__(self, client: "VeniceAI"):
|
|
38
|
+
self._client = client
|
|
39
|
+
|
|
40
|
+
def create(
|
|
41
|
+
self,
|
|
42
|
+
*,
|
|
43
|
+
model: str,
|
|
44
|
+
prompt: str,
|
|
45
|
+
n: int = 1,
|
|
46
|
+
size: str = "1024x1024",
|
|
47
|
+
response_format: str = "url",
|
|
48
|
+
user: Optional[str] = None,
|
|
49
|
+
style: str = "none",
|
|
50
|
+
aspect_ratio: str = "1:1",
|
|
51
|
+
timeout: int = 60,
|
|
52
|
+
image_format: str = "png",
|
|
53
|
+
seed: Optional[int] = None,
|
|
54
|
+
cfg_scale: float = 3.5,
|
|
55
|
+
steps: int = 25,
|
|
56
|
+
**kwargs,
|
|
57
|
+
) -> ImageResponse:
|
|
58
|
+
"""
|
|
59
|
+
Create images using Venice AI API.
|
|
60
|
+
|
|
61
|
+
Args:
|
|
62
|
+
model: The model to use for image generation
|
|
63
|
+
prompt: Text description of the image to generate
|
|
64
|
+
n: Number of images to generate (default: 1)
|
|
65
|
+
size: Image size in format "WIDTHxHEIGHT" (default: "1024x1024")
|
|
66
|
+
response_format: "url" or "b64_json" (default: "url")
|
|
67
|
+
user: Optional user identifier (ignored)
|
|
68
|
+
style: Optional style (ignored)
|
|
69
|
+
aspect_ratio: Image aspect ratio (default: "1:1")
|
|
70
|
+
timeout: Request timeout in seconds (default: 60)
|
|
71
|
+
image_format: Output image format "png" or "jpeg" (default: "png")
|
|
72
|
+
seed: Random seed for reproducibility (optional)
|
|
73
|
+
cfg_scale: CFG scale for generation (default: 3.5)
|
|
74
|
+
steps: Number of inference steps (default: 25)
|
|
75
|
+
**kwargs: Additional parameters
|
|
76
|
+
|
|
77
|
+
Returns:
|
|
78
|
+
ImageResponse: The generated images
|
|
79
|
+
"""
|
|
80
|
+
if Image is None:
|
|
81
|
+
raise ImportError("Pillow (PIL) is required for image format conversion.")
|
|
82
|
+
|
|
83
|
+
if model not in self._client.AVAILABLE_MODELS:
|
|
84
|
+
raise ValueError(f"Model '{model}' not supported. Available models: {self._client.AVAILABLE_MODELS}")
|
|
85
|
+
|
|
86
|
+
images = []
|
|
87
|
+
urls = []
|
|
88
|
+
agent = LitAgent()
|
|
89
|
+
|
|
90
|
+
def upload_file_with_retry(img_bytes, image_format, max_retries=3):
|
|
91
|
+
ext = "jpg" if image_format.lower() == "jpeg" else "png"
|
|
92
|
+
for attempt in range(max_retries):
|
|
93
|
+
tmp_path = None
|
|
94
|
+
try:
|
|
95
|
+
with tempfile.NamedTemporaryFile(
|
|
96
|
+
suffix=f".{ext}", delete=False
|
|
97
|
+
) as tmp:
|
|
98
|
+
tmp.write(img_bytes)
|
|
99
|
+
tmp.flush()
|
|
100
|
+
tmp_path = tmp.name
|
|
101
|
+
with open(tmp_path, "rb") as f:
|
|
102
|
+
files = {"fileToUpload": (f"image.{ext}", f, f"image/{ext}")}
|
|
103
|
+
data = {"reqtype": "fileupload", "json": "true"}
|
|
104
|
+
headers = {"User-Agent": agent.random()}
|
|
105
|
+
if attempt > 0:
|
|
106
|
+
headers["Connection"] = "close"
|
|
107
|
+
resp = requests.post(
|
|
108
|
+
"https://catbox.moe/user/api.php",
|
|
109
|
+
files=files,
|
|
110
|
+
data=data,
|
|
111
|
+
headers=headers,
|
|
112
|
+
timeout=timeout,
|
|
113
|
+
)
|
|
114
|
+
if resp.status_code == 200 and resp.text.strip():
|
|
115
|
+
text = resp.text.strip()
|
|
116
|
+
if text.startswith("http"):
|
|
117
|
+
return text
|
|
118
|
+
try:
|
|
119
|
+
result = resp.json()
|
|
120
|
+
if "url" in result:
|
|
121
|
+
return result["url"]
|
|
122
|
+
except json.JSONDecodeError:
|
|
123
|
+
if "http" in text:
|
|
124
|
+
return text
|
|
125
|
+
except Exception:
|
|
126
|
+
if attempt < max_retries - 1:
|
|
127
|
+
time.sleep(1 * (attempt + 1))
|
|
128
|
+
finally:
|
|
129
|
+
if tmp_path and os.path.isfile(tmp_path):
|
|
130
|
+
try:
|
|
131
|
+
os.remove(tmp_path)
|
|
132
|
+
except Exception:
|
|
133
|
+
pass
|
|
134
|
+
return None
|
|
135
|
+
|
|
136
|
+
def upload_file_alternative(img_bytes, image_format):
|
|
137
|
+
try:
|
|
138
|
+
ext = "jpg" if image_format.lower() == "jpeg" else "png"
|
|
139
|
+
with tempfile.NamedTemporaryFile(suffix=f".{ext}", delete=False) as tmp:
|
|
140
|
+
tmp.write(img_bytes)
|
|
141
|
+
tmp.flush()
|
|
142
|
+
tmp_path = tmp.name
|
|
143
|
+
try:
|
|
144
|
+
if not os.path.isfile(tmp_path):
|
|
145
|
+
return None
|
|
146
|
+
with open(tmp_path, "rb") as img_file:
|
|
147
|
+
files = {"file": img_file}
|
|
148
|
+
response = requests.post("https://0x0.st", files=files)
|
|
149
|
+
response.raise_for_status()
|
|
150
|
+
image_url = response.text.strip()
|
|
151
|
+
if not image_url.startswith("http"):
|
|
152
|
+
return None
|
|
153
|
+
return image_url
|
|
154
|
+
except Exception:
|
|
155
|
+
return None
|
|
156
|
+
finally:
|
|
157
|
+
try:
|
|
158
|
+
os.remove(tmp_path)
|
|
159
|
+
except Exception:
|
|
160
|
+
pass
|
|
161
|
+
except Exception:
|
|
162
|
+
return None
|
|
163
|
+
|
|
164
|
+
# Parse size to width and height
|
|
165
|
+
if "x" in size:
|
|
166
|
+
width, height = map(int, size.split("x"))
|
|
167
|
+
else:
|
|
168
|
+
width = height = int(size)
|
|
169
|
+
|
|
170
|
+
for _ in range(n):
|
|
171
|
+
# Generate random IDs for the request
|
|
172
|
+
request_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
|
|
173
|
+
message_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
|
|
174
|
+
user_id = f"user_anon_{''.join(random.choices(string.digits, k=10))}"
|
|
175
|
+
|
|
176
|
+
# Generate seed if not provided
|
|
177
|
+
if seed is None:
|
|
178
|
+
seed = random.randint(0, 2**32 - 1)
|
|
179
|
+
|
|
180
|
+
# Prepare the request payload based on the provided example
|
|
181
|
+
payload = {
|
|
182
|
+
"aspectRatio": aspect_ratio,
|
|
183
|
+
"cfgScale": cfg_scale,
|
|
184
|
+
"customSeed": "",
|
|
185
|
+
"embedExifMetadata": True,
|
|
186
|
+
"enhanceCreativity": 0.35,
|
|
187
|
+
"favoriteImageStyles": [],
|
|
188
|
+
"format": "webp",
|
|
189
|
+
"height": height,
|
|
190
|
+
"hideWatermark": False,
|
|
191
|
+
"imageToImageCfgScale": 15,
|
|
192
|
+
"imageToImageStrength": 33,
|
|
193
|
+
"isConstrained": True,
|
|
194
|
+
"isCustomSeed": seed is not None,
|
|
195
|
+
"isDefault": True,
|
|
196
|
+
"loraStrength": 75,
|
|
197
|
+
"matureFilter": True,
|
|
198
|
+
"negativePrompt": kwargs.get("negative_prompt", ""),
|
|
199
|
+
"recentImageStyles": [],
|
|
200
|
+
"replication": 0.35,
|
|
201
|
+
"steps": steps,
|
|
202
|
+
"stylePreset": "",
|
|
203
|
+
"stylesTab": 0,
|
|
204
|
+
"upscaleEnhance": True,
|
|
205
|
+
"upscaleScale": 2,
|
|
206
|
+
"variants": 1,
|
|
207
|
+
"width": width,
|
|
208
|
+
"safeVenice": True,
|
|
209
|
+
"requestId": request_id,
|
|
210
|
+
"type": "image",
|
|
211
|
+
"modelId": model,
|
|
212
|
+
"modelName": self._client.MODEL_NAMES.get(model, "Venice AI"),
|
|
213
|
+
"modelType": "image",
|
|
214
|
+
"prompt": prompt,
|
|
215
|
+
"seed": seed,
|
|
216
|
+
"messageId": message_id,
|
|
217
|
+
"userId": user_id,
|
|
218
|
+
"simpleMode": False,
|
|
219
|
+
"parentMessageId": None,
|
|
220
|
+
"clientProcessingTime": random.randint(5, 15)
|
|
221
|
+
}
|
|
222
|
+
|
|
223
|
+
try:
|
|
224
|
+
# Make the API request
|
|
225
|
+
resp = self._client.session.post(
|
|
226
|
+
self._client.api_endpoint,
|
|
227
|
+
json=payload,
|
|
228
|
+
timeout=timeout,
|
|
229
|
+
)
|
|
230
|
+
resp.raise_for_status()
|
|
231
|
+
|
|
232
|
+
# Venice API returns binary image content directly
|
|
233
|
+
img_bytes = resp.content
|
|
234
|
+
|
|
235
|
+
# Convert to png or jpeg in memory
|
|
236
|
+
with BytesIO(img_bytes) as input_io:
|
|
237
|
+
with Image.open(input_io) as im:
|
|
238
|
+
out_io = BytesIO()
|
|
239
|
+
if image_format.lower() == "jpeg":
|
|
240
|
+
im = im.convert("RGB")
|
|
241
|
+
im.save(out_io, format="JPEG")
|
|
242
|
+
else:
|
|
243
|
+
im.save(out_io, format="PNG")
|
|
244
|
+
img_bytes = out_io.getvalue()
|
|
245
|
+
|
|
246
|
+
images.append(img_bytes)
|
|
247
|
+
|
|
248
|
+
if response_format == "url":
|
|
249
|
+
uploaded_url = upload_file_with_retry(img_bytes, image_format)
|
|
250
|
+
if not uploaded_url:
|
|
251
|
+
uploaded_url = upload_file_alternative(img_bytes, image_format)
|
|
252
|
+
if uploaded_url:
|
|
253
|
+
urls.append(uploaded_url)
|
|
254
|
+
else:
|
|
255
|
+
raise RuntimeError(
|
|
256
|
+
"Failed to upload image to catbox.moe using all available methods"
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
except requests.exceptions.RequestException as e:
|
|
260
|
+
raise RuntimeError(f"Failed to generate image with Venice AI: {e}")
|
|
261
|
+
except Exception as e:
|
|
262
|
+
raise RuntimeError(f"Error processing Venice AI response: {e}")
|
|
263
|
+
|
|
264
|
+
result_data = []
|
|
265
|
+
if response_format == "url":
|
|
266
|
+
for url in urls:
|
|
267
|
+
result_data.append(ImageData(url=url))
|
|
268
|
+
elif response_format == "b64_json":
|
|
269
|
+
import base64
|
|
270
|
+
for img in images:
|
|
271
|
+
b64 = base64.b64encode(img).decode("utf-8")
|
|
272
|
+
result_data.append(ImageData(b64_json=b64))
|
|
273
|
+
else:
|
|
274
|
+
raise ValueError("response_format must be 'url' or 'b64_json'")
|
|
275
|
+
|
|
276
|
+
return ImageResponse(created=int(time.time()), data=result_data)
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
class VeniceAI(TTICompatibleProvider):
|
|
280
|
+
"""
|
|
281
|
+
Venice AI provider for text-to-image generation.
|
|
282
|
+
|
|
283
|
+
This provider interfaces with the Venice AI API at outerface.venice.ai
|
|
284
|
+
to generate images from text prompts using various Stable Diffusion models.
|
|
285
|
+
"""
|
|
286
|
+
|
|
287
|
+
AVAILABLE_MODELS = [
|
|
288
|
+
"stable-diffusion-3.5-rev2",
|
|
289
|
+
"hidream",
|
|
290
|
+
"flux.1-dev-akash",
|
|
291
|
+
"flux.1-dev-uncensored-akash",
|
|
292
|
+
"pony-realism-akash"
|
|
293
|
+
]
|
|
294
|
+
|
|
295
|
+
MODEL_NAMES = {
|
|
296
|
+
"stable-diffusion-3.5-rev2": "Venice SD35",
|
|
297
|
+
"hidream": "HiDream",
|
|
298
|
+
"flux.1-dev-akash": "FLUX Standard",
|
|
299
|
+
"flux.1-dev-uncensored-akash": "FLUX Custom",
|
|
300
|
+
"pony-realism-akash": "Pony Realism"
|
|
301
|
+
}
|
|
302
|
+
|
|
303
|
+
def __init__(self):
|
|
304
|
+
"""
|
|
305
|
+
Initialize the Venice AI provider.
|
|
306
|
+
"""
|
|
307
|
+
self.api_endpoint = "https://outerface.venice.ai/api/inference/image"
|
|
308
|
+
self.session = requests.Session()
|
|
309
|
+
self.user_agent = LitAgent().random()
|
|
310
|
+
|
|
311
|
+
# Set up headers based on the provided request details
|
|
312
|
+
self.headers = {
|
|
313
|
+
"accept": "*/*",
|
|
314
|
+
"accept-encoding": "gzip, deflate, br, zstd",
|
|
315
|
+
"accept-language": "en-US,en;q=0.9,en-IN;q=0.8",
|
|
316
|
+
"content-type": "application/json",
|
|
317
|
+
"dnt": "1",
|
|
318
|
+
"origin": "https://venice.ai",
|
|
319
|
+
"referer": "https://venice.ai/",
|
|
320
|
+
"sec-ch-ua": '"Not)A;Brand";v="8", "Chromium";v="138", "Microsoft Edge";v="138"',
|
|
321
|
+
"sec-ch-ua-mobile": "?0",
|
|
322
|
+
"sec-ch-ua-platform": '"Windows"',
|
|
323
|
+
"sec-fetch-dest": "empty",
|
|
324
|
+
"sec-fetch-mode": "cors",
|
|
325
|
+
"sec-fetch-site": "same-site",
|
|
326
|
+
"sec-gpc": "1",
|
|
327
|
+
"user-agent": self.user_agent,
|
|
328
|
+
"x-venice-timestamp": time.strftime("%Y-%m-%dT%H:%M:%S%z"),
|
|
329
|
+
"x-venice-version": "interface@20250726.112947+c7924af"
|
|
330
|
+
}
|
|
331
|
+
|
|
332
|
+
self.session.headers.update(self.headers)
|
|
333
|
+
self.images = Images(self)
|
|
334
|
+
|
|
335
|
+
@property
|
|
336
|
+
def models(self):
|
|
337
|
+
"""
|
|
338
|
+
Get available models for the Venice AI provider.
|
|
339
|
+
|
|
340
|
+
Returns:
|
|
341
|
+
Object with list() method that returns available models
|
|
342
|
+
"""
|
|
343
|
+
class _ModelList:
|
|
344
|
+
def list(inner_self):
|
|
345
|
+
return type(self).AVAILABLE_MODELS
|
|
346
|
+
|
|
347
|
+
return _ModelList()
|
|
348
|
+
|
|
349
|
+
|
|
350
|
+
if __name__ == "__main__":
|
|
351
|
+
from rich import print
|
|
352
|
+
|
|
353
|
+
# Example usage
|
|
354
|
+
client = VeniceAI()
|
|
355
|
+
|
|
356
|
+
try:
|
|
357
|
+
response = client.images.create(
|
|
358
|
+
model="stable-diffusion-3.5-rev2",
|
|
359
|
+
prompt="red car",
|
|
360
|
+
response_format="url",
|
|
361
|
+
n=1,
|
|
362
|
+
size="1024x1024",
|
|
363
|
+
timeout=60,
|
|
364
|
+
)
|
|
365
|
+
print("Generated image successfully:")
|
|
366
|
+
print(response)
|
|
367
|
+
except Exception as e:
|
|
368
|
+
print(f"Error: {e}")
|
webscout/Provider/TTS/README.md
CHANGED