webscout 8.2.2__py3-none-any.whl → 8.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -4,12 +4,12 @@ import pathlib
4
4
  import tempfile
5
5
  from io import BytesIO
6
6
  from webscout import exceptions
7
- from webscout.AIbase import TTSProvider
8
7
  from webscout.litagent import LitAgent
9
8
  from concurrent.futures import ThreadPoolExecutor, as_completed
10
9
  from . import utils
10
+ from .base import BaseTTSProvider
11
11
 
12
- class ElevenlabsTTS(TTSProvider):
12
+ class ElevenlabsTTS(BaseTTSProvider):
13
13
  """
14
14
  Text-to-speech provider using the ElevenlabsTTS API.
15
15
  """
@@ -21,13 +21,13 @@ class ElevenlabsTTS(TTSProvider):
21
21
 
22
22
  def __init__(self, timeout: int = 20, proxies: dict = None):
23
23
  """Initializes the ElevenlabsTTS TTS client."""
24
+ super().__init__()
24
25
  self.session = requests.Session()
25
26
  self.session.headers.update(self.headers)
26
27
  if proxies:
27
28
  self.session.proxies.update(proxies)
28
29
  self.timeout = timeout
29
30
  self.params = {'allow_unauthenticated': '1'}
30
- self.temp_dir = tempfile.mkdtemp(prefix="webscout_tts_")
31
31
 
32
32
  def tts(self, text: str, voice: str = "Brian", verbose:bool = True) -> str:
33
33
  """
@@ -65,9 +65,9 @@ class ElevenlabsTTS(TTSProvider):
65
65
  try:
66
66
  # Using ThreadPoolExecutor to handle requests concurrently
67
67
  with ThreadPoolExecutor() as executor:
68
- futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
68
+ futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
69
69
  for chunk_num, sentence in enumerate(sentences, start=1)}
70
-
70
+
71
71
  # Dictionary to store results with order preserved
72
72
  audio_chunks = {}
73
73
 
@@ -4,12 +4,12 @@ import pathlib
4
4
  import base64
5
5
  from io import BytesIO
6
6
  from webscout import exceptions
7
- from webscout.AIbase import TTSProvider
8
7
  from webscout.litagent import LitAgent
9
8
  from concurrent.futures import ThreadPoolExecutor, as_completed
10
9
  from . import utils
10
+ from .base import BaseTTSProvider
11
11
 
12
- class GesseritTTS(TTSProvider):
12
+ class GesseritTTS(BaseTTSProvider):
13
13
  """Text-to-speech provider using the GesseritTTS API."""
14
14
  # Request headers
15
15
  headers: dict[str, str] = {
@@ -30,6 +30,7 @@ class GesseritTTS(TTSProvider):
30
30
 
31
31
  def __init__(self, timeout: int = 20, proxies: dict = None):
32
32
  """Initializes the GesseritTTS TTS client."""
33
+ super().__init__()
33
34
  self.session = requests.Session()
34
35
  self.session.headers.update(self.headers)
35
36
  if proxies:
@@ -61,7 +62,7 @@ class GesseritTTS(TTSProvider):
61
62
  response.raise_for_status()
62
63
 
63
64
  # Create the audio_cache directory if it doesn't exist
64
- self.cache_dir.mkdir(parents=True, exist_ok=True)
65
+ self.cache_dir.mkdir(parents=True, exist_ok=True)
65
66
 
66
67
  # Check if the request was successful
67
68
  if response.ok and response.status_code == 200:
@@ -81,9 +82,9 @@ class GesseritTTS(TTSProvider):
81
82
  try:
82
83
  # Using ThreadPoolExecutor to handle requests concurrently
83
84
  with ThreadPoolExecutor() as executor:
84
- futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
85
+ futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
85
86
  for chunk_num, sentence in enumerate(sentences, start=1)}
86
-
87
+
87
88
  # Dictionary to store results with order preserved
88
89
  audio_chunks = {}
89
90
 
@@ -5,12 +5,12 @@ import tempfile
5
5
  from io import BytesIO
6
6
  from urllib.parse import urlencode
7
7
  from webscout import exceptions
8
- from webscout.AIbase import TTSProvider
9
8
  from webscout.litagent import LitAgent
10
9
  from concurrent.futures import ThreadPoolExecutor, as_completed
11
10
  from . import utils
11
+ from .base import BaseTTSProvider
12
12
 
13
- class MurfAITTS(TTSProvider):
13
+ class MurfAITTS(BaseTTSProvider):
14
14
  """Text-to-speech provider using the MurfAITTS API."""
15
15
  # Request headers
16
16
  headers: dict[str, str] = {
@@ -20,12 +20,12 @@ class MurfAITTS(TTSProvider):
20
20
 
21
21
  def __init__(self, timeout: int = 20, proxies: dict = None):
22
22
  """Initializes the MurfAITTS TTS client."""
23
+ super().__init__()
23
24
  self.session = requests.Session()
24
25
  self.session.headers.update(self.headers)
25
26
  if proxies:
26
27
  self.session.proxies.update(proxies)
27
28
  self.timeout = timeout
28
- self.temp_dir = tempfile.mkdtemp(prefix="webscout_tts_")
29
29
 
30
30
  def tts(self, text: str, voice: str = "Hazel", verbose:bool = True) -> str:
31
31
  """Converts text to speech using the MurfAITTS API and saves it to a file."""
@@ -45,7 +45,7 @@ class MurfAITTS(TTSProvider):
45
45
  while True:
46
46
  try:
47
47
  params: dict[str, str] = {
48
- "name": voice_id,
48
+ "name": voice_id,
49
49
  "text": part_text
50
50
  }
51
51
  encode_param: str = urlencode(params)
@@ -67,9 +67,9 @@ class MurfAITTS(TTSProvider):
67
67
  try:
68
68
  # Using ThreadPoolExecutor to handle requests concurrently
69
69
  with ThreadPoolExecutor() as executor:
70
- futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
70
+ futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
71
71
  for chunk_num, sentence in enumerate(sentences, start=1)}
72
-
72
+
73
73
  # Dictionary to store results with order preserved
74
74
  audio_chunks = {}
75
75
 
@@ -109,5 +109,5 @@ if __name__ == "__main__":
109
109
  text = "This is a test of the MurfAITTS text-to-speech API. It supports multiple sentences and advanced logging."
110
110
 
111
111
  print("[debug] Generating audio...")
112
- audio_file = murfai.tts(text, voice="Hazel")
112
+ audio_file = murfai.tts(text, voice="Hazel")
113
113
  print(f"Audio saved to: {audio_file}")
@@ -2,22 +2,22 @@ import time
2
2
  import tempfile
3
3
  from pathlib import Path
4
4
  from webscout import exceptions
5
- from webscout.AIbase import TTSProvider
6
5
  from gradio_client import Client
7
6
  import os
7
+ from .base import BaseTTSProvider
8
8
 
9
9
 
10
- class ParlerTTS(TTSProvider):
10
+ class ParlerTTS(BaseTTSProvider):
11
11
  """
12
12
  A class to interact with the Parler TTS API through Gradio Client.
13
13
  """
14
14
 
15
15
  def __init__(self, timeout: int = 20, proxies: dict = None):
16
16
  """Initializes the Parler TTS client."""
17
+ super().__init__()
17
18
  self.api_endpoint = "/gen_tts"
18
19
  self.client = Client("parler-tts/parler_tts") # Initialize the Gradio client
19
20
  self.timeout = timeout
20
- self.temp_dir = tempfile.mkdtemp(prefix="webscout_tts_")
21
21
 
22
22
  def tts(self, text: str, description: str = "", use_large: bool = False, verbose: bool = True) -> str:
23
23
  """
@@ -40,7 +40,7 @@ class ParlerTTS(TTSProvider):
40
40
  try:
41
41
  if verbose:
42
42
  print(f"[debug] Generating TTS with description: {description}")
43
-
43
+
44
44
  result = self.client.predict(
45
45
  text=text,
46
46
  description=description,
@@ -57,10 +57,10 @@ class ParlerTTS(TTSProvider):
57
57
  raise ValueError(f"Unexpected response from API: {result}")
58
58
 
59
59
  self._save_audio(audio_bytes, filename, verbose)
60
-
60
+
61
61
  if verbose:
62
62
  print(f"[debug] Audio generated successfully: {filename}")
63
-
63
+
64
64
  return filename.as_posix()
65
65
 
66
66
  except Exception as e:
@@ -7,12 +7,12 @@ import pathlib
7
7
  import tempfile
8
8
  from io import BytesIO
9
9
  from webscout import exceptions
10
- from webscout.AIbase import TTSProvider
11
10
  from webscout.litagent import LitAgent
12
11
  from concurrent.futures import ThreadPoolExecutor, as_completed
13
12
  from . import utils
13
+ from .base import BaseTTSProvider
14
14
 
15
- class SpeechMaTTS(TTSProvider):
15
+ class SpeechMaTTS(BaseTTSProvider):
16
16
  """
17
17
  Text-to-speech provider using the SpeechMa API.
18
18
  """
@@ -25,7 +25,7 @@ class SpeechMaTTS(TTSProvider):
25
25
  "priority": "u=1, i",
26
26
  "User-Agent": LitAgent().random()
27
27
  }
28
-
28
+
29
29
  # Available voices with their IDs
30
30
  all_voices = {
31
31
  "Ava": "voice-110", # Multilingual female voice
@@ -36,13 +36,13 @@ class SpeechMaTTS(TTSProvider):
36
36
 
37
37
  def __init__(self, timeout: int = 20, proxies: dict = None):
38
38
  """Initializes the SpeechMa TTS client."""
39
+ super().__init__()
39
40
  self.api_url = "https://speechma.com/com.api/tts-api.php"
40
41
  self.session = requests.Session()
41
42
  self.session.headers.update(self.headers)
42
43
  if proxies:
43
44
  self.session.proxies.update(proxies)
44
45
  self.timeout = timeout
45
- self.temp_dir = tempfile.mkdtemp(prefix="webscout_tts_")
46
46
 
47
47
  def tts(self, text: str, voice: str = "Emma", pitch: int = 0, rate: int = 0, verbose: bool = False) -> str:
48
48
  """
@@ -57,7 +57,7 @@ class SpeechMaTTS(TTSProvider):
57
57
 
58
58
  Returns:
59
59
  str: Path to the generated audio file
60
-
60
+
61
61
  Raises:
62
62
  exceptions.FailedToGenerateResponseError: If there is an error generating or saving the audio.
63
63
  """
@@ -66,26 +66,26 @@ class SpeechMaTTS(TTSProvider):
66
66
  ), f"Voice '{voice}' not one of [{', '.join(self.all_voices.keys())}]"
67
67
 
68
68
  filename = pathlib.Path(tempfile.mktemp(suffix=".mp3", dir=self.temp_dir))
69
-
69
+
70
70
  # Get the voice ID
71
71
  voice_id = self.all_voices[voice]
72
-
72
+
73
73
  if verbose:
74
74
  print(f"[debug] Using voice: {voice} (ID: {voice_id})")
75
-
75
+
76
76
  # Split text into sentences for better processing
77
77
  sentences = utils.split_sentences(text)
78
-
78
+
79
79
  if verbose:
80
80
  print(f"[debug] Text split into {len(sentences)} sentences")
81
-
81
+
82
82
  # Function to request audio for each chunk
83
83
  def generate_audio_for_chunk(part_text: str, part_number: int):
84
84
  while True:
85
85
  try:
86
86
  if verbose:
87
87
  print(f"[debug] Processing chunk {part_number}: '{part_text[:30]}...'")
88
-
88
+
89
89
  # Prepare payload for this sentence
90
90
  payload = {
91
91
  "text": part_text,
@@ -93,11 +93,11 @@ class SpeechMaTTS(TTSProvider):
93
93
  "pitch": pitch,
94
94
  "rate": rate
95
95
  }
96
-
96
+
97
97
  response = self.session.post(
98
- self.api_url,
99
- headers=self.headers,
100
- json=payload,
98
+ self.api_url,
99
+ headers=self.headers,
100
+ json=payload,
101
101
  timeout=self.timeout
102
102
  )
103
103
  response.raise_for_status()
@@ -115,23 +115,23 @@ class SpeechMaTTS(TTSProvider):
115
115
  else:
116
116
  if verbose:
117
117
  print(f"[debug] Failed request for chunk {part_number} (status code: {response.status_code}). Retrying...")
118
-
118
+
119
119
  # If we get here, something went wrong with the request
120
120
  time.sleep(1)
121
121
  except requests.RequestException as e:
122
122
  if verbose:
123
123
  print(f"[debug] Error for chunk {part_number}: {e}. Retrying...")
124
124
  time.sleep(1)
125
-
125
+
126
126
  try:
127
127
  if verbose:
128
128
  print(f"[debug] Starting concurrent audio generation for {len(sentences)} chunks")
129
-
129
+
130
130
  # Using ThreadPoolExecutor to handle requests concurrently
131
131
  with ThreadPoolExecutor() as executor:
132
- futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
132
+ futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
133
133
  for chunk_num, sentence in enumerate(sentences, start=1)}
134
-
134
+
135
135
  # Dictionary to store results with order preserved
136
136
  audio_chunks = {}
137
137
 
@@ -159,10 +159,10 @@ class SpeechMaTTS(TTSProvider):
159
159
  # Save the combined audio data to a single file
160
160
  with open(filename, 'wb') as f:
161
161
  f.write(combined_audio.getvalue())
162
-
162
+
163
163
  if verbose:
164
164
  print(f"[debug] Final audio saved as {filename}")
165
-
165
+
166
166
  return filename.as_posix()
167
167
 
168
168
  except requests.exceptions.RequestException as e:
@@ -6,12 +6,12 @@ import tempfile
6
6
  from typing import Union
7
7
  from io import BytesIO
8
8
  from webscout import exceptions
9
- from webscout.AIbase import TTSProvider
10
9
  from webscout.litagent import LitAgent
11
10
  from concurrent.futures import ThreadPoolExecutor, as_completed
12
11
  from . import utils
12
+ from .base import BaseTTSProvider
13
13
 
14
- class StreamElements(TTSProvider):
14
+ class StreamElements(BaseTTSProvider):
15
15
  """
16
16
  Text-to-speech provider using the StreamElements API.
17
17
  """
@@ -231,12 +231,12 @@ class StreamElements(TTSProvider):
231
231
 
232
232
  def __init__(self, timeout: int = 20, proxies: dict = None):
233
233
  """Initializes the StreamElements TTS client."""
234
+ super().__init__()
234
235
  self.session = requests.Session()
235
236
  self.session.headers.update(self.headers)
236
237
  if proxies:
237
238
  self.session.proxies.update(proxies)
238
239
  self.timeout = timeout
239
- self.temp_dir = tempfile.mkdtemp(prefix="webscout_tts_")
240
240
 
241
241
  def tts(self, text: str, voice: str = "Mathieu", verbose: bool = True) -> str:
242
242
  """
@@ -266,9 +266,9 @@ class StreamElements(TTSProvider):
266
266
  # URL encode the text and voice
267
267
  encoded_text = urllib.parse.quote(part_text)
268
268
  encoded_voice = urllib.parse.quote(voice)
269
-
269
+
270
270
  url = f"https://streamelements.com/tts/{encoded_voice}/{encoded_text}"
271
-
271
+
272
272
  response = self.session.get(url, headers=self.headers, timeout=self.timeout)
273
273
  response.raise_for_status()
274
274
 
@@ -287,9 +287,9 @@ class StreamElements(TTSProvider):
287
287
  try:
288
288
  # Using ThreadPoolExecutor to handle requests concurrently
289
289
  with ThreadPoolExecutor() as executor:
290
- futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
290
+ futures = {executor.submit(generate_audio_for_chunk, sentence.strip(), chunk_num): chunk_num
291
291
  for chunk_num, sentence in enumerate(sentences, start=1)}
292
-
292
+
293
293
  # Dictionary to store results with order preserved
294
294
  audio_chunks = {}
295
295
 
@@ -1,6 +1,6 @@
1
1
  import requests
2
2
  import json
3
- from typing import Union, Any, Dict, Generator
3
+ from typing import Union, Any, Dict, Generator, Optional, List
4
4
  from webscout.AIutel import Optimizers, Conversation, AwesomePrompts
5
5
  from webscout.AIbase import Provider
6
6
  from webscout import exceptions
@@ -12,33 +12,28 @@ class TextPollinationsAI(Provider):
12
12
  """
13
13
 
14
14
  AVAILABLE_MODELS = [
15
- "openai",
16
- "openai-large",
17
- "openai-reasoning",
18
- "qwen-coder",
19
- "llama",
20
- "llamascout",
21
- "mistral",
22
- "unity",
23
- "midijourney",
24
- "rtist",
25
- "searchgpt",
26
- "evil",
27
- "deepseek-reasoning",
28
- "deepseek-reasoning-large",
29
- "llamalight",
30
- "phi",
31
- "llama-vision",
32
- "pixtral",
33
- "gemini",
34
- "hormoz",
35
- "hypnosis-tracy",
36
- "mistral-roblox",
37
- "roblox-rp",
38
- "deepseek",
39
- "sur",
40
- "llama-scaleway",
41
- "openai-audio",
15
+ "openai", # OpenAI GPT-4.1-nano (Azure) - vision capable
16
+ "openai-large", # OpenAI GPT-4.1 mini (Azure) - vision capable
17
+ "openai-reasoning", # OpenAI o4-mini (Azure) - vision capable, reasoning
18
+ "qwen-coder", # Qwen 2.5 Coder 32B (Scaleway)
19
+ "llama", # Llama 3.3 70B (Cloudflare)
20
+ "llamascout", # Llama 4 Scout 17B (Cloudflare)
21
+ "mistral", # Mistral Small 3 (Scaleway) - vision capable
22
+ "unity", # Unity Mistral Large (Scaleway) - vision capable, uncensored
23
+ "midijourney", # Midijourney (Azure)
24
+ "rtist", # Rtist (Azure)
25
+ "searchgpt", # SearchGPT (Azure) - vision capable
26
+ "evil", # Evil (Scaleway) - vision capable, uncensored
27
+ "deepseek-reasoning", # DeepSeek-R1 Distill Qwen 32B (Cloudflare) - reasoning
28
+ "deepseek-reasoning-large", # DeepSeek R1 - Llama 70B (Scaleway) - reasoning
29
+ "phi", # Phi-4 Instruct (Cloudflare) - vision and audio capable
30
+ "llama-vision", # Llama 3.2 11B Vision (Cloudflare) - vision capable
31
+ "gemini", # gemini-2.5-flash-preview-04-17 (Azure) - vision and audio capable
32
+ "hormoz", # Hormoz 8b (Modal)
33
+ "hypnosis-tracy", # Hypnosis Tracy 7B (Azure) - audio capable
34
+ "deepseek", # DeepSeek-V3 (DeepSeek)
35
+ "sur", # Sur AI Assistant (Mistral) (Scaleway) - vision capable
36
+ "openai-audio", # OpenAI GPT-4o-audio-preview (Azure) - vision and audio capable
42
37
  ]
43
38
 
44
39
  def __init__(
@@ -68,14 +63,14 @@ class TextPollinationsAI(Provider):
68
63
  self.last_response = {}
69
64
  self.model = model
70
65
  self.system_prompt = system_prompt
71
-
66
+
72
67
  self.headers = {
73
68
  'Accept': '*/*',
74
69
  'Accept-Language': 'en-US,en;q=0.9',
75
70
  'User-Agent': Lit().random(),
76
71
  'Content-Type': 'application/json',
77
72
  }
78
-
73
+
79
74
  self.session.headers.update(self.headers)
80
75
  self.session.proxies = proxies
81
76
 
@@ -104,6 +99,8 @@ class TextPollinationsAI(Provider):
104
99
  raw: bool = False,
105
100
  optimizer: str = None,
106
101
  conversationally: bool = False,
102
+ tools: Optional[List[Dict[str, Any]]] = None,
103
+ tool_choice: Optional[Dict[str, Any]] = None,
107
104
  ) -> Union[Dict[str, Any], Generator[Any, None, None]]:
108
105
  """Chat with AI"""
109
106
  conversation_prompt = self.conversation.gen_complete_prompt(prompt)
@@ -124,6 +121,12 @@ class TextPollinationsAI(Provider):
124
121
  "stream": stream,
125
122
  }
126
123
 
124
+ # Add function calling parameters if provided
125
+ if tools:
126
+ payload["tools"] = tools
127
+ if tool_choice:
128
+ payload["tool_choice"] = tool_choice
129
+
127
130
  def for_stream():
128
131
  response = self.session.post(
129
132
  self.api_endpoint,
@@ -149,12 +152,15 @@ class TextPollinationsAI(Provider):
149
152
  json_data = json.loads(line[6:])
150
153
  if 'choices' in json_data and len(json_data['choices']) > 0:
151
154
  choice = json_data['choices'][0]
152
- if 'delta' in choice and 'content' in choice['delta']:
153
- content = choice['delta']['content']
154
- else:
155
- content = ""
156
- full_response += content
157
- yield content if raw else dict(text=content)
155
+ if 'delta' in choice:
156
+ if 'content' in choice['delta']:
157
+ content = choice['delta']['content']
158
+ full_response += content
159
+ yield content if raw else dict(text=content)
160
+ elif 'tool_calls' in choice['delta']:
161
+ # Handle tool calls in streaming response
162
+ tool_calls = choice['delta']['tool_calls']
163
+ yield tool_calls if raw else dict(tool_calls=tool_calls)
158
164
  except json.JSONDecodeError:
159
165
  continue
160
166
 
@@ -176,11 +182,14 @@ class TextPollinationsAI(Provider):
176
182
  stream: bool = False,
177
183
  optimizer: str = None,
178
184
  conversationally: bool = False,
185
+ tools: Optional[List[Dict[str, Any]]] = None,
186
+ tool_choice: Optional[Dict[str, Any]] = None,
179
187
  ) -> Union[str, Generator[str, None, None]]:
180
188
  """Generate response as a string"""
181
189
  def for_stream():
182
190
  for response in self.ask(
183
- prompt, True, optimizer=optimizer, conversationally=conversationally
191
+ prompt, True, optimizer=optimizer, conversationally=conversationally,
192
+ tools=tools, tool_choice=tool_choice
184
193
  ):
185
194
  yield self.get_message(response)
186
195
 
@@ -191,6 +200,8 @@ class TextPollinationsAI(Provider):
191
200
  False,
192
201
  optimizer=optimizer,
193
202
  conversationally=conversationally,
203
+ tools=tools,
204
+ tool_choice=tool_choice,
194
205
  )
195
206
  )
196
207
 
@@ -199,17 +210,21 @@ class TextPollinationsAI(Provider):
199
210
  def get_message(self, response: dict) -> str:
200
211
  """Retrieves message only from response"""
201
212
  assert isinstance(response, dict), "Response should be of dict data-type only"
202
- return response["text"]
213
+ if "text" in response:
214
+ return response["text"]
215
+ elif "tool_calls" in response:
216
+ # For tool calls, return a string representation
217
+ return json.dumps(response["tool_calls"])
203
218
 
204
219
  if __name__ == "__main__":
205
220
  print("-" * 80)
206
221
  print(f"{'Model':<50} {'Status':<10} {'Response'}")
207
222
  print("-" * 80)
208
-
223
+
209
224
  # Test all available models
210
225
  working = 0
211
226
  total = len(TextPollinationsAI.AVAILABLE_MODELS)
212
-
227
+
213
228
  for model in TextPollinationsAI.AVAILABLE_MODELS:
214
229
  try:
215
230
  test_ai = TextPollinationsAI(model=model, timeout=60)
@@ -218,7 +233,7 @@ if __name__ == "__main__":
218
233
  for chunk in response:
219
234
  response_text += chunk
220
235
  print(f"\r{model:<50} {'Testing...':<10}", end="", flush=True)
221
-
236
+
222
237
  if response_text and len(response_text.strip()) > 0:
223
238
  status = "✓"
224
239
  # Truncate response if too long
@@ -21,20 +21,20 @@ class Toolbaz(Provider):
21
21
  """
22
22
 
23
23
  AVAILABLE_MODELS = [
24
+ "gemini-2.5-flash",
24
25
  "gemini-2.0-flash-thinking",
25
26
  "gemini-2.0-flash",
26
27
  "gemini-1.5-flash",
27
28
  "gpt-4o-latest",
28
- "gpt-4o-mini",
29
29
  "gpt-4o",
30
30
  "deepseek-r1",
31
+ "Llama-4-Maverick",
32
+ "Llama-4-Scout",
31
33
  "Llama-3.3-70B",
32
- "Llama-3.1-405B",
33
- "Llama-3.1-70B",
34
34
  "Qwen2.5-72B",
35
35
  "Qwen2-72B",
36
36
  "grok-2-1212",
37
- "grok-beta",
37
+ "grok-3-beta",
38
38
  "toolbaz_v3.5_pro",
39
39
  "toolbaz_v3",
40
40
  "mixtral_8x22b",
webscout/version.py CHANGED
@@ -1,2 +1,2 @@
1
- __version__ = "8.2.2"
1
+ __version__ = "8.2.3"
2
2
  __prog__ = "webscout"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: webscout
3
- Version: 8.2.2
3
+ Version: 8.2.3
4
4
  Summary: Search for anything using Google, DuckDuckGo, phind.com, Contains AI models, can transcribe yt videos, temporary email and phone number generation, has TTS support, webai (terminal gpt and open interpreter) and offline LLMs and more
5
5
  Author: OEvortex
6
6
  Author-email: helpingai5@gmail.com