webscout 8.2.4__py3-none-any.whl → 8.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/Extra/gguf.py +2 -0
- webscout/Provider/AISEARCH/scira_search.py +2 -5
- webscout/Provider/Aitopia.py +75 -51
- webscout/Provider/AllenAI.py +64 -67
- webscout/Provider/ChatGPTClone.py +33 -34
- webscout/Provider/ChatSandbox.py +342 -0
- webscout/Provider/Cloudflare.py +79 -32
- webscout/Provider/Deepinfra.py +69 -56
- webscout/Provider/ElectronHub.py +48 -39
- webscout/Provider/ExaChat.py +36 -20
- webscout/Provider/GPTWeb.py +24 -18
- webscout/Provider/GithubChat.py +52 -49
- webscout/Provider/GizAI.py +283 -0
- webscout/Provider/Glider.py +39 -28
- webscout/Provider/Groq.py +48 -20
- webscout/Provider/HeckAI.py +18 -36
- webscout/Provider/Jadve.py +30 -37
- webscout/Provider/LambdaChat.py +36 -59
- webscout/Provider/MCPCore.py +18 -21
- webscout/Provider/Marcus.py +23 -14
- webscout/Provider/Netwrck.py +35 -26
- webscout/Provider/OPENAI/__init__.py +1 -1
- webscout/Provider/OPENAI/exachat.py +4 -0
- webscout/Provider/OPENAI/scirachat.py +2 -4
- webscout/Provider/OPENAI/textpollinations.py +20 -22
- webscout/Provider/OPENAI/toolbaz.py +1 -0
- webscout/Provider/PI.py +22 -13
- webscout/Provider/StandardInput.py +42 -30
- webscout/Provider/TeachAnything.py +16 -7
- webscout/Provider/TextPollinationsAI.py +78 -76
- webscout/Provider/TwoAI.py +120 -88
- webscout/Provider/TypliAI.py +305 -0
- webscout/Provider/Venice.py +24 -22
- webscout/Provider/VercelAI.py +31 -12
- webscout/Provider/__init__.py +7 -7
- webscout/Provider/asksteve.py +53 -44
- webscout/Provider/cerebras.py +77 -31
- webscout/Provider/chatglm.py +47 -37
- webscout/Provider/elmo.py +38 -32
- webscout/Provider/granite.py +24 -21
- webscout/Provider/hermes.py +27 -20
- webscout/Provider/learnfastai.py +25 -20
- webscout/Provider/llmchatco.py +48 -78
- webscout/Provider/multichat.py +13 -3
- webscout/Provider/scira_chat.py +49 -30
- webscout/Provider/scnet.py +23 -20
- webscout/Provider/searchchat.py +16 -24
- webscout/Provider/sonus.py +37 -39
- webscout/Provider/toolbaz.py +24 -46
- webscout/Provider/turboseek.py +37 -41
- webscout/Provider/typefully.py +30 -22
- webscout/Provider/typegpt.py +47 -51
- webscout/Provider/uncovr.py +46 -40
- webscout/cli.py +256 -0
- webscout/conversation.py +0 -2
- webscout/exceptions.py +3 -0
- webscout/version.py +1 -1
- {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/METADATA +166 -45
- {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/RECORD +63 -76
- {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/WHEEL +1 -1
- webscout-8.2.5.dist-info/entry_points.txt +3 -0
- {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/top_level.txt +0 -1
- inferno/__init__.py +0 -6
- inferno/__main__.py +0 -9
- inferno/cli.py +0 -6
- inferno/lol.py +0 -589
- webscout/Local/__init__.py +0 -12
- webscout/Local/__main__.py +0 -9
- webscout/Local/api.py +0 -576
- webscout/Local/cli.py +0 -516
- webscout/Local/config.py +0 -75
- webscout/Local/llm.py +0 -287
- webscout/Local/model_manager.py +0 -253
- webscout/Local/server.py +0 -721
- webscout/Local/utils.py +0 -93
- webscout/Provider/Chatify.py +0 -175
- webscout/Provider/askmyai.py +0 -158
- webscout/Provider/gaurish.py +0 -244
- webscout-8.2.4.dist-info/entry_points.txt +0 -5
- {webscout-8.2.4.dist-info → webscout-8.2.5.dist-info}/licenses/LICENSE.md +0 -0
webscout/Local/llm.py
DELETED
|
@@ -1,287 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
LLM interface for webscout.Local using llama-cpp-python
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from typing import Dict, Any, List, Optional, Union, Generator, Callable
|
|
6
|
-
|
|
7
|
-
from llama_cpp import Llama
|
|
8
|
-
from rich.console import Console
|
|
9
|
-
|
|
10
|
-
from .config import config
|
|
11
|
-
from .model_manager import ModelManager
|
|
12
|
-
|
|
13
|
-
console = Console()
|
|
14
|
-
|
|
15
|
-
class LLMInterface:
|
|
16
|
-
"""
|
|
17
|
-
Interface for LLM models using llama-cpp-python.
|
|
18
|
-
Provides methods for loading models and generating completions or chat responses.
|
|
19
|
-
"""
|
|
20
|
-
model_name: str
|
|
21
|
-
model_manager: ModelManager
|
|
22
|
-
model_path: Optional[str]
|
|
23
|
-
llm: Optional[Llama]
|
|
24
|
-
|
|
25
|
-
def __init__(self, model_name: str) -> None:
|
|
26
|
-
"""
|
|
27
|
-
Initialize the LLM interface.
|
|
28
|
-
Args:
|
|
29
|
-
model_name (str): Name of the model to load.
|
|
30
|
-
Raises:
|
|
31
|
-
ValueError: If the model is not found locally.
|
|
32
|
-
"""
|
|
33
|
-
self.model_name = model_name
|
|
34
|
-
self.model_manager = ModelManager()
|
|
35
|
-
self.model_path = self.model_manager.get_model_path(model_name)
|
|
36
|
-
if not self.model_path:
|
|
37
|
-
raise ValueError(f"Model {model_name} not found. Please download it first.")
|
|
38
|
-
self.llm = None
|
|
39
|
-
|
|
40
|
-
def load_model(
|
|
41
|
-
self,
|
|
42
|
-
n_gpu_layers: Optional[int] = None,
|
|
43
|
-
n_ctx: Optional[int] = None,
|
|
44
|
-
verbose: bool = False,
|
|
45
|
-
n_threads: Optional[int] = None,
|
|
46
|
-
n_batch: Optional[int] = None,
|
|
47
|
-
use_mlock: bool = False,
|
|
48
|
-
use_mmap: bool = True,
|
|
49
|
-
rope_freq_base: Optional[float] = None,
|
|
50
|
-
rope_freq_scale: Optional[float] = None,
|
|
51
|
-
low_vram: bool = False,
|
|
52
|
-
) -> None:
|
|
53
|
-
"""
|
|
54
|
-
Load the model into memory.
|
|
55
|
-
Args:
|
|
56
|
-
n_gpu_layers (Optional[int]): Number of layers to offload to GPU (-1 for all).
|
|
57
|
-
n_ctx (Optional[int]): Context size.
|
|
58
|
-
verbose (bool): Whether to show verbose output.
|
|
59
|
-
n_threads (Optional[int]): Number of threads to use.
|
|
60
|
-
n_batch (Optional[int]): Batch size for prompt processing.
|
|
61
|
-
use_mlock (bool): Whether to use mlock to keep model in memory.
|
|
62
|
-
use_mmap (bool): Whether to use memory mapping for the model.
|
|
63
|
-
rope_freq_base (Optional[float]): RoPE base frequency.
|
|
64
|
-
rope_freq_scale (Optional[float]): RoPE frequency scaling factor.
|
|
65
|
-
low_vram (bool): Whether to optimize for low VRAM usage.
|
|
66
|
-
Raises:
|
|
67
|
-
ValueError: If model loading fails.
|
|
68
|
-
"""
|
|
69
|
-
# If model is already loaded, check if we need to reload with different parameters
|
|
70
|
-
if self.llm is not None:
|
|
71
|
-
if n_ctx is not None and hasattr(self.llm, 'n_ctx') and self.llm.n_ctx != n_ctx:
|
|
72
|
-
# Need to reload with new context size
|
|
73
|
-
self.llm = None
|
|
74
|
-
else:
|
|
75
|
-
# Model already loaded with compatible parameters
|
|
76
|
-
return
|
|
77
|
-
|
|
78
|
-
if n_gpu_layers is None:
|
|
79
|
-
n_gpu_layers = config.get("default_gpu_layers", -1)
|
|
80
|
-
if n_ctx is None:
|
|
81
|
-
n_ctx = config.get("default_context_length", 4096)
|
|
82
|
-
|
|
83
|
-
# Determine number of threads if not specified
|
|
84
|
-
if n_threads is None:
|
|
85
|
-
import multiprocessing
|
|
86
|
-
n_threads = max(1, multiprocessing.cpu_count() // 2)
|
|
87
|
-
|
|
88
|
-
console.print(f"[bold blue]Loading model {self.model_name}...[/bold blue]")
|
|
89
|
-
try:
|
|
90
|
-
self.llm = Llama(
|
|
91
|
-
model_path=self.model_path,
|
|
92
|
-
n_gpu_layers=n_gpu_layers,
|
|
93
|
-
n_ctx=n_ctx,
|
|
94
|
-
verbose=verbose,
|
|
95
|
-
n_threads=n_threads,
|
|
96
|
-
n_batch=n_batch or 512,
|
|
97
|
-
use_mlock=use_mlock,
|
|
98
|
-
use_mmap=use_mmap,
|
|
99
|
-
rope_freq_base=rope_freq_base,
|
|
100
|
-
rope_freq_scale=rope_freq_scale,
|
|
101
|
-
low_vram=low_vram,
|
|
102
|
-
)
|
|
103
|
-
|
|
104
|
-
console.print(f"[bold green]Model {self.model_name} loaded successfully[/bold green]")
|
|
105
|
-
if verbose:
|
|
106
|
-
console.print(f"[dim]Using {n_threads} threads, context size: {n_ctx}[/dim]")
|
|
107
|
-
if n_gpu_layers and n_gpu_layers > 0:
|
|
108
|
-
console.print(f"[dim]GPU acceleration: {n_gpu_layers} layers offloaded to GPU[/dim]")
|
|
109
|
-
except Exception as e:
|
|
110
|
-
raise ValueError(f"Failed to load model from file: {self.model_path}\n{str(e)}")
|
|
111
|
-
|
|
112
|
-
def create_completion(
|
|
113
|
-
self,
|
|
114
|
-
prompt: str,
|
|
115
|
-
max_tokens: int = 256,
|
|
116
|
-
temperature: float = 0.7,
|
|
117
|
-
top_p: float = 0.95,
|
|
118
|
-
stream: bool = False,
|
|
119
|
-
stop: Optional[List[str]] = None,
|
|
120
|
-
suffix: Optional[str] = None,
|
|
121
|
-
images: Optional[List[str]] = None,
|
|
122
|
-
system: Optional[str] = None,
|
|
123
|
-
template: Optional[str] = None,
|
|
124
|
-
context: Optional[List[int]] = None,
|
|
125
|
-
raw: bool = False,
|
|
126
|
-
format: Optional[Union[str, Dict[str, Any]]] = None,
|
|
127
|
-
) -> Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]:
|
|
128
|
-
"""
|
|
129
|
-
Create a completion for the given prompt.
|
|
130
|
-
Args:
|
|
131
|
-
prompt (str): The prompt to complete.
|
|
132
|
-
max_tokens (int): Maximum number of tokens to generate.
|
|
133
|
-
temperature (float): Sampling temperature.
|
|
134
|
-
top_p (float): Top-p sampling.
|
|
135
|
-
stream (bool): Whether to stream the response.
|
|
136
|
-
stop (Optional[List[str]]): List of strings to stop generation when encountered.
|
|
137
|
-
Returns:
|
|
138
|
-
Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]: Completion result or generator for streaming.
|
|
139
|
-
"""
|
|
140
|
-
if self.llm is None:
|
|
141
|
-
self.load_model()
|
|
142
|
-
if stream:
|
|
143
|
-
return self.llm.create_completion(
|
|
144
|
-
prompt=prompt,
|
|
145
|
-
max_tokens=max_tokens,
|
|
146
|
-
temperature=temperature,
|
|
147
|
-
top_p=top_p,
|
|
148
|
-
stream=True,
|
|
149
|
-
stop=stop or [],
|
|
150
|
-
)
|
|
151
|
-
else:
|
|
152
|
-
return self.llm.create_completion(
|
|
153
|
-
prompt=prompt,
|
|
154
|
-
max_tokens=max_tokens,
|
|
155
|
-
temperature=temperature,
|
|
156
|
-
top_p=top_p,
|
|
157
|
-
stream=False,
|
|
158
|
-
stop=stop or [],
|
|
159
|
-
)
|
|
160
|
-
|
|
161
|
-
def create_chat_completion(
|
|
162
|
-
self,
|
|
163
|
-
messages: List[Dict[str, Any]],
|
|
164
|
-
max_tokens: int = 256,
|
|
165
|
-
temperature: float = 0.7,
|
|
166
|
-
top_p: float = 0.95,
|
|
167
|
-
stream: bool = False,
|
|
168
|
-
stop: Optional[List[str]] = None,
|
|
169
|
-
tools: Optional[List[Dict[str, Any]]] = None,
|
|
170
|
-
format: Optional[Union[str, Dict[str, Any]]] = None,
|
|
171
|
-
) -> Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]:
|
|
172
|
-
"""
|
|
173
|
-
Create a chat completion for the given messages.
|
|
174
|
-
Args:
|
|
175
|
-
messages (List[Dict[str, str]]): List of chat messages.
|
|
176
|
-
max_tokens (int): Maximum number of tokens to generate.
|
|
177
|
-
temperature (float): Sampling temperature.
|
|
178
|
-
top_p (float): Top-p sampling.
|
|
179
|
-
stream (bool): Whether to stream the response.
|
|
180
|
-
stop (Optional[List[str]]): List of strings to stop generation when encountered.
|
|
181
|
-
Returns:
|
|
182
|
-
Union[Dict[str, Any], Generator[Dict[str, Any], None, None]]: Chat completion result or generator for streaming.
|
|
183
|
-
"""
|
|
184
|
-
if self.llm is None:
|
|
185
|
-
self.load_model()
|
|
186
|
-
processed_messages: List[Dict[str, str]] = messages.copy()
|
|
187
|
-
system_messages = [m for m in processed_messages if m.get("role") == "system"]
|
|
188
|
-
non_system_messages = [m for m in processed_messages if m.get("role") != "system"]
|
|
189
|
-
if system_messages:
|
|
190
|
-
processed_messages = [system_messages[0]] + non_system_messages
|
|
191
|
-
else:
|
|
192
|
-
processed_messages = non_system_messages
|
|
193
|
-
if stream:
|
|
194
|
-
return self.llm.create_chat_completion(
|
|
195
|
-
messages=processed_messages,
|
|
196
|
-
max_tokens=max_tokens,
|
|
197
|
-
temperature=temperature,
|
|
198
|
-
top_p=top_p,
|
|
199
|
-
stream=True,
|
|
200
|
-
stop=stop or [],
|
|
201
|
-
)
|
|
202
|
-
else:
|
|
203
|
-
return self.llm.create_chat_completion(
|
|
204
|
-
messages=processed_messages,
|
|
205
|
-
max_tokens=max_tokens,
|
|
206
|
-
temperature=temperature,
|
|
207
|
-
top_p=top_p,
|
|
208
|
-
stream=False,
|
|
209
|
-
stop=stop or [],
|
|
210
|
-
)
|
|
211
|
-
|
|
212
|
-
def stream_chat_completion(
|
|
213
|
-
self,
|
|
214
|
-
messages: List[Dict[str, Any]],
|
|
215
|
-
callback: Callable[[str], None],
|
|
216
|
-
max_tokens: int = 256,
|
|
217
|
-
temperature: float = 0.7,
|
|
218
|
-
top_p: float = 0.95,
|
|
219
|
-
stop: Optional[List[str]] = None,
|
|
220
|
-
tools: Optional[List[Dict[str, Any]]] = None,
|
|
221
|
-
format: Optional[Union[str, Dict[str, Any]]] = None,
|
|
222
|
-
) -> None:
|
|
223
|
-
"""
|
|
224
|
-
Stream a chat completion with a callback for each token.
|
|
225
|
-
Args:
|
|
226
|
-
messages (List[Dict[str, Any]]): List of chat messages.
|
|
227
|
-
callback (Callable[[str], None]): Function to call with each token.
|
|
228
|
-
max_tokens (int): Maximum number of tokens to generate.
|
|
229
|
-
temperature (float): Sampling temperature.
|
|
230
|
-
top_p (float): Top-p sampling.
|
|
231
|
-
stop (Optional[List[str]]): List of strings to stop generation when encountered.
|
|
232
|
-
tools (Optional[List[Dict[str, Any]]]): List of tools for function calling.
|
|
233
|
-
format (Optional[Union[str, Dict[str, Any]]]): Format for structured output.
|
|
234
|
-
"""
|
|
235
|
-
stream = self.create_chat_completion(
|
|
236
|
-
messages=messages,
|
|
237
|
-
max_tokens=max_tokens,
|
|
238
|
-
temperature=temperature,
|
|
239
|
-
top_p=top_p,
|
|
240
|
-
stream=True,
|
|
241
|
-
stop=stop,
|
|
242
|
-
)
|
|
243
|
-
for chunk in stream:
|
|
244
|
-
if "choices" in chunk and len(chunk["choices"]) > 0:
|
|
245
|
-
if "delta" in chunk["choices"][0] and "content" in chunk["choices"][0]["delta"]:
|
|
246
|
-
content = chunk["choices"][0]["delta"]["content"]
|
|
247
|
-
callback(content)
|
|
248
|
-
|
|
249
|
-
def create_embeddings(
|
|
250
|
-
self,
|
|
251
|
-
input: Union[str, List[str]],
|
|
252
|
-
truncate: bool = True,
|
|
253
|
-
) -> Dict[str, Any]:
|
|
254
|
-
"""
|
|
255
|
-
Generate embeddings for the given input.
|
|
256
|
-
Args:
|
|
257
|
-
input (Union[str, List[str]]): Text or list of texts to generate embeddings for.
|
|
258
|
-
truncate (bool): Whether to truncate the input to fit within context length.
|
|
259
|
-
Returns:
|
|
260
|
-
Dict[str, Any]: Embeddings response.
|
|
261
|
-
"""
|
|
262
|
-
if self.llm is None:
|
|
263
|
-
self.load_model()
|
|
264
|
-
|
|
265
|
-
# Convert input to list if it's a string
|
|
266
|
-
if isinstance(input, str):
|
|
267
|
-
input_texts = [input]
|
|
268
|
-
else:
|
|
269
|
-
input_texts = input
|
|
270
|
-
|
|
271
|
-
# Generate embeddings for each input text
|
|
272
|
-
embeddings = []
|
|
273
|
-
for text in input_texts:
|
|
274
|
-
# Use llama-cpp-python's embedding method
|
|
275
|
-
embedding = self.llm.embed(text)
|
|
276
|
-
embeddings.append(embedding)
|
|
277
|
-
|
|
278
|
-
# Create response
|
|
279
|
-
response = {
|
|
280
|
-
"model": self.model_name,
|
|
281
|
-
"embeddings": embeddings,
|
|
282
|
-
"total_duration": 0, # Could be improved with actual timing
|
|
283
|
-
"load_duration": 0, # Could be improved with actual timing
|
|
284
|
-
"prompt_eval_count": len(input_texts)
|
|
285
|
-
}
|
|
286
|
-
|
|
287
|
-
return response
|
webscout/Local/model_manager.py
DELETED
|
@@ -1,253 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Model management for webscout.local
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
import os
|
|
6
|
-
import json
|
|
7
|
-
import datetime
|
|
8
|
-
from pathlib import Path
|
|
9
|
-
from typing import Dict, Any, Optional, List, Tuple
|
|
10
|
-
import shutil
|
|
11
|
-
|
|
12
|
-
from rich.console import Console
|
|
13
|
-
from rich.prompt import Prompt
|
|
14
|
-
from huggingface_hub import hf_hub_download, HfFileSystem
|
|
15
|
-
|
|
16
|
-
from .config import config
|
|
17
|
-
|
|
18
|
-
console = Console()
|
|
19
|
-
|
|
20
|
-
class ModelManager:
|
|
21
|
-
"""
|
|
22
|
-
Manager for downloading and managing models.
|
|
23
|
-
Handles model download, listing, removal, and path resolution.
|
|
24
|
-
"""
|
|
25
|
-
models_dir: Path
|
|
26
|
-
|
|
27
|
-
def __init__(self) -> None:
|
|
28
|
-
self.models_dir = config.models_dir
|
|
29
|
-
|
|
30
|
-
def parse_model_string(self, model_string: str) -> Tuple[str, Optional[str]]:
|
|
31
|
-
"""
|
|
32
|
-
Parse a model string in the format 'repo_id:filename' or just 'repo_id'.
|
|
33
|
-
Args:
|
|
34
|
-
model_string (str): The model string to parse.
|
|
35
|
-
Returns:
|
|
36
|
-
Tuple[str, Optional[str]]: (repo_id, filename)
|
|
37
|
-
"""
|
|
38
|
-
if ":" in model_string:
|
|
39
|
-
repo_id, filename = model_string.split(":", 1)
|
|
40
|
-
return repo_id, filename
|
|
41
|
-
else:
|
|
42
|
-
return model_string, None
|
|
43
|
-
|
|
44
|
-
def list_repo_gguf_files(self, repo_id: str) -> List[str]:
|
|
45
|
-
"""
|
|
46
|
-
List all GGUF files in a repository.
|
|
47
|
-
Args:
|
|
48
|
-
repo_id (str): The Hugging Face repository ID.
|
|
49
|
-
Returns:
|
|
50
|
-
List[str]: List of filenames.
|
|
51
|
-
"""
|
|
52
|
-
fs = HfFileSystem()
|
|
53
|
-
try:
|
|
54
|
-
files = fs.ls(repo_id, detail=False)
|
|
55
|
-
gguf_files = [os.path.basename(f) for f in files if f.endswith(".gguf")]
|
|
56
|
-
return gguf_files
|
|
57
|
-
except Exception as e:
|
|
58
|
-
console.print(f"[bold red]Error listing files in repository {repo_id}: {str(e)}[/bold red]")
|
|
59
|
-
return []
|
|
60
|
-
|
|
61
|
-
def select_file_interactive(self, repo_id: str) -> Optional[str]:
|
|
62
|
-
"""
|
|
63
|
-
Interactively select a file from a repository.
|
|
64
|
-
Args:
|
|
65
|
-
repo_id (str): The Hugging Face repository ID.
|
|
66
|
-
Returns:
|
|
67
|
-
Optional[str]: Selected filename or None if cancelled.
|
|
68
|
-
"""
|
|
69
|
-
gguf_files = self.list_repo_gguf_files(repo_id)
|
|
70
|
-
if not gguf_files:
|
|
71
|
-
console.print(f"[bold red]No GGUF files found in repository {repo_id}[/bold red]")
|
|
72
|
-
return None
|
|
73
|
-
console.print(f"[bold blue]Available GGUF files in {repo_id}:[/bold blue]")
|
|
74
|
-
for i, filename in enumerate(gguf_files):
|
|
75
|
-
console.print(f" [{i+1}] {filename}")
|
|
76
|
-
choice = Prompt.ask(
|
|
77
|
-
"Select a file to download (number or filename)",
|
|
78
|
-
default="1"
|
|
79
|
-
)
|
|
80
|
-
try:
|
|
81
|
-
idx = int(choice) - 1
|
|
82
|
-
if 0 <= idx < len(gguf_files):
|
|
83
|
-
return gguf_files[idx]
|
|
84
|
-
except ValueError:
|
|
85
|
-
if choice in gguf_files:
|
|
86
|
-
return choice
|
|
87
|
-
console.print(f"[bold red]Invalid selection: {choice}[/bold red]")
|
|
88
|
-
return None
|
|
89
|
-
|
|
90
|
-
def download_model(self, model_string: str, filename: Optional[str] = None) -> Tuple[str, Path]:
|
|
91
|
-
"""
|
|
92
|
-
Download a model from Hugging Face Hub.
|
|
93
|
-
Args:
|
|
94
|
-
model_string (str): The model string in format 'repo_id' or 'repo_id:filename'.
|
|
95
|
-
filename (Optional[str]): Specific filename to download, overrides filename in model_string.
|
|
96
|
-
Returns:
|
|
97
|
-
Tuple[str, Path]: (model_name, model_path)
|
|
98
|
-
"""
|
|
99
|
-
repo_id, file_from_string = self.parse_model_string(model_string)
|
|
100
|
-
filename = filename or file_from_string
|
|
101
|
-
model_name = repo_id.split("/")[-1] if "/" in repo_id else repo_id
|
|
102
|
-
model_dir = config.get_model_path(model_name)
|
|
103
|
-
model_dir.mkdir(exist_ok=True, parents=True)
|
|
104
|
-
model_info: Dict[str, Any] = {
|
|
105
|
-
"repo_id": repo_id,
|
|
106
|
-
"name": model_name,
|
|
107
|
-
"downloaded_at": datetime.datetime.now().isoformat(),
|
|
108
|
-
}
|
|
109
|
-
with open(model_dir / "info.json", "w") as f:
|
|
110
|
-
json.dump(model_info, f, indent=2)
|
|
111
|
-
if not filename:
|
|
112
|
-
console.print(f"[yellow]No filename provided, searching for GGUF files in {repo_id}...[/yellow]")
|
|
113
|
-
filename = self.select_file_interactive(repo_id)
|
|
114
|
-
if not filename:
|
|
115
|
-
raise ValueError(f"No GGUF file selected from repository {repo_id}")
|
|
116
|
-
console.print(f"[green]Selected GGUF file: {filename}[/green]")
|
|
117
|
-
console.print(f"[bold blue]Downloading {filename} from {repo_id}...[/bold blue]")
|
|
118
|
-
try:
|
|
119
|
-
model_path = hf_hub_download(
|
|
120
|
-
repo_id=repo_id,
|
|
121
|
-
filename=filename,
|
|
122
|
-
local_dir=model_dir,
|
|
123
|
-
)
|
|
124
|
-
except Exception as e:
|
|
125
|
-
console.print(f"[bold red]Error downloading file: {str(e)}[/bold red]")
|
|
126
|
-
raise
|
|
127
|
-
console.print(f"[bold green]Model downloaded to {model_path}[/bold green]")
|
|
128
|
-
model_info["filename"] = filename
|
|
129
|
-
model_info["path"] = str(model_path)
|
|
130
|
-
with open(model_dir / "info.json", "w") as f:
|
|
131
|
-
json.dump(model_info, f, indent=2)
|
|
132
|
-
return model_name, Path(model_path)
|
|
133
|
-
|
|
134
|
-
def get_model_info(self, model_name: str) -> Optional[Dict[str, Any]]:
|
|
135
|
-
"""
|
|
136
|
-
Get information about a downloaded model.
|
|
137
|
-
Args:
|
|
138
|
-
model_name (str): Name of the model.
|
|
139
|
-
Returns:
|
|
140
|
-
Optional[Dict[str, Any]]: Model info dict or None if not found.
|
|
141
|
-
"""
|
|
142
|
-
model_dir = config.get_model_path(model_name)
|
|
143
|
-
info_file = model_dir / "info.json"
|
|
144
|
-
if not info_file.exists():
|
|
145
|
-
return None
|
|
146
|
-
with open(info_file, "r") as f:
|
|
147
|
-
return json.load(f)
|
|
148
|
-
|
|
149
|
-
def list_models(self) -> List[Dict[str, Any]]:
|
|
150
|
-
"""
|
|
151
|
-
List all downloaded models with their information.
|
|
152
|
-
Returns:
|
|
153
|
-
List[Dict[str, Any]]: List of model info dicts.
|
|
154
|
-
"""
|
|
155
|
-
models: List[Dict[str, Any]] = []
|
|
156
|
-
seen_paths: set = set()
|
|
157
|
-
if not config.models_dir.exists():
|
|
158
|
-
return []
|
|
159
|
-
model_dirs = [d for d in config.models_dir.iterdir() if d.is_dir()]
|
|
160
|
-
for model_dir in model_dirs:
|
|
161
|
-
if ":" in model_dir.name:
|
|
162
|
-
continue
|
|
163
|
-
info_file = model_dir / "info.json"
|
|
164
|
-
if info_file.exists():
|
|
165
|
-
try:
|
|
166
|
-
with open(info_file, "r") as f:
|
|
167
|
-
info = json.load(f)
|
|
168
|
-
if "path" in info and info["path"] in seen_paths:
|
|
169
|
-
continue
|
|
170
|
-
if "path" in info:
|
|
171
|
-
seen_paths.add(info["path"])
|
|
172
|
-
models.append(info)
|
|
173
|
-
except Exception:
|
|
174
|
-
pass
|
|
175
|
-
return models
|
|
176
|
-
|
|
177
|
-
def remove_model(self, model_name: str) -> bool:
|
|
178
|
-
"""
|
|
179
|
-
Remove a downloaded model.
|
|
180
|
-
Args:
|
|
181
|
-
model_name (str): Name of the model to remove.
|
|
182
|
-
Returns:
|
|
183
|
-
bool: True if removed, False if not found.
|
|
184
|
-
"""
|
|
185
|
-
model_dir = config.get_model_path(model_name)
|
|
186
|
-
if not model_dir.exists():
|
|
187
|
-
return False
|
|
188
|
-
shutil.rmtree(model_dir)
|
|
189
|
-
return True
|
|
190
|
-
|
|
191
|
-
def get_model_path(self, model_name: str) -> Optional[str]:
|
|
192
|
-
"""
|
|
193
|
-
Get the path to a model file.
|
|
194
|
-
Args:
|
|
195
|
-
model_name (str): Name or filename of the model.
|
|
196
|
-
Returns:
|
|
197
|
-
Optional[str]: Path to the model file or None if not found.
|
|
198
|
-
"""
|
|
199
|
-
info = self.get_model_info(model_name)
|
|
200
|
-
if not info or "path" not in info:
|
|
201
|
-
for model_info in self.list_models():
|
|
202
|
-
if model_info.get("filename") == model_name:
|
|
203
|
-
return model_info.get("path")
|
|
204
|
-
return None
|
|
205
|
-
return info["path"]
|
|
206
|
-
|
|
207
|
-
def copy_model(self, source_model: str, destination_model: str) -> bool:
|
|
208
|
-
"""
|
|
209
|
-
Copy a model to a new name.
|
|
210
|
-
Args:
|
|
211
|
-
source_model (str): Name of the source model.
|
|
212
|
-
destination_model (str): Name for the destination model.
|
|
213
|
-
Returns:
|
|
214
|
-
bool: True if copied successfully, False otherwise.
|
|
215
|
-
"""
|
|
216
|
-
# Get source model info
|
|
217
|
-
source_info = self.get_model_info(source_model)
|
|
218
|
-
if not source_info or "path" not in source_info:
|
|
219
|
-
console.print(f"[bold red]Source model {source_model} not found[/bold red]")
|
|
220
|
-
return False
|
|
221
|
-
|
|
222
|
-
# Create destination directory
|
|
223
|
-
dest_dir = config.get_model_path(destination_model)
|
|
224
|
-
dest_dir.mkdir(exist_ok=True, parents=True)
|
|
225
|
-
|
|
226
|
-
# Copy the model file
|
|
227
|
-
source_path = Path(source_info["path"])
|
|
228
|
-
dest_path = dest_dir / source_path.name
|
|
229
|
-
|
|
230
|
-
try:
|
|
231
|
-
console.print(f"[bold blue]Copying model from {source_path} to {dest_path}...[/bold blue]")
|
|
232
|
-
shutil.copy2(source_path, dest_path)
|
|
233
|
-
|
|
234
|
-
# Create info file for the destination model
|
|
235
|
-
dest_info = source_info.copy()
|
|
236
|
-
dest_info["name"] = destination_model
|
|
237
|
-
dest_info["path"] = str(dest_path)
|
|
238
|
-
dest_info["copied_from"] = source_model
|
|
239
|
-
dest_info["copied_at"] = datetime.datetime.now().isoformat()
|
|
240
|
-
|
|
241
|
-
with open(dest_dir / "info.json", "w") as f:
|
|
242
|
-
json.dump(dest_info, f, indent=2)
|
|
243
|
-
|
|
244
|
-
console.print(f"[bold green]Model copied successfully to {dest_path}[/bold green]")
|
|
245
|
-
return True
|
|
246
|
-
except Exception as e:
|
|
247
|
-
console.print(f"[bold red]Error copying model: {str(e)}[/bold red]")
|
|
248
|
-
# Clean up if there was an error
|
|
249
|
-
if dest_path.exists():
|
|
250
|
-
dest_path.unlink()
|
|
251
|
-
if dest_dir.exists():
|
|
252
|
-
shutil.rmtree(dest_dir)
|
|
253
|
-
return False
|