webscout 8.2.4__py3-none-any.whl → 8.2.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (80) hide show
  1. webscout/Extra/gguf.py +2 -0
  2. webscout/Provider/AISEARCH/scira_search.py +2 -5
  3. webscout/Provider/Aitopia.py +75 -51
  4. webscout/Provider/AllenAI.py +64 -67
  5. webscout/Provider/ChatGPTClone.py +33 -34
  6. webscout/Provider/ChatSandbox.py +342 -0
  7. webscout/Provider/Cloudflare.py +79 -32
  8. webscout/Provider/Deepinfra.py +69 -56
  9. webscout/Provider/ElectronHub.py +48 -39
  10. webscout/Provider/ExaChat.py +36 -20
  11. webscout/Provider/GPTWeb.py +24 -18
  12. webscout/Provider/GithubChat.py +52 -49
  13. webscout/Provider/GizAI.py +283 -0
  14. webscout/Provider/Glider.py +39 -28
  15. webscout/Provider/Groq.py +48 -20
  16. webscout/Provider/HeckAI.py +18 -36
  17. webscout/Provider/Jadve.py +30 -37
  18. webscout/Provider/LambdaChat.py +36 -59
  19. webscout/Provider/MCPCore.py +18 -21
  20. webscout/Provider/Marcus.py +23 -14
  21. webscout/Provider/Netwrck.py +35 -26
  22. webscout/Provider/OPENAI/__init__.py +1 -1
  23. webscout/Provider/OPENAI/exachat.py +4 -0
  24. webscout/Provider/OPENAI/scirachat.py +2 -4
  25. webscout/Provider/OPENAI/textpollinations.py +20 -22
  26. webscout/Provider/OPENAI/toolbaz.py +1 -0
  27. webscout/Provider/PI.py +22 -13
  28. webscout/Provider/StandardInput.py +42 -30
  29. webscout/Provider/TeachAnything.py +16 -7
  30. webscout/Provider/TextPollinationsAI.py +78 -76
  31. webscout/Provider/TwoAI.py +120 -88
  32. webscout/Provider/TypliAI.py +305 -0
  33. webscout/Provider/Venice.py +24 -22
  34. webscout/Provider/VercelAI.py +31 -12
  35. webscout/Provider/__init__.py +7 -7
  36. webscout/Provider/asksteve.py +53 -44
  37. webscout/Provider/cerebras.py +77 -31
  38. webscout/Provider/chatglm.py +47 -37
  39. webscout/Provider/elmo.py +38 -32
  40. webscout/Provider/granite.py +24 -21
  41. webscout/Provider/hermes.py +27 -20
  42. webscout/Provider/learnfastai.py +25 -20
  43. webscout/Provider/llmchatco.py +48 -78
  44. webscout/Provider/multichat.py +13 -3
  45. webscout/Provider/scira_chat.py +49 -30
  46. webscout/Provider/scnet.py +23 -20
  47. webscout/Provider/searchchat.py +16 -24
  48. webscout/Provider/sonus.py +37 -39
  49. webscout/Provider/toolbaz.py +24 -46
  50. webscout/Provider/turboseek.py +37 -41
  51. webscout/Provider/typefully.py +30 -22
  52. webscout/Provider/typegpt.py +47 -51
  53. webscout/Provider/uncovr.py +46 -40
  54. webscout/cli.py +256 -0
  55. webscout/conversation.py +0 -2
  56. webscout/exceptions.py +3 -0
  57. webscout/version.py +1 -1
  58. {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/METADATA +166 -45
  59. {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/RECORD +63 -76
  60. {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/WHEEL +1 -1
  61. webscout-8.2.5.dist-info/entry_points.txt +3 -0
  62. {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/top_level.txt +0 -1
  63. inferno/__init__.py +0 -6
  64. inferno/__main__.py +0 -9
  65. inferno/cli.py +0 -6
  66. inferno/lol.py +0 -589
  67. webscout/Local/__init__.py +0 -12
  68. webscout/Local/__main__.py +0 -9
  69. webscout/Local/api.py +0 -576
  70. webscout/Local/cli.py +0 -516
  71. webscout/Local/config.py +0 -75
  72. webscout/Local/llm.py +0 -287
  73. webscout/Local/model_manager.py +0 -253
  74. webscout/Local/server.py +0 -721
  75. webscout/Local/utils.py +0 -93
  76. webscout/Provider/Chatify.py +0 -175
  77. webscout/Provider/askmyai.py +0 -158
  78. webscout/Provider/gaurish.py +0 -244
  79. webscout-8.2.4.dist-info/entry_points.txt +0 -5
  80. {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/licenses/LICENSE.md +0 -0
webscout/Local/llm.py DELETED
@@ -1,287 +0,0 @@
1
- """
2
- LLM interface for webscout.Local using llama-cpp-python
3
- """
4
-
5
- from typing import Dict, Any, List, Optional, Union, Generator, Callable
6
-
7
- from llama_cpp import Llama
8
- from rich.console import Console
9
-
10
- from .config import config
11
- from .model_manager import ModelManager
12
-
13
- console = Console()
14
-
15
- class LLMInterface:
16
- """
17
- Interface for LLM models using llama-cpp-python.
18
- Provides methods for loading models and generating completions or chat responses.
19
- """
20
- model_name: str
21
- model_manager: ModelManager
22
- model_path: Optional[str]
23
- llm: Optional[Llama]
24
-
25
- def __init__(self, model_name: str) -> None:
26
- """
27
- Initialize the LLM interface.
28
- Args:
29
- model_name (str): Name of the model to load.
30
- Raises:
31
- ValueError: If the model is not found locally.
32
- """
33
- self.model_name = model_name
34
- self.model_manager = ModelManager()
35
- self.model_path = self.model_manager.get_model_path(model_name)
36
- if not self.model_path:
37
- raise ValueError(f"Model {model_name} not found. Please download it first.")
38
- self.llm = None
39
-
40
- def load_model(
41
- self,
42
- n_gpu_layers: Optional[int] = None,
43
- n_ctx: Optional[int] = None,
44
- verbose: bool = False,
45
- n_threads: Optional[int] = None,
46
- n_batch: Optional[int] = None,
47
- use_mlock: bool = False,
48
- use_mmap: bool = True,
49
- rope_freq_base: Optional[float] = None,
50
- rope_freq_scale: Optional[float] = None,
51
- low_vram: bool = False,
52
- ) -> None:
53
- """
54
- Load the model into memory.
55
- Args:
56
- n_gpu_layers (Optional[int]): Number of layers to offload to GPU (-1 for all).
57
- n_ctx (Optional[int]): Context size.
58
- verbose (bool): Whether to show verbose output.
59
- n_threads (Optional[int]): Number of threads to use.
60
- n_batch (Optional[int]): Batch size for prompt processing.
61
- use_mlock (bool): Whether to use mlock to keep model in memory.
62
- use_mmap (bool): Whether to use memory mapping for the model.
63
- rope_freq_base (Optional[float]): RoPE base frequency.
64
- rope_freq_scale (Optional[float]): RoPE frequency scaling factor.
65
- low_vram (bool): Whether to optimize for low VRAM usage.
66
- Raises:
67
- ValueError: If model loading fails.
68
- """
69
- # If model is already loaded, check if we need to reload with different parameters
70
- if self.llm is not None:
71
- if n_ctx is not None and hasattr(self.llm, 'n_ctx') and self.llm.n_ctx != n_ctx:
72
- # Need to reload with new context size
73
- self.llm = None
74
- else:
75
- # Model already loaded with compatible parameters
76
- return
77
-
78
- if n_gpu_layers is None:
79
- n_gpu_layers = config.get("default_gpu_layers", -1)
80
- if n_ctx is None:
81
- n_ctx = config.get("default_context_length", 4096)
82
-
83
- # Determine number of threads if not specified
84
- if n_threads is None:
85
- import multiprocessing
86
- n_threads = max(1, multiprocessing.cpu_count() // 2)
87
-
88
- console.print(f"[bold blue]Loading model {self.model_name}...[/bold blue]")
89
- try:
90
- self.llm = Llama(
91
- model_path=self.model_path,
92
- n_gpu_layers=n_gpu_layers,
93
- n_ctx=n_ctx,
94
- verbose=verbose,
95
- n_threads=n_threads,
96
- n_batch=n_batch or 512,
97
- use_mlock=use_mlock,
98
- use_mmap=use_mmap,
99
- rope_freq_base=rope_freq_base,
100
- rope_freq_scale=rope_freq_scale,
101
- low_vram=low_vram,
102
- )
103
-
104
- console.print(f"[bold green]Model {self.model_name} loaded successfully[/bold green]")
105
- if verbose:
106
- console.print(f"[dim]Using {n_threads} threads, context size: {n_ctx}[/dim]")
107
- if n_gpu_layers and n_gpu_layers > 0:
108
- console.print(f"[dim]GPU acceleration: {n_gpu_layers} layers offloaded to GPU[/dim]")
109
- except Exception as e:
110
- raise ValueError(f"Failed to load model from file: {self.model_path}\n{str(e)}")
111
-
112
- def create_completion(
113
- self,
114
- prompt: str,
115
- max_tokens: int = 256,
116
- temperature: float = 0.7,
117
- top_p: float = 0.95,
118
- stream: bool = False,
119
- stop: Optional[List[str]] = None,
120
- suffix: Optional[str] = None,
121
- images: Optional[List[str]] = None,
122
- system: Optional[str] = None,
123
- template: Optional[str] = None,
124
- context: Optional[List[int]] = None,
125
- raw: bool = False,
126
- format: Optional[Union[str, Dict[str, Any]]] = None,
127
- ) -> Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]:
128
- """
129
- Create a completion for the given prompt.
130
- Args:
131
- prompt (str): The prompt to complete.
132
- max_tokens (int): Maximum number of tokens to generate.
133
- temperature (float): Sampling temperature.
134
- top_p (float): Top-p sampling.
135
- stream (bool): Whether to stream the response.
136
- stop (Optional[List[str]]): List of strings to stop generation when encountered.
137
- Returns:
138
- Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]: Completion result or generator for streaming.
139
- """
140
- if self.llm is None:
141
- self.load_model()
142
- if stream:
143
- return self.llm.create_completion(
144
- prompt=prompt,
145
- max_tokens=max_tokens,
146
- temperature=temperature,
147
- top_p=top_p,
148
- stream=True,
149
- stop=stop or [],
150
- )
151
- else:
152
- return self.llm.create_completion(
153
- prompt=prompt,
154
- max_tokens=max_tokens,
155
- temperature=temperature,
156
- top_p=top_p,
157
- stream=False,
158
- stop=stop or [],
159
- )
160
-
161
- def create_chat_completion(
162
- self,
163
- messages: List[Dict[str, Any]],
164
- max_tokens: int = 256,
165
- temperature: float = 0.7,
166
- top_p: float = 0.95,
167
- stream: bool = False,
168
- stop: Optional[List[str]] = None,
169
- tools: Optional[List[Dict[str, Any]]] = None,
170
- format: Optional[Union[str, Dict[str, Any]]] = None,
171
- ) -> Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]:
172
- """
173
- Create a chat completion for the given messages.
174
- Args:
175
- messages (List[Dict[str, str]]): List of chat messages.
176
- max_tokens (int): Maximum number of tokens to generate.
177
- temperature (float): Sampling temperature.
178
- top_p (float): Top-p sampling.
179
- stream (bool): Whether to stream the response.
180
- stop (Optional[List[str]]): List of strings to stop generation when encountered.
181
- Returns:
182
- Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]: Chat completion result or generator for streaming.
183
- """
184
- if self.llm is None:
185
- self.load_model()
186
- processed_messages: List[Dict[str, str]] = messages.copy()
187
- system_messages = [m for m in processed_messages if m.get("role") == "system"]
188
- non_system_messages = [m for m in processed_messages if m.get("role") != "system"]
189
- if system_messages:
190
- processed_messages = [system_messages[0]] + non_system_messages
191
- else:
192
- processed_messages = non_system_messages
193
- if stream:
194
- return self.llm.create_chat_completion(
195
- messages=processed_messages,
196
- max_tokens=max_tokens,
197
- temperature=temperature,
198
- top_p=top_p,
199
- stream=True,
200
- stop=stop or [],
201
- )
202
- else:
203
- return self.llm.create_chat_completion(
204
- messages=processed_messages,
205
- max_tokens=max_tokens,
206
- temperature=temperature,
207
- top_p=top_p,
208
- stream=False,
209
- stop=stop or [],
210
- )
211
-
212
- def stream_chat_completion(
213
- self,
214
- messages: List[Dict[str, Any]],
215
- callback: Callable[[str], None],
216
- max_tokens: int = 256,
217
- temperature: float = 0.7,
218
- top_p: float = 0.95,
219
- stop: Optional[List[str]] = None,
220
- tools: Optional[List[Dict[str, Any]]] = None,
221
- format: Optional[Union[str, Dict[str, Any]]] = None,
222
- ) -> None:
223
- """
224
- Stream a chat completion with a callback for each token.
225
- Args:
226
- messages (List[Dict[str, Any]]): List of chat messages.
227
- callback (Callable[[str], None]): Function to call with each token.
228
- max_tokens (int): Maximum number of tokens to generate.
229
- temperature (float): Sampling temperature.
230
- top_p (float): Top-p sampling.
231
- stop (Optional[List[str]]): List of strings to stop generation when encountered.
232
- tools (Optional[List[Dict[str, Any]]]): List of tools for function calling.
233
- format (Optional[Union[str, Dict[str, Any]]]): Format for structured output.
234
- """
235
- stream = self.create_chat_completion(
236
- messages=messages,
237
- max_tokens=max_tokens,
238
- temperature=temperature,
239
- top_p=top_p,
240
- stream=True,
241
- stop=stop,
242
- )
243
- for chunk in stream:
244
- if "choices" in chunk and len(chunk["choices"]) > 0:
245
- if "delta" in chunk["choices"][0] and "content" in chunk["choices"][0]["delta"]:
246
- content = chunk["choices"][0]["delta"]["content"]
247
- callback(content)
248
-
249
- def create_embeddings(
250
- self,
251
- input: Union[str, List[str]],
252
- truncate: bool = True,
253
- ) -> Dict[str, Any]:
254
- """
255
- Generate embeddings for the given input.
256
- Args:
257
- input (Union[str, List[str]]): Text or list of texts to generate embeddings for.
258
- truncate (bool): Whether to truncate the input to fit within context length.
259
- Returns:
260
- Dict[str, Any]: Embeddings response.
261
- """
262
- if self.llm is None:
263
- self.load_model()
264
-
265
- # Convert input to list if it's a string
266
- if isinstance(input, str):
267
- input_texts = [input]
268
- else:
269
- input_texts = input
270
-
271
- # Generate embeddings for each input text
272
- embeddings = []
273
- for text in input_texts:
274
- # Use llama-cpp-python's embedding method
275
- embedding = self.llm.embed(text)
276
- embeddings.append(embedding)
277
-
278
- # Create response
279
- response = {
280
- "model": self.model_name,
281
- "embeddings": embeddings,
282
- "total_duration": 0, # Could be improved with actual timing
283
- "load_duration": 0, # Could be improved with actual timing
284
- "prompt_eval_count": len(input_texts)
285
- }
286
-
287
- return response
@@ -1,253 +0,0 @@
1
- """
2
- Model management for webscout.local
3
- """
4
-
5
- import os
6
- import json
7
- import datetime
8
- from pathlib import Path
9
- from typing import Dict, Any, Optional, List, Tuple
10
- import shutil
11
-
12
- from rich.console import Console
13
- from rich.prompt import Prompt
14
- from huggingface_hub import hf_hub_download, HfFileSystem
15
-
16
- from .config import config
17
-
18
- console = Console()
19
-
20
- class ModelManager:
21
- """
22
- Manager for downloading and managing models.
23
- Handles model download, listing, removal, and path resolution.
24
- """
25
- models_dir: Path
26
-
27
- def __init__(self) -> None:
28
- self.models_dir = config.models_dir
29
-
30
- def parse_model_string(self, model_string: str) -> Tuple[str, Optional[str]]:
31
- """
32
- Parse a model string in the format 'repo_id:filename' or just 'repo_id'.
33
- Args:
34
- model_string (str): The model string to parse.
35
- Returns:
36
- Tuple[str, Optional[str]]: (repo_id, filename)
37
- """
38
- if ":" in model_string:
39
- repo_id, filename = model_string.split(":", 1)
40
- return repo_id, filename
41
- else:
42
- return model_string, None
43
-
44
- def list_repo_gguf_files(self, repo_id: str) -> List[str]:
45
- """
46
- List all GGUF files in a repository.
47
- Args:
48
- repo_id (str): The Hugging Face repository ID.
49
- Returns:
50
- List[str]: List of filenames.
51
- """
52
- fs = HfFileSystem()
53
- try:
54
- files = fs.ls(repo_id, detail=False)
55
- gguf_files = [os.path.basename(f) for f in files if f.endswith(".gguf")]
56
- return gguf_files
57
- except Exception as e:
58
- console.print(f"[bold red]Error listing files in repository {repo_id}: {str(e)}[/bold red]")
59
- return []
60
-
61
- def select_file_interactive(self, repo_id: str) -> Optional[str]:
62
- """
63
- Interactively select a file from a repository.
64
- Args:
65
- repo_id (str): The Hugging Face repository ID.
66
- Returns:
67
- Optional[str]: Selected filename or None if cancelled.
68
- """
69
- gguf_files = self.list_repo_gguf_files(repo_id)
70
- if not gguf_files:
71
- console.print(f"[bold red]No GGUF files found in repository {repo_id}[/bold red]")
72
- return None
73
- console.print(f"[bold blue]Available GGUF files in {repo_id}:[/bold blue]")
74
- for i, filename in enumerate(gguf_files):
75
- console.print(f" [{i+1}] {filename}")
76
- choice = Prompt.ask(
77
- "Select a file to download (number or filename)",
78
- default="1"
79
- )
80
- try:
81
- idx = int(choice) - 1
82
- if 0 <= idx < len(gguf_files):
83
- return gguf_files[idx]
84
- except ValueError:
85
- if choice in gguf_files:
86
- return choice
87
- console.print(f"[bold red]Invalid selection: {choice}[/bold red]")
88
- return None
89
-
90
- def download_model(self, model_string: str, filename: Optional[str] = None) -> Tuple[str, Path]:
91
- """
92
- Download a model from Hugging Face Hub.
93
- Args:
94
- model_string (str): The model string in format 'repo_id' or 'repo_id:filename'.
95
- filename (Optional[str]): Specific filename to download, overrides filename in model_string.
96
- Returns:
97
- Tuple[str, Path]: (model_name, model_path)
98
- """
99
- repo_id, file_from_string = self.parse_model_string(model_string)
100
- filename = filename or file_from_string
101
- model_name = repo_id.split("/")[-1] if "/" in repo_id else repo_id
102
- model_dir = config.get_model_path(model_name)
103
- model_dir.mkdir(exist_ok=True, parents=True)
104
- model_info: Dict[str, Any] = {
105
- "repo_id": repo_id,
106
- "name": model_name,
107
- "downloaded_at": datetime.datetime.now().isoformat(),
108
- }
109
- with open(model_dir / "info.json", "w") as f:
110
- json.dump(model_info, f, indent=2)
111
- if not filename:
112
- console.print(f"[yellow]No filename provided, searching for GGUF files in {repo_id}...[/yellow]")
113
- filename = self.select_file_interactive(repo_id)
114
- if not filename:
115
- raise ValueError(f"No GGUF file selected from repository {repo_id}")
116
- console.print(f"[green]Selected GGUF file: {filename}[/green]")
117
- console.print(f"[bold blue]Downloading {filename} from {repo_id}...[/bold blue]")
118
- try:
119
- model_path = hf_hub_download(
120
- repo_id=repo_id,
121
- filename=filename,
122
- local_dir=model_dir,
123
- )
124
- except Exception as e:
125
- console.print(f"[bold red]Error downloading file: {str(e)}[/bold red]")
126
- raise
127
- console.print(f"[bold green]Model downloaded to {model_path}[/bold green]")
128
- model_info["filename"] = filename
129
- model_info["path"] = str(model_path)
130
- with open(model_dir / "info.json", "w") as f:
131
- json.dump(model_info, f, indent=2)
132
- return model_name, Path(model_path)
133
-
134
- def get_model_info(self, model_name: str) -> Optional[Dict[str, Any]]:
135
- """
136
- Get information about a downloaded model.
137
- Args:
138
- model_name (str): Name of the model.
139
- Returns:
140
- Optional[Dict[str, Any]]: Model info dict or None if not found.
141
- """
142
- model_dir = config.get_model_path(model_name)
143
- info_file = model_dir / "info.json"
144
- if not info_file.exists():
145
- return None
146
- with open(info_file, "r") as f:
147
- return json.load(f)
148
-
149
- def list_models(self) -> List[Dict[str, Any]]:
150
- """
151
- List all downloaded models with their information.
152
- Returns:
153
- List[Dict[str, Any]]: List of model info dicts.
154
- """
155
- models: List[Dict[str, Any]] = []
156
- seen_paths: set = set()
157
- if not config.models_dir.exists():
158
- return []
159
- model_dirs = [d for d in config.models_dir.iterdir() if d.is_dir()]
160
- for model_dir in model_dirs:
161
- if ":" in model_dir.name:
162
- continue
163
- info_file = model_dir / "info.json"
164
- if info_file.exists():
165
- try:
166
- with open(info_file, "r") as f:
167
- info = json.load(f)
168
- if "path" in info and info["path"] in seen_paths:
169
- continue
170
- if "path" in info:
171
- seen_paths.add(info["path"])
172
- models.append(info)
173
- except Exception:
174
- pass
175
- return models
176
-
177
- def remove_model(self, model_name: str) -> bool:
178
- """
179
- Remove a downloaded model.
180
- Args:
181
- model_name (str): Name of the model to remove.
182
- Returns:
183
- bool: True if removed, False if not found.
184
- """
185
- model_dir = config.get_model_path(model_name)
186
- if not model_dir.exists():
187
- return False
188
- shutil.rmtree(model_dir)
189
- return True
190
-
191
- def get_model_path(self, model_name: str) -> Optional[str]:
192
- """
193
- Get the path to a model file.
194
- Args:
195
- model_name (str): Name or filename of the model.
196
- Returns:
197
- Optional[str]: Path to the model file or None if not found.
198
- """
199
- info = self.get_model_info(model_name)
200
- if not info or "path" not in info:
201
- for model_info in self.list_models():
202
- if model_info.get("filename") == model_name:
203
- return model_info.get("path")
204
- return None
205
- return info["path"]
206
-
207
- def copy_model(self, source_model: str, destination_model: str) -> bool:
208
- """
209
- Copy a model to a new name.
210
- Args:
211
- source_model (str): Name of the source model.
212
- destination_model (str): Name for the destination model.
213
- Returns:
214
- bool: True if copied successfully, False otherwise.
215
- """
216
- # Get source model info
217
- source_info = self.get_model_info(source_model)
218
- if not source_info or "path" not in source_info:
219
- console.print(f"[bold red]Source model {source_model} not found[/bold red]")
220
- return False
221
-
222
- # Create destination directory
223
- dest_dir = config.get_model_path(destination_model)
224
- dest_dir.mkdir(exist_ok=True, parents=True)
225
-
226
- # Copy the model file
227
- source_path = Path(source_info["path"])
228
- dest_path = dest_dir / source_path.name
229
-
230
- try:
231
- console.print(f"[bold blue]Copying model from {source_path} to {dest_path}...[/bold blue]")
232
- shutil.copy2(source_path, dest_path)
233
-
234
- # Create info file for the destination model
235
- dest_info = source_info.copy()
236
- dest_info["name"] = destination_model
237
- dest_info["path"] = str(dest_path)
238
- dest_info["copied_from"] = source_model
239
- dest_info["copied_at"] = datetime.datetime.now().isoformat()
240
-
241
- with open(dest_dir / "info.json", "w") as f:
242
- json.dump(dest_info, f, indent=2)
243
-
244
- console.print(f"[bold green]Model copied successfully to {dest_path}[/bold green]")
245
- return True
246
- except Exception as e:
247
- console.print(f"[bold red]Error copying model: {str(e)}[/bold red]")
248
- # Clean up if there was an error
249
- if dest_path.exists():
250
- dest_path.unlink()
251
- if dest_dir.exists():
252
- shutil.rmtree(dest_dir)
253
- return False