webscout 8.2.2__py3-none-any.whl → 8.2.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (306) hide show
  1. webscout/AIauto.py +112 -22
  2. webscout/AIbase.py +144 -7
  3. webscout/AIutel.py +249 -131
  4. webscout/Bard.py +579 -206
  5. webscout/DWEBS.py +78 -35
  6. webscout/__init__.py +0 -1
  7. webscout/cli.py +256 -0
  8. webscout/conversation.py +307 -436
  9. webscout/exceptions.py +23 -0
  10. webscout/prompt_manager.py +56 -42
  11. webscout/version.py +1 -1
  12. webscout/webscout_search.py +65 -47
  13. webscout/webscout_search_async.py +81 -126
  14. webscout/yep_search.py +93 -43
  15. {webscout-8.2.2.dist-info → webscout-8.2.7.dist-info}/METADATA +172 -52
  16. webscout-8.2.7.dist-info/RECORD +26 -0
  17. {webscout-8.2.2.dist-info → webscout-8.2.7.dist-info}/WHEEL +1 -1
  18. webscout-8.2.7.dist-info/entry_points.txt +3 -0
  19. webscout-8.2.7.dist-info/top_level.txt +1 -0
  20. inferno/__init__.py +0 -6
  21. inferno/__main__.py +0 -9
  22. inferno/cli.py +0 -6
  23. webscout/Extra/GitToolkit/__init__.py +0 -10
  24. webscout/Extra/GitToolkit/gitapi/__init__.py +0 -12
  25. webscout/Extra/GitToolkit/gitapi/repository.py +0 -195
  26. webscout/Extra/GitToolkit/gitapi/user.py +0 -96
  27. webscout/Extra/GitToolkit/gitapi/utils.py +0 -62
  28. webscout/Extra/YTToolkit/YTdownloader.py +0 -957
  29. webscout/Extra/YTToolkit/__init__.py +0 -3
  30. webscout/Extra/YTToolkit/transcriber.py +0 -476
  31. webscout/Extra/YTToolkit/ytapi/__init__.py +0 -6
  32. webscout/Extra/YTToolkit/ytapi/channel.py +0 -307
  33. webscout/Extra/YTToolkit/ytapi/errors.py +0 -13
  34. webscout/Extra/YTToolkit/ytapi/extras.py +0 -45
  35. webscout/Extra/YTToolkit/ytapi/https.py +0 -88
  36. webscout/Extra/YTToolkit/ytapi/patterns.py +0 -61
  37. webscout/Extra/YTToolkit/ytapi/playlist.py +0 -59
  38. webscout/Extra/YTToolkit/ytapi/pool.py +0 -8
  39. webscout/Extra/YTToolkit/ytapi/query.py +0 -40
  40. webscout/Extra/YTToolkit/ytapi/stream.py +0 -63
  41. webscout/Extra/YTToolkit/ytapi/utils.py +0 -62
  42. webscout/Extra/YTToolkit/ytapi/video.py +0 -232
  43. webscout/Extra/__init__.py +0 -7
  44. webscout/Extra/autocoder/__init__.py +0 -9
  45. webscout/Extra/autocoder/autocoder.py +0 -849
  46. webscout/Extra/autocoder/autocoder_utiles.py +0 -332
  47. webscout/Extra/gguf.py +0 -682
  48. webscout/Extra/tempmail/__init__.py +0 -28
  49. webscout/Extra/tempmail/async_utils.py +0 -141
  50. webscout/Extra/tempmail/base.py +0 -161
  51. webscout/Extra/tempmail/cli.py +0 -187
  52. webscout/Extra/tempmail/emailnator.py +0 -84
  53. webscout/Extra/tempmail/mail_tm.py +0 -361
  54. webscout/Extra/tempmail/temp_mail_io.py +0 -292
  55. webscout/Extra/weather.py +0 -194
  56. webscout/Extra/weather_ascii.py +0 -76
  57. webscout/LLM.py +0 -442
  58. webscout/Litlogger/__init__.py +0 -67
  59. webscout/Litlogger/core/__init__.py +0 -6
  60. webscout/Litlogger/core/level.py +0 -23
  61. webscout/Litlogger/core/logger.py +0 -165
  62. webscout/Litlogger/handlers/__init__.py +0 -12
  63. webscout/Litlogger/handlers/console.py +0 -33
  64. webscout/Litlogger/handlers/file.py +0 -143
  65. webscout/Litlogger/handlers/network.py +0 -173
  66. webscout/Litlogger/styles/__init__.py +0 -7
  67. webscout/Litlogger/styles/colors.py +0 -249
  68. webscout/Litlogger/styles/formats.py +0 -458
  69. webscout/Litlogger/styles/text.py +0 -87
  70. webscout/Litlogger/utils/__init__.py +0 -6
  71. webscout/Litlogger/utils/detectors.py +0 -153
  72. webscout/Litlogger/utils/formatters.py +0 -200
  73. webscout/Local/__init__.py +0 -12
  74. webscout/Local/__main__.py +0 -9
  75. webscout/Local/api.py +0 -576
  76. webscout/Local/cli.py +0 -516
  77. webscout/Local/config.py +0 -75
  78. webscout/Local/llm.py +0 -287
  79. webscout/Local/model_manager.py +0 -253
  80. webscout/Local/server.py +0 -721
  81. webscout/Local/utils.py +0 -93
  82. webscout/Provider/AI21.py +0 -177
  83. webscout/Provider/AISEARCH/DeepFind.py +0 -250
  84. webscout/Provider/AISEARCH/ISou.py +0 -256
  85. webscout/Provider/AISEARCH/Perplexity.py +0 -359
  86. webscout/Provider/AISEARCH/__init__.py +0 -10
  87. webscout/Provider/AISEARCH/felo_search.py +0 -228
  88. webscout/Provider/AISEARCH/genspark_search.py +0 -208
  89. webscout/Provider/AISEARCH/hika_search.py +0 -194
  90. webscout/Provider/AISEARCH/iask_search.py +0 -436
  91. webscout/Provider/AISEARCH/monica_search.py +0 -246
  92. webscout/Provider/AISEARCH/scira_search.py +0 -324
  93. webscout/Provider/AISEARCH/webpilotai_search.py +0 -281
  94. webscout/Provider/Aitopia.py +0 -292
  95. webscout/Provider/AllenAI.py +0 -413
  96. webscout/Provider/Andi.py +0 -228
  97. webscout/Provider/Blackboxai.py +0 -229
  98. webscout/Provider/C4ai.py +0 -432
  99. webscout/Provider/ChatGPTClone.py +0 -226
  100. webscout/Provider/ChatGPTES.py +0 -237
  101. webscout/Provider/ChatGPTGratis.py +0 -194
  102. webscout/Provider/Chatify.py +0 -175
  103. webscout/Provider/Cloudflare.py +0 -273
  104. webscout/Provider/Cohere.py +0 -208
  105. webscout/Provider/DeepSeek.py +0 -196
  106. webscout/Provider/Deepinfra.py +0 -297
  107. webscout/Provider/ElectronHub.py +0 -709
  108. webscout/Provider/ExaAI.py +0 -261
  109. webscout/Provider/ExaChat.py +0 -342
  110. webscout/Provider/Free2GPT.py +0 -241
  111. webscout/Provider/GPTWeb.py +0 -193
  112. webscout/Provider/Gemini.py +0 -169
  113. webscout/Provider/GithubChat.py +0 -367
  114. webscout/Provider/Glider.py +0 -211
  115. webscout/Provider/Groq.py +0 -670
  116. webscout/Provider/HF_space/__init__.py +0 -0
  117. webscout/Provider/HF_space/qwen_qwen2.py +0 -206
  118. webscout/Provider/HeckAI.py +0 -233
  119. webscout/Provider/HuggingFaceChat.py +0 -462
  120. webscout/Provider/Hunyuan.py +0 -272
  121. webscout/Provider/Jadve.py +0 -266
  122. webscout/Provider/Koboldai.py +0 -381
  123. webscout/Provider/LambdaChat.py +0 -392
  124. webscout/Provider/Llama.py +0 -200
  125. webscout/Provider/Llama3.py +0 -204
  126. webscout/Provider/Marcus.py +0 -148
  127. webscout/Provider/Netwrck.py +0 -228
  128. webscout/Provider/OLLAMA.py +0 -396
  129. webscout/Provider/OPENAI/__init__.py +0 -25
  130. webscout/Provider/OPENAI/base.py +0 -46
  131. webscout/Provider/OPENAI/c4ai.py +0 -367
  132. webscout/Provider/OPENAI/chatgpt.py +0 -549
  133. webscout/Provider/OPENAI/chatgptclone.py +0 -460
  134. webscout/Provider/OPENAI/deepinfra.py +0 -272
  135. webscout/Provider/OPENAI/e2b.py +0 -1350
  136. webscout/Provider/OPENAI/exaai.py +0 -404
  137. webscout/Provider/OPENAI/exachat.py +0 -433
  138. webscout/Provider/OPENAI/freeaichat.py +0 -352
  139. webscout/Provider/OPENAI/glider.py +0 -316
  140. webscout/Provider/OPENAI/heckai.py +0 -337
  141. webscout/Provider/OPENAI/llmchatco.py +0 -327
  142. webscout/Provider/OPENAI/netwrck.py +0 -348
  143. webscout/Provider/OPENAI/opkfc.py +0 -488
  144. webscout/Provider/OPENAI/scirachat.py +0 -463
  145. webscout/Provider/OPENAI/sonus.py +0 -294
  146. webscout/Provider/OPENAI/standardinput.py +0 -425
  147. webscout/Provider/OPENAI/textpollinations.py +0 -285
  148. webscout/Provider/OPENAI/toolbaz.py +0 -405
  149. webscout/Provider/OPENAI/typegpt.py +0 -346
  150. webscout/Provider/OPENAI/uncovrAI.py +0 -455
  151. webscout/Provider/OPENAI/utils.py +0 -211
  152. webscout/Provider/OPENAI/venice.py +0 -413
  153. webscout/Provider/OPENAI/wisecat.py +0 -381
  154. webscout/Provider/OPENAI/writecream.py +0 -156
  155. webscout/Provider/OPENAI/x0gpt.py +0 -371
  156. webscout/Provider/OPENAI/yep.py +0 -327
  157. webscout/Provider/OpenGPT.py +0 -199
  158. webscout/Provider/Openai.py +0 -496
  159. webscout/Provider/PI.py +0 -344
  160. webscout/Provider/Perplexitylabs.py +0 -415
  161. webscout/Provider/Phind.py +0 -535
  162. webscout/Provider/PizzaGPT.py +0 -198
  163. webscout/Provider/QwenLM.py +0 -254
  164. webscout/Provider/Reka.py +0 -214
  165. webscout/Provider/StandardInput.py +0 -278
  166. webscout/Provider/TTI/AiForce/__init__.py +0 -22
  167. webscout/Provider/TTI/AiForce/async_aiforce.py +0 -224
  168. webscout/Provider/TTI/AiForce/sync_aiforce.py +0 -245
  169. webscout/Provider/TTI/FreeAIPlayground/__init__.py +0 -9
  170. webscout/Provider/TTI/FreeAIPlayground/async_freeaiplayground.py +0 -181
  171. webscout/Provider/TTI/FreeAIPlayground/sync_freeaiplayground.py +0 -180
  172. webscout/Provider/TTI/ImgSys/__init__.py +0 -23
  173. webscout/Provider/TTI/ImgSys/async_imgsys.py +0 -202
  174. webscout/Provider/TTI/ImgSys/sync_imgsys.py +0 -195
  175. webscout/Provider/TTI/MagicStudio/__init__.py +0 -2
  176. webscout/Provider/TTI/MagicStudio/async_magicstudio.py +0 -111
  177. webscout/Provider/TTI/MagicStudio/sync_magicstudio.py +0 -109
  178. webscout/Provider/TTI/Nexra/__init__.py +0 -22
  179. webscout/Provider/TTI/Nexra/async_nexra.py +0 -286
  180. webscout/Provider/TTI/Nexra/sync_nexra.py +0 -258
  181. webscout/Provider/TTI/PollinationsAI/__init__.py +0 -23
  182. webscout/Provider/TTI/PollinationsAI/async_pollinations.py +0 -311
  183. webscout/Provider/TTI/PollinationsAI/sync_pollinations.py +0 -265
  184. webscout/Provider/TTI/__init__.py +0 -12
  185. webscout/Provider/TTI/aiarta/__init__.py +0 -2
  186. webscout/Provider/TTI/aiarta/async_aiarta.py +0 -482
  187. webscout/Provider/TTI/aiarta/sync_aiarta.py +0 -440
  188. webscout/Provider/TTI/artbit/__init__.py +0 -22
  189. webscout/Provider/TTI/artbit/async_artbit.py +0 -155
  190. webscout/Provider/TTI/artbit/sync_artbit.py +0 -148
  191. webscout/Provider/TTI/fastflux/__init__.py +0 -22
  192. webscout/Provider/TTI/fastflux/async_fastflux.py +0 -261
  193. webscout/Provider/TTI/fastflux/sync_fastflux.py +0 -252
  194. webscout/Provider/TTI/huggingface/__init__.py +0 -22
  195. webscout/Provider/TTI/huggingface/async_huggingface.py +0 -199
  196. webscout/Provider/TTI/huggingface/sync_huggingface.py +0 -195
  197. webscout/Provider/TTI/piclumen/__init__.py +0 -23
  198. webscout/Provider/TTI/piclumen/async_piclumen.py +0 -268
  199. webscout/Provider/TTI/piclumen/sync_piclumen.py +0 -233
  200. webscout/Provider/TTI/pixelmuse/__init__.py +0 -4
  201. webscout/Provider/TTI/pixelmuse/async_pixelmuse.py +0 -249
  202. webscout/Provider/TTI/pixelmuse/sync_pixelmuse.py +0 -182
  203. webscout/Provider/TTI/talkai/__init__.py +0 -4
  204. webscout/Provider/TTI/talkai/async_talkai.py +0 -229
  205. webscout/Provider/TTI/talkai/sync_talkai.py +0 -207
  206. webscout/Provider/TTS/__init__.py +0 -7
  207. webscout/Provider/TTS/deepgram.py +0 -156
  208. webscout/Provider/TTS/elevenlabs.py +0 -111
  209. webscout/Provider/TTS/gesserit.py +0 -127
  210. webscout/Provider/TTS/murfai.py +0 -113
  211. webscout/Provider/TTS/parler.py +0 -111
  212. webscout/Provider/TTS/speechma.py +0 -180
  213. webscout/Provider/TTS/streamElements.py +0 -333
  214. webscout/Provider/TTS/utils.py +0 -280
  215. webscout/Provider/TeachAnything.py +0 -187
  216. webscout/Provider/TextPollinationsAI.py +0 -231
  217. webscout/Provider/TwoAI.py +0 -199
  218. webscout/Provider/Venice.py +0 -219
  219. webscout/Provider/VercelAI.py +0 -234
  220. webscout/Provider/WebSim.py +0 -228
  221. webscout/Provider/WiseCat.py +0 -196
  222. webscout/Provider/Writecream.py +0 -211
  223. webscout/Provider/WritingMate.py +0 -197
  224. webscout/Provider/Youchat.py +0 -330
  225. webscout/Provider/__init__.py +0 -198
  226. webscout/Provider/ai4chat.py +0 -202
  227. webscout/Provider/aimathgpt.py +0 -189
  228. webscout/Provider/akashgpt.py +0 -342
  229. webscout/Provider/askmyai.py +0 -158
  230. webscout/Provider/asksteve.py +0 -203
  231. webscout/Provider/bagoodex.py +0 -145
  232. webscout/Provider/cerebras.py +0 -242
  233. webscout/Provider/chatglm.py +0 -205
  234. webscout/Provider/cleeai.py +0 -213
  235. webscout/Provider/copilot.py +0 -428
  236. webscout/Provider/elmo.py +0 -234
  237. webscout/Provider/freeaichat.py +0 -271
  238. webscout/Provider/gaurish.py +0 -244
  239. webscout/Provider/geminiapi.py +0 -208
  240. webscout/Provider/geminiprorealtime.py +0 -160
  241. webscout/Provider/granite.py +0 -187
  242. webscout/Provider/hermes.py +0 -219
  243. webscout/Provider/julius.py +0 -223
  244. webscout/Provider/koala.py +0 -268
  245. webscout/Provider/labyrinth.py +0 -340
  246. webscout/Provider/learnfastai.py +0 -266
  247. webscout/Provider/lepton.py +0 -194
  248. webscout/Provider/llama3mitril.py +0 -180
  249. webscout/Provider/llamatutor.py +0 -192
  250. webscout/Provider/llmchat.py +0 -213
  251. webscout/Provider/llmchatco.py +0 -311
  252. webscout/Provider/meta.py +0 -794
  253. webscout/Provider/multichat.py +0 -325
  254. webscout/Provider/promptrefine.py +0 -193
  255. webscout/Provider/scira_chat.py +0 -277
  256. webscout/Provider/scnet.py +0 -187
  257. webscout/Provider/searchchat.py +0 -293
  258. webscout/Provider/sonus.py +0 -208
  259. webscout/Provider/talkai.py +0 -194
  260. webscout/Provider/toolbaz.py +0 -320
  261. webscout/Provider/turboseek.py +0 -219
  262. webscout/Provider/tutorai.py +0 -252
  263. webscout/Provider/typefully.py +0 -280
  264. webscout/Provider/typegpt.py +0 -232
  265. webscout/Provider/uncovr.py +0 -312
  266. webscout/Provider/x0gpt.py +0 -256
  267. webscout/Provider/yep.py +0 -376
  268. webscout/litagent/__init__.py +0 -29
  269. webscout/litagent/agent.py +0 -455
  270. webscout/litagent/constants.py +0 -60
  271. webscout/litprinter/__init__.py +0 -59
  272. webscout/scout/__init__.py +0 -8
  273. webscout/scout/core/__init__.py +0 -7
  274. webscout/scout/core/crawler.py +0 -140
  275. webscout/scout/core/scout.py +0 -568
  276. webscout/scout/core/search_result.py +0 -96
  277. webscout/scout/core/text_analyzer.py +0 -63
  278. webscout/scout/core/text_utils.py +0 -277
  279. webscout/scout/core/web_analyzer.py +0 -52
  280. webscout/scout/core.py +0 -881
  281. webscout/scout/element.py +0 -460
  282. webscout/scout/parsers/__init__.py +0 -69
  283. webscout/scout/parsers/html5lib_parser.py +0 -172
  284. webscout/scout/parsers/html_parser.py +0 -236
  285. webscout/scout/parsers/lxml_parser.py +0 -178
  286. webscout/scout/utils.py +0 -37
  287. webscout/swiftcli/__init__.py +0 -809
  288. webscout/zeroart/__init__.py +0 -55
  289. webscout/zeroart/base.py +0 -60
  290. webscout/zeroart/effects.py +0 -99
  291. webscout/zeroart/fonts.py +0 -816
  292. webscout-8.2.2.dist-info/RECORD +0 -309
  293. webscout-8.2.2.dist-info/entry_points.txt +0 -5
  294. webscout-8.2.2.dist-info/top_level.txt +0 -3
  295. webstoken/__init__.py +0 -30
  296. webstoken/classifier.py +0 -189
  297. webstoken/keywords.py +0 -216
  298. webstoken/language.py +0 -128
  299. webstoken/ner.py +0 -164
  300. webstoken/normalizer.py +0 -35
  301. webstoken/processor.py +0 -77
  302. webstoken/sentiment.py +0 -206
  303. webstoken/stemmer.py +0 -73
  304. webstoken/tagger.py +0 -60
  305. webstoken/tokenizer.py +0 -158
  306. {webscout-8.2.2.dist-info → webscout-8.2.7.dist-info/licenses}/LICENSE.md +0 -0
webstoken/keywords.py DELETED
@@ -1,216 +0,0 @@
1
- """
2
- Keyword extraction module using statistical and graph-based approaches.
3
- """
4
-
5
- from typing import Dict, List, Set, Tuple
6
- from collections import Counter, defaultdict
7
- import math
8
- import re
9
-
10
- from .tokenizer import WordTokenizer
11
- from .normalizer import TextNormalizer
12
-
13
-
14
- class KeywordExtractor:
15
- """Keyword extraction using TF-IDF and TextRank-inspired algorithms."""
16
-
17
- def __init__(self):
18
- self.word_tokenizer = WordTokenizer()
19
- self.normalizer = TextNormalizer()
20
-
21
- # Common words to filter out beyond basic stop words
22
- self.filter_words: Set[str] = {
23
- 'would', 'could', 'should', 'said', 'also', 'may', 'might',
24
- 'must', 'need', 'shall', 'want', 'way', 'time', 'just',
25
- 'now', 'like', 'make', 'made', 'well', 'back', 'even',
26
- 'still', 'way', 'take', 'took', 'get', 'got', 'go', 'went'
27
- }
28
-
29
- def _split_into_sentences(self, text: str) -> List[str]:
30
- """Split text into sentences using simple rules."""
31
- text = re.sub(r'\s+', ' ', text)
32
- sentences = re.split(r'[.!?]+', text)
33
- return [s.strip() for s in sentences if s.strip()]
34
-
35
- def _calculate_word_scores(self, text: str) -> Dict[str, float]:
36
- """Calculate word importance scores using frequency and position."""
37
- # Normalize and tokenize text
38
- text = self.normalizer.normalize(text)
39
- sentences = self._split_into_sentences(text)
40
-
41
- word_scores: Dict[str, float] = defaultdict(float)
42
- word_positions: Dict[str, List[int]] = defaultdict(list)
43
-
44
- # Calculate word frequencies and positions
45
- for i, sentence in enumerate(sentences):
46
- words = self.word_tokenizer.tokenize(sentence)
47
- for j, word in enumerate(words):
48
- word = word.lower()
49
- if (word.isalnum() and
50
- len(word) > 2 and
51
- word not in self.filter_words and
52
- word not in self.normalizer.stop_words):
53
- word_scores[word] += 1
54
- word_positions[word].append(i)
55
-
56
- # Adjust scores based on position
57
- num_sentences = len(sentences)
58
- for word, positions in word_positions.items():
59
- # Words appearing in first or last sentences get bonus
60
- if 0 in positions:
61
- word_scores[word] *= 1.2
62
- if num_sentences - 1 in positions:
63
- word_scores[word] *= 1.1
64
-
65
- # Words appearing throughout text get bonus
66
- coverage = len(set(positions)) / num_sentences
67
- word_scores[word] *= (1 + coverage)
68
-
69
- return word_scores
70
-
71
- def _calculate_word_cooccurrence(self, text: str, window_size: int = 3) -> Dict[str, Dict[str, int]]:
72
- """Calculate word co-occurrence matrix."""
73
- # Normalize and tokenize text
74
- text = self.normalizer.normalize(text)
75
- words = self.word_tokenizer.tokenize(text)
76
-
77
- # Filter words
78
- filtered_words = [
79
- word.lower() for word in words
80
- if (word.isalnum() and
81
- len(word) > 2 and
82
- word.lower() not in self.filter_words and
83
- word.lower() not in self.normalizer.stop_words)
84
- ]
85
-
86
- # Build co-occurrence matrix
87
- cooccurrence: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
88
-
89
- for i, word in enumerate(filtered_words):
90
- for j in range(max(0, i - window_size), min(len(filtered_words), i + window_size + 1)):
91
- if i != j:
92
- cooccurrence[word][filtered_words[j]] += 1
93
- cooccurrence[filtered_words[j]][word] += 1
94
-
95
- return cooccurrence
96
-
97
- def _textrank_scores(self, cooccurrence: Dict[str, Dict[str, int]], damping: float = 0.85,
98
- iterations: int = 30) -> Dict[str, float]:
99
- """Calculate TextRank scores from co-occurrence matrix."""
100
- scores = {word: 1.0 for word in cooccurrence}
101
-
102
- for _ in range(iterations):
103
- new_scores = {}
104
- for word in scores:
105
- if not cooccurrence[word]:
106
- continue
107
-
108
- incoming_score = sum(
109
- scores[other] * cooccurrence[word][other] / sum(cooccurrence[other].values())
110
- for other in cooccurrence[word]
111
- )
112
- new_scores[word] = (1 - damping) + damping * incoming_score
113
-
114
- # Check convergence
115
- score_diff = sum(abs(new_scores[w] - scores[w]) for w in scores)
116
- scores = new_scores
117
- if score_diff < 0.0001:
118
- break
119
-
120
- return scores
121
-
122
- def extract_keywords(self, text: str, num_keywords: int = 10,
123
- use_textrank: bool = True) -> List[Tuple[str, float]]:
124
- """
125
- Extract keywords from text using combined frequency and graph-based approach.
126
-
127
- Args:
128
- text: Input text
129
- num_keywords: Number of keywords to return
130
- use_textrank: Whether to use TextRank algorithm
131
-
132
- Returns:
133
- List of (keyword, score) tuples, sorted by score
134
- """
135
- if not text:
136
- return []
137
-
138
- # Get frequency-based scores
139
- freq_scores = self._calculate_word_scores(text)
140
-
141
- if use_textrank:
142
- # Get TextRank scores
143
- cooccurrence = self._calculate_word_cooccurrence(text)
144
- textrank_scores = self._textrank_scores(cooccurrence)
145
-
146
- # Combine scores
147
- combined_scores = {
148
- word: freq_scores[word] * textrank_scores.get(word, 0)
149
- for word in freq_scores
150
- }
151
- else:
152
- combined_scores = freq_scores
153
-
154
- # Sort and return top keywords
155
- sorted_words = sorted(
156
- combined_scores.items(),
157
- key=lambda x: x[1],
158
- reverse=True
159
- )
160
-
161
- return sorted_words[:num_keywords]
162
-
163
- def extract_keyphrases(self, text: str, num_phrases: int = 5,
164
- min_words: int = 2, max_words: int = 4) -> List[Tuple[str, float]]:
165
- """
166
- Extract key phrases from text.
167
-
168
- Args:
169
- text: Input text
170
- num_phrases: Number of phrases to return
171
- min_words: Minimum words in phrase
172
- max_words: Maximum words in phrase
173
-
174
- Returns:
175
- List of (phrase, score) tuples, sorted by score
176
- """
177
- # Normalize and split into sentences
178
- text = self.normalizer.normalize(text)
179
- sentences = self._split_into_sentences(text)
180
-
181
- # Get word importance scores
182
- word_scores = self._calculate_word_scores(text)
183
-
184
- # Extract candidate phrases
185
- phrases: Dict[str, float] = {}
186
-
187
- for sentence in sentences:
188
- words = self.word_tokenizer.tokenize(sentence)
189
-
190
- # Generate phrases of different lengths
191
- for i in range(len(words)):
192
- for length in range(min_words, min(max_words + 1, len(words) - i + 1)):
193
- phrase_words = words[i:i+length]
194
-
195
- # Filter phrases
196
- if all(
197
- word.isalnum() and
198
- len(word) > 2 and
199
- word.lower() not in self.filter_words and
200
- word.lower() not in self.normalizer.stop_words
201
- for word in phrase_words
202
- ):
203
- phrase = ' '.join(phrase_words)
204
- # Score is average of word scores
205
- score = sum(word_scores.get(word.lower(), 0) for word in phrase_words)
206
- score /= len(phrase_words)
207
- phrases[phrase] = score
208
-
209
- # Sort and return top phrases
210
- sorted_phrases = sorted(
211
- phrases.items(),
212
- key=lambda x: x[1],
213
- reverse=True
214
- )
215
-
216
- return sorted_phrases[:num_phrases]
webstoken/language.py DELETED
@@ -1,128 +0,0 @@
1
- """
2
- Language detection module using character and word frequency analysis.
3
- """
4
-
5
- from typing import Dict, List, Set, Tuple
6
- from collections import Counter
7
- import re
8
-
9
-
10
- class LanguageDetector:
11
- """Language detection using character n-gram frequencies."""
12
-
13
- def __init__(self):
14
- # Language profiles based on common character sequences
15
- self.language_profiles = {
16
- 'ENGLISH': {
17
- 'chars': 'etaoinshrdlcumwfgypbvkjxqz',
18
- 'ngrams': {'th', 'he', 'in', 'er', 'an', 're', 'on', 'at', 'en', 'nd',
19
- 'ti', 'es', 'or', 'te', 'of', 'ed', 'is', 'it', 'al', 'ar',
20
- 'st', 'to', 'nt', 'ng', 'se', 'ha', 'as', 'ou', 'io', 'le'},
21
- 'words': {'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have',
22
- 'i', 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you',
23
- 'do', 'at'}
24
- },
25
- 'SPANISH': {
26
- 'chars': 'eaosrnidlctumpbgvyqhfzjñxwk',
27
- 'ngrams': {'de', 'en', 'el', 'la', 'os', 'es', 'as', 'ar', 'er', 'ra',
28
- 'al', 'an', 'do', 'or', 'ta', 'ue', 'io', 'on', 'ro', 'ad',
29
- 'te', 'co', 'st', 'ci', 'nt', 'to', 'lo', 'no', 'po', 'ac'},
30
- 'words': {'de', 'la', 'que', 'el', 'en', 'y', 'a', 'los', 'se', 'del',
31
- 'las', 'un', 'por', 'con', 'no', 'una', 'su', 'para', 'es',
32
- 'al'}
33
- },
34
- 'FRENCH': {
35
- 'chars': 'esaitnrulodcpmévqfbghàjxèêyçwzùâîôûëïüœ',
36
- 'ngrams': {'es', 'le', 'en', 'de', 'nt', 'on', 're', 'er', 'ai', 'te',
37
- 'la', 'an', 'ou', 'it', 'ur', 'et', 'el', 'se', 'qu', 'me',
38
- 'is', 'ar', 'ce', 'ns', 'us', 'ue', 'ss', 'ie', 'em', 'tr'},
39
- 'words': {'le', 'de', 'un', 'être', 'et', 'à', 'il', 'avoir', 'ne',
40
- 'je', 'son', 'que', 'se', 'qui', 'ce', 'dans', 'en', 'du',
41
- 'elle', 'au'}
42
- },
43
- 'GERMAN': {
44
- 'chars': 'enisratdhulcgmobwfkzvüpäößjyqxéèêëàáâãåāăąćčĉċďđ',
45
- 'ngrams': {'en', 'er', 'ch', 'de', 'ei', 'in', 'te', 'nd', 'ie', 'ge',
46
- 'st', 'ne', 'be', 'es', 'un', 'zu', 'an', 'ng', 'au', 'it',
47
- 'is', 'he', 'ht', 'se', 'ck', 'ic', 're', 'ns', 'sc', 'tz'},
48
- 'words': {'der', 'die', 'und', 'in', 'den', 'von', 'zu', 'das', 'mit',
49
- 'sich', 'des', 'auf', 'für', 'ist', 'im', 'dem', 'nicht',
50
- 'ein', 'eine', 'als'}
51
- }
52
- }
53
-
54
- # Compile word patterns
55
- self.word_pattern = re.compile(r'\b\w+\b')
56
-
57
- def _extract_ngrams(self, text: str, n: int = 2) -> List[str]:
58
- """Extract character n-grams from text."""
59
- text = text.lower()
60
- return [text[i:i+n] for i in range(len(text)-n+1)]
61
-
62
- def _calculate_char_frequencies(self, text: str) -> Dict[str, float]:
63
- """Calculate character frequencies in text."""
64
- text = text.lower()
65
- char_count = Counter(c for c in text if c.isalpha())
66
- total = sum(char_count.values()) or 1
67
- return {char: count/total for char, count in char_count.items()}
68
-
69
- def _calculate_ngram_frequencies(self, text: str) -> Dict[str, float]:
70
- """Calculate n-gram frequencies in text."""
71
- ngrams = self._extract_ngrams(text)
72
- ngram_count = Counter(ngrams)
73
- total = sum(ngram_count.values()) or 1
74
- return {ngram: count/total for ngram, count in ngram_count.items()}
75
-
76
- def _calculate_word_frequencies(self, text: str) -> Dict[str, float]:
77
- """Calculate word frequencies in text."""
78
- words = self.word_pattern.findall(text.lower())
79
- word_count = Counter(words)
80
- total = sum(word_count.values()) or 1
81
- return {word: count/total for word, count in word_count.items()}
82
-
83
- def _calculate_similarity(self, freq1: Dict[str, float], freq2: Dict[str, float]) -> float:
84
- """Calculate similarity between two frequency distributions."""
85
- common_keys = set(freq1.keys()) & set(freq2.keys())
86
- if not common_keys:
87
- return 0.0
88
-
89
- similarity = sum(min(freq1.get(k, 0), freq2.get(k, 0)) for k in common_keys)
90
- return similarity
91
-
92
- def detect(self, text: str) -> List[Tuple[str, float]]:
93
- """
94
- Detect the language of text with confidence scores.
95
-
96
- Returns:
97
- List of (language, confidence) tuples, sorted by confidence
98
- """
99
- if not text:
100
- return []
101
-
102
- # Calculate frequencies for input text
103
- char_freqs = self._calculate_char_frequencies(text)
104
- ngram_freqs = self._calculate_ngram_frequencies(text)
105
- word_freqs = self._calculate_word_frequencies(text)
106
-
107
- # Calculate similarity scores for each language
108
- scores = []
109
- for lang, profile in self.language_profiles.items():
110
- # Character similarity
111
- char_sim = sum(char_freqs.get(c, 0) for c in profile['chars'])
112
-
113
- # N-gram similarity
114
- ngram_sim = sum(ngram_freqs.get(ng, 0) for ng in profile['ngrams'])
115
-
116
- # Word similarity
117
- word_sim = sum(word_freqs.get(w, 0) for w in profile['words'])
118
-
119
- # Combined score (weighted average)
120
- total_score = (0.3 * char_sim + 0.4 * ngram_sim + 0.3 * word_sim)
121
- scores.append((lang, total_score))
122
-
123
- # Normalize scores
124
- total = sum(score for _, score in scores) or 1
125
- normalized_scores = [(lang, score/total) for lang, score in scores]
126
-
127
- # Sort by confidence
128
- return sorted(normalized_scores, key=lambda x: x[1], reverse=True)
webstoken/ner.py DELETED
@@ -1,164 +0,0 @@
1
- """
2
- Named Entity Recognition (NER) module for identifying and classifying named entities.
3
- """
4
-
5
- from typing import List, Tuple, Dict, Set
6
- import re
7
-
8
-
9
- class NamedEntityRecognizer:
10
- """Rule-based Named Entity Recognition."""
11
-
12
- def __init__(self):
13
- # Common entity patterns
14
- self.PERSON_TITLES = {
15
- 'mr', 'mrs', 'ms', 'miss', 'dr', 'prof', 'sir', 'madam',
16
- 'lord', 'lady', 'president', 'ceo', 'director'
17
- }
18
-
19
- self.ORGANIZATION_SUFFIXES = {
20
- 'inc', 'corp', 'ltd', 'llc', 'company', 'corporation',
21
- 'associates', 'partners', 'foundation', 'institute'
22
- }
23
-
24
- self.LOCATION_INDICATORS = {
25
- 'street', 'road', 'avenue', 'boulevard', 'lane', 'drive',
26
- 'circle', 'square', 'park', 'bridge', 'river', 'lake',
27
- 'mountain', 'forest', 'city', 'town', 'village', 'country'
28
- }
29
-
30
- self.DATE_MONTHS = {
31
- 'january', 'february', 'march', 'april', 'may', 'june',
32
- 'july', 'august', 'september', 'october', 'november', 'december'
33
- }
34
-
35
- # Compile regex patterns
36
- self.patterns = {
37
- 'EMAIL': re.compile(r'\b[\w\.-]+@[\w\.-]+\.\w+\b'),
38
- 'URL': re.compile(r'https?://(?:[\w-]|(?:%[\da-fA-F]{2}))+'),
39
- 'PHONE': re.compile(r'\+?\d{1,3}[-.\s]?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}'),
40
- 'DATE': re.compile(r'\b\d{1,2}[-/]\d{1,2}[-/]\d{2,4}\b|\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}\b'),
41
- 'TIME': re.compile(r'\b\d{1,2}:\d{2}(?::\d{2})?(?:\s*[AaPp][Mm])?\b'),
42
- 'MONEY': re.compile(r'\$\d+(?:,\d{3})*(?:\.\d{2})?|\d+(?:,\d{3})*(?:\.\d{2})?\s*(?:dollars|USD|EUR|GBP)'),
43
- 'PERCENTAGE': re.compile(r'\b\d+(?:\.\d+)?%\b')
44
- }
45
-
46
- def is_capitalized(self, word: str) -> bool:
47
- """Check if a word is capitalized."""
48
- return word and word[0].isupper()
49
-
50
- def extract_entities(self, text: str) -> Dict[str, List[Tuple[str, str]]]:
51
- """
52
- Extract named entities from text.
53
-
54
- Returns:
55
- Dict mapping entity types to list of (text, label) tuples
56
- """
57
- entities = {
58
- 'PERSON': [],
59
- 'ORGANIZATION': [],
60
- 'LOCATION': [],
61
- 'DATE': [],
62
- 'TIME': [],
63
- 'MONEY': [],
64
- 'EMAIL': [],
65
- 'URL': [],
66
- 'PHONE': [],
67
- 'PERCENTAGE': []
68
- }
69
-
70
- # First find regex pattern matches
71
- for label, pattern in self.patterns.items():
72
- for match in pattern.finditer(text):
73
- entities[label].append((match.group(), label))
74
-
75
- # Process text word by word for other entities
76
- words = text.split()
77
- i = 0
78
- while i < len(words):
79
- word = words[i]
80
- next_word = words[i + 1] if i + 1 < len(words) else None
81
-
82
- # Check for person names
83
- if word.lower() in self.PERSON_TITLES and next_word and self.is_capitalized(next_word):
84
- name_parts = []
85
- j = i + 1
86
- while j < len(words) and self.is_capitalized(words[j]):
87
- name_parts.append(words[j])
88
- j += 1
89
- if name_parts:
90
- entities['PERSON'].append((' '.join(name_parts), 'PERSON'))
91
- i = j
92
- continue
93
-
94
- # Check for organizations
95
- if self.is_capitalized(word):
96
- org_parts = [word]
97
- j = i + 1
98
- while j < len(words) and (
99
- self.is_capitalized(words[j]) or
100
- words[j].lower() in self.ORGANIZATION_SUFFIXES
101
- ):
102
- org_parts.append(words[j])
103
- j += 1
104
- if len(org_parts) > 1 or (
105
- len(org_parts) == 1 and
106
- any(suff in word.lower() for suff in self.ORGANIZATION_SUFFIXES)
107
- ):
108
- entities['ORGANIZATION'].append((' '.join(org_parts), 'ORGANIZATION'))
109
- i = j
110
- continue
111
-
112
- # Check for locations
113
- if word.lower() in self.LOCATION_INDICATORS and i > 0:
114
- if self.is_capitalized(words[i - 1]):
115
- entities['LOCATION'].append((words[i - 1] + ' ' + word, 'LOCATION'))
116
-
117
- i += 1
118
-
119
- return entities
120
-
121
- def tag_text(self, text: str) -> List[Tuple[str, str]]:
122
- """
123
- Tag each word in text with its entity type.
124
-
125
- Returns:
126
- List of (word, entity_type) tuples
127
- """
128
- entities = self.extract_entities(text)
129
- tagged = []
130
-
131
- # Create a map of word positions to entity labels
132
- position_labels = {}
133
- text_lower = text.lower()
134
-
135
- for entity_type, entity_list in entities.items():
136
- for entity_text, _ in entity_list:
137
- start = text_lower.find(entity_text.lower())
138
- if start != -1:
139
- end = start + len(entity_text)
140
- for pos in range(start, end):
141
- position_labels[pos] = entity_type
142
-
143
- # Tag each character position
144
- current_pos = 0
145
- current_word = []
146
- current_label = 'O' # Outside any entity
147
-
148
- for char in text:
149
- if char.isspace():
150
- if current_word:
151
- tagged.append((''.join(current_word), current_label))
152
- current_word = []
153
- current_label = 'O'
154
- else:
155
- current_word.append(char)
156
- if current_pos in position_labels:
157
- current_label = position_labels[current_pos]
158
- current_pos += 1
159
-
160
- # Add last word if exists
161
- if current_word:
162
- tagged.append((''.join(current_word), current_label))
163
-
164
- return tagged
webstoken/normalizer.py DELETED
@@ -1,35 +0,0 @@
1
- """
2
- Text normalization utilities.
3
- """
4
-
5
- import re
6
- from typing import List, Set
7
-
8
-
9
- class TextNormalizer:
10
- """Text normalization utilities."""
11
-
12
- def __init__(self):
13
- self.stop_words: Set[str] = {
14
- 'a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'for', 'from',
15
- 'has', 'he', 'in', 'is', 'it', 'its', 'of', 'on', 'that', 'the',
16
- 'to', 'was', 'were', 'will', 'with'
17
- }
18
-
19
- def remove_stop_words(self, tokens: List[str]) -> List[str]:
20
- """Remove common stop words from token list."""
21
- return [token for token in tokens if token.lower() not in self.stop_words]
22
-
23
- def normalize(self, text: str) -> str:
24
- """Apply various normalization steps to text."""
25
- # Convert to lowercase
26
- text = text.lower()
27
-
28
- # Replace multiple spaces with single space
29
- text = re.sub(r'\s+', ' ', text)
30
-
31
- # Remove special characters except apostrophes within words
32
- text = re.sub(r'[^a-z0-9\s\']', '', text)
33
- text = re.sub(r'\s\'|\'\s', ' ', text)
34
-
35
- return text.strip()
webstoken/processor.py DELETED
@@ -1,77 +0,0 @@
1
- """
2
- Main text processing utilities combining all NLP components.
3
- """
4
-
5
- from typing import Dict, Any, List, Tuple
6
-
7
- from .tokenizer import SentenceTokenizer, WordTokenizer
8
- from .tagger import POSTagger
9
- from .stemmer import Stemmer
10
- from .normalizer import TextNormalizer
11
-
12
-
13
- def process_text(text: str, normalize: bool = True, remove_stops: bool = True) -> Dict[str, Any]:
14
- """
15
- Process text using all available NLP tools.
16
-
17
- Args:
18
- text (str): Input text to process
19
- normalize (bool): Whether to normalize text
20
- remove_stops (bool): Whether to remove stop words
21
-
22
- Returns:
23
- Dict containing processed results with the following structure:
24
- {
25
- 'sentences': [
26
- {
27
- 'original': str, # Original sentence
28
- 'tokens': List[str], # Word tokens
29
- 'pos_tags': List[Tuple[str, str]], # (word, tag) pairs
30
- 'stems': List[Tuple[str, str]] # (word, stem) pairs
31
- },
32
- ...
33
- ],
34
- 'num_sentences': int, # Total number of sentences
35
- 'num_tokens': int # Total number of tokens
36
- }
37
- """
38
- # Initialize tools
39
- sentence_tokenizer = SentenceTokenizer()
40
- word_tokenizer = WordTokenizer()
41
- pos_tagger = POSTagger()
42
- stemmer = Stemmer()
43
- normalizer = TextNormalizer()
44
-
45
- # Process text
46
- if normalize:
47
- text = normalizer.normalize(text)
48
-
49
- # Get sentences
50
- sentences = sentence_tokenizer.tokenize(text)
51
-
52
- # Process each sentence
53
- processed_sentences = []
54
- for sentence in sentences:
55
- # Tokenize words
56
- tokens = word_tokenizer.tokenize(sentence)
57
-
58
- # Remove stop words if requested
59
- if remove_stops:
60
- tokens = normalizer.remove_stop_words(tokens)
61
-
62
- # Get POS tags and stems
63
- tagged = pos_tagger.tag(tokens)
64
- stems = [(token, stemmer.stem(token)) for token, _ in tagged]
65
-
66
- processed_sentences.append({
67
- 'original': sentence,
68
- 'tokens': tokens,
69
- 'pos_tags': tagged,
70
- 'stems': stems
71
- })
72
-
73
- return {
74
- 'sentences': processed_sentences,
75
- 'num_sentences': len(sentences),
76
- 'num_tokens': sum(len(s['tokens']) for s in processed_sentences)
77
- }