webscout 8.0__py3-none-any.whl → 8.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (80) hide show
  1. inferno/__init__.py +6 -0
  2. inferno/__main__.py +9 -0
  3. inferno/cli.py +6 -0
  4. webscout/Local/__init__.py +6 -0
  5. webscout/Local/__main__.py +9 -0
  6. webscout/Local/api.py +576 -0
  7. webscout/Local/cli.py +338 -0
  8. webscout/Local/config.py +75 -0
  9. webscout/Local/llm.py +188 -0
  10. webscout/Local/model_manager.py +205 -0
  11. webscout/Local/server.py +187 -0
  12. webscout/Local/utils.py +93 -0
  13. webscout/Provider/AISEARCH/DeepFind.py +1 -1
  14. webscout/Provider/AISEARCH/ISou.py +1 -1
  15. webscout/Provider/AISEARCH/Perplexity.py +359 -0
  16. webscout/Provider/AISEARCH/__init__.py +3 -1
  17. webscout/Provider/AISEARCH/felo_search.py +1 -1
  18. webscout/Provider/AISEARCH/genspark_search.py +1 -1
  19. webscout/Provider/AISEARCH/hika_search.py +1 -1
  20. webscout/Provider/AISEARCH/iask_search.py +436 -0
  21. webscout/Provider/AISEARCH/scira_search.py +9 -5
  22. webscout/Provider/AISEARCH/webpilotai_search.py +1 -1
  23. webscout/Provider/ExaAI.py +1 -1
  24. webscout/Provider/ExaChat.py +18 -8
  25. webscout/Provider/GithubChat.py +5 -1
  26. webscout/Provider/Glider.py +4 -2
  27. webscout/Provider/Jadve.py +2 -2
  28. webscout/Provider/OPENAI/__init__.py +24 -0
  29. webscout/Provider/OPENAI/base.py +46 -0
  30. webscout/Provider/OPENAI/c4ai.py +347 -0
  31. webscout/Provider/OPENAI/chatgpt.py +549 -0
  32. webscout/Provider/OPENAI/chatgptclone.py +460 -0
  33. webscout/Provider/OPENAI/deepinfra.py +284 -0
  34. webscout/Provider/OPENAI/exaai.py +419 -0
  35. webscout/Provider/OPENAI/exachat.py +433 -0
  36. webscout/Provider/OPENAI/freeaichat.py +355 -0
  37. webscout/Provider/OPENAI/glider.py +316 -0
  38. webscout/Provider/OPENAI/heckai.py +337 -0
  39. webscout/Provider/OPENAI/llmchatco.py +327 -0
  40. webscout/Provider/OPENAI/netwrck.py +348 -0
  41. webscout/Provider/OPENAI/opkfc.py +488 -0
  42. webscout/Provider/OPENAI/scirachat.py +463 -0
  43. webscout/Provider/OPENAI/sonus.py +294 -0
  44. webscout/Provider/OPENAI/standardinput.py +425 -0
  45. webscout/Provider/OPENAI/textpollinations.py +285 -0
  46. webscout/Provider/OPENAI/toolbaz.py +405 -0
  47. webscout/Provider/OPENAI/typegpt.py +361 -0
  48. webscout/Provider/OPENAI/uncovrAI.py +455 -0
  49. webscout/Provider/OPENAI/utils.py +211 -0
  50. webscout/Provider/OPENAI/venice.py +428 -0
  51. webscout/Provider/OPENAI/wisecat.py +381 -0
  52. webscout/Provider/OPENAI/writecream.py +158 -0
  53. webscout/Provider/OPENAI/x0gpt.py +389 -0
  54. webscout/Provider/OPENAI/yep.py +329 -0
  55. webscout/Provider/StandardInput.py +278 -0
  56. webscout/Provider/TextPollinationsAI.py +27 -28
  57. webscout/Provider/Venice.py +1 -1
  58. webscout/Provider/Writecream.py +211 -0
  59. webscout/Provider/WritingMate.py +197 -0
  60. webscout/Provider/Youchat.py +30 -26
  61. webscout/Provider/__init__.py +14 -6
  62. webscout/Provider/koala.py +2 -2
  63. webscout/Provider/llmchatco.py +5 -0
  64. webscout/Provider/scira_chat.py +18 -12
  65. webscout/Provider/scnet.py +187 -0
  66. webscout/Provider/toolbaz.py +320 -0
  67. webscout/Provider/typegpt.py +3 -184
  68. webscout/Provider/uncovr.py +3 -3
  69. webscout/conversation.py +32 -32
  70. webscout/prompt_manager.py +2 -1
  71. webscout/version.py +1 -1
  72. webscout-8.2.dist-info/METADATA +734 -0
  73. {webscout-8.0.dist-info → webscout-8.2.dist-info}/RECORD +77 -32
  74. webscout-8.2.dist-info/entry_points.txt +5 -0
  75. {webscout-8.0.dist-info → webscout-8.2.dist-info}/top_level.txt +1 -0
  76. webscout/Provider/flowith.py +0 -207
  77. webscout-8.0.dist-info/METADATA +0 -995
  78. webscout-8.0.dist-info/entry_points.txt +0 -3
  79. {webscout-8.0.dist-info → webscout-8.2.dist-info}/LICENSE.md +0 -0
  80. {webscout-8.0.dist-info → webscout-8.2.dist-info}/WHEEL +0 -0
@@ -0,0 +1,337 @@
1
+ import time
2
+ import uuid
3
+ import requests
4
+ from typing import List, Dict, Optional, Union, Generator, Any
5
+
6
+ from webscout.litagent import LitAgent
7
+ from .base import BaseChat, BaseCompletions, OpenAICompatibleProvider
8
+ from .utils import (
9
+ ChatCompletion,
10
+ ChatCompletionChunk,
11
+ Choice,
12
+ ChatCompletionMessage,
13
+ ChoiceDelta,
14
+ CompletionUsage,
15
+ format_prompt
16
+ )
17
+
18
+ # ANSI escape codes for formatting
19
+ BOLD = "\033[1m"
20
+ RED = "\033[91m"
21
+ RESET = "\033[0m"
22
+
23
+ class Completions(BaseCompletions):
24
+ def __init__(self, client: 'HeckAI'):
25
+ self._client = client
26
+
27
+ def create(
28
+ self,
29
+ *,
30
+ model: str,
31
+ messages: List[Dict[str, str]],
32
+ max_tokens: Optional[int] = None, # Not used by HeckAI but kept for compatibility
33
+ stream: bool = False,
34
+ temperature: Optional[float] = None, # Not used by HeckAI but kept for compatibility
35
+ top_p: Optional[float] = None, # Not used by HeckAI but kept for compatibility
36
+ **kwargs: Any # Not used by HeckAI but kept for compatibility
37
+ ) -> Union[ChatCompletion, Generator[ChatCompletionChunk, None, None]]:
38
+ """
39
+ Creates a model response for the given chat conversation.
40
+ Mimics openai.chat.completions.create
41
+ """
42
+ # Format the messages using the format_prompt utility
43
+ # This creates a conversation in the format: "User: message\nAssistant: response\nUser: message\nAssistant:"
44
+ # HeckAI works better with a properly formatted conversation
45
+ question = format_prompt(messages, add_special_tokens=True)
46
+
47
+ # Prepare the payload for HeckAI API
48
+ payload = {
49
+ "model": model,
50
+ "question": question,
51
+ "language": self._client.language,
52
+ "sessionId": self._client.session_id,
53
+ "previousQuestion": None, # Not needed when using format_prompt
54
+ "previousAnswer": None, # Not needed when using format_prompt
55
+ "imgUrls": []
56
+ }
57
+
58
+ request_id = f"chatcmpl-{uuid.uuid4()}"
59
+ created_time = int(time.time())
60
+
61
+ if stream:
62
+ return self._create_stream(request_id, created_time, model, payload)
63
+ else:
64
+ return self._create_non_stream(request_id, created_time, model, payload)
65
+
66
+ def _create_stream(
67
+ self, request_id: str, created_time: int, model: str, payload: Dict[str, Any]
68
+ ) -> Generator[ChatCompletionChunk, None, None]:
69
+ try:
70
+ response = self._client.session.post(
71
+ self._client.url,
72
+ headers=self._client.headers,
73
+ json=payload,
74
+ stream=True,
75
+ timeout=self._client.timeout
76
+ )
77
+ response.raise_for_status()
78
+
79
+ # Track token usage across chunks
80
+ completion_tokens = 0
81
+
82
+ streaming_text = ""
83
+ in_answer = False
84
+
85
+ for line in response.iter_lines(decode_unicode=True):
86
+ if not line:
87
+ continue
88
+
89
+ # Remove "data: " prefix
90
+ if line.startswith("data: "):
91
+ data = line[6:]
92
+ else:
93
+ continue
94
+
95
+ # Check for control markers
96
+ if data == "[ANSWER_START]":
97
+ in_answer = True
98
+ continue
99
+
100
+ if data == "[ANSWER_DONE]":
101
+ in_answer = False
102
+ continue
103
+
104
+ if data == "[RELATE_Q_START]" or data == "[RELATE_Q_DONE]":
105
+ continue
106
+
107
+ # Process content if we're in an answer section
108
+ if in_answer:
109
+ streaming_text += data
110
+ completion_tokens += len(data) // 4 # Rough estimate
111
+
112
+ # Create a delta object for this chunk
113
+ delta = ChoiceDelta(content=data)
114
+ choice = Choice(index=0, delta=delta, finish_reason=None)
115
+
116
+ chunk = ChatCompletionChunk(
117
+ id=request_id,
118
+ choices=[choice],
119
+ created=created_time,
120
+ model=model,
121
+ )
122
+
123
+ yield chunk
124
+
125
+ # Store the response for future context
126
+ # We don't need to store previous_question/answer as we're using format_prompt
127
+ # which handles the conversation formatting
128
+
129
+ # Final chunk with finish_reason
130
+ delta = ChoiceDelta(content=None)
131
+ choice = Choice(index=0, delta=delta, finish_reason="stop")
132
+
133
+ chunk = ChatCompletionChunk(
134
+ id=request_id,
135
+ choices=[choice],
136
+ created=created_time,
137
+ model=model,
138
+ )
139
+
140
+ yield chunk
141
+
142
+ except requests.exceptions.RequestException as e:
143
+ print(f"{RED}Error during HeckAI stream request: {e}{RESET}")
144
+ raise IOError(f"HeckAI request failed: {e}") from e
145
+
146
+ def _create_non_stream(
147
+ self, request_id: str, created_time: int, model: str, payload: Dict[str, Any]
148
+ ) -> ChatCompletion:
149
+ try:
150
+ full_text = ""
151
+ streaming_text = ""
152
+ in_answer = False
153
+
154
+ response = self._client.session.post(
155
+ self._client.url,
156
+ headers=self._client.headers,
157
+ json=payload,
158
+ stream=True,
159
+ timeout=self._client.timeout
160
+ )
161
+ response.raise_for_status()
162
+
163
+ for line in response.iter_lines(decode_unicode=True):
164
+ if not line:
165
+ continue
166
+
167
+ # Remove "data: " prefix
168
+ if line.startswith("data: "):
169
+ data = line[6:]
170
+ else:
171
+ continue
172
+
173
+ # Check for control markers
174
+ if data == "[ANSWER_START]":
175
+ in_answer = True
176
+ continue
177
+
178
+ if data == "[ANSWER_DONE]":
179
+ in_answer = False
180
+ continue
181
+
182
+ if data == "[RELATE_Q_START]" or data == "[RELATE_Q_DONE]":
183
+ continue
184
+
185
+ # Process content if we're in an answer section
186
+ if in_answer:
187
+ streaming_text += data
188
+
189
+ full_text = streaming_text
190
+
191
+ # Store the response for future context
192
+ # We don't need to store previous_question/answer as we're using format_prompt
193
+ # which handles the conversation formatting
194
+
195
+ # Create usage statistics (estimated)
196
+ prompt_tokens = len(payload["question"]) // 4
197
+ completion_tokens = len(full_text) // 4
198
+ total_tokens = prompt_tokens + completion_tokens
199
+
200
+ usage = CompletionUsage(
201
+ prompt_tokens=prompt_tokens,
202
+ completion_tokens=completion_tokens,
203
+ total_tokens=total_tokens
204
+ )
205
+
206
+ # Create the message object
207
+ message = ChatCompletionMessage(
208
+ role="assistant",
209
+ content=full_text
210
+ )
211
+
212
+ # Create the choice object
213
+ choice = Choice(
214
+ index=0,
215
+ message=message,
216
+ finish_reason="stop"
217
+ )
218
+
219
+ # Create the completion object
220
+ completion = ChatCompletion(
221
+ id=request_id,
222
+ choices=[choice],
223
+ created=created_time,
224
+ model=model,
225
+ usage=usage,
226
+ )
227
+
228
+ return completion
229
+
230
+ except Exception as e:
231
+ print(f"{RED}Error during HeckAI non-stream request: {e}{RESET}")
232
+ raise IOError(f"HeckAI request failed: {e}") from e
233
+
234
+ class Chat(BaseChat):
235
+ def __init__(self, client: 'HeckAI'):
236
+ self.completions = Completions(client)
237
+
238
+ class HeckAI(OpenAICompatibleProvider):
239
+ """
240
+ OpenAI-compatible client for HeckAI API.
241
+
242
+ Usage:
243
+ client = HeckAI()
244
+ response = client.chat.completions.create(
245
+ model="google/gemini-2.0-flash-001",
246
+ messages=[{"role": "user", "content": "Hello!"}]
247
+ )
248
+ print(response.choices[0].message.content)
249
+ """
250
+
251
+ AVAILABLE_MODELS = [
252
+ "deepseek/deepseek-chat",
253
+ "openai/gpt-4o-mini",
254
+ "deepseek/deepseek-r1",
255
+ "google/gemini-2.0-flash-001"
256
+ ]
257
+
258
+ def __init__(
259
+ self,
260
+ timeout: int = 30,
261
+ language: str = "English"
262
+ ):
263
+ """
264
+ Initialize the HeckAI client.
265
+
266
+ Args:
267
+ timeout: Request timeout in seconds.
268
+ language: Language for responses.
269
+ """
270
+ self.timeout = timeout
271
+ self.language = language
272
+ self.url = "https://api.heckai.weight-wave.com/api/ha/v1/chat"
273
+ self.session_id = str(uuid.uuid4())
274
+
275
+ # Use LitAgent for user-agent
276
+ agent = LitAgent()
277
+ self.headers = {
278
+ 'User-Agent': agent.random(),
279
+ 'Content-Type': 'application/json',
280
+ 'Origin': 'https://heck.ai',
281
+ 'Referer': 'https://heck.ai/',
282
+ 'Connection': 'keep-alive'
283
+ }
284
+
285
+ self.session = requests.Session()
286
+ self.session.headers.update(self.headers)
287
+
288
+ # Initialize the chat interface
289
+ self.chat = Chat(self)
290
+
291
+ def convert_model_name(self, model: str) -> str:
292
+ """
293
+ Ensure the model name is in the correct format.
294
+ """
295
+ if model in self.AVAILABLE_MODELS:
296
+ return model
297
+
298
+ # Try to find a matching model
299
+ for available_model in self.AVAILABLE_MODELS:
300
+ if model.lower() in available_model.lower():
301
+ return available_model
302
+
303
+ # Default to gemini if no match
304
+ print(f"{BOLD}Warning: Model '{model}' not found, using default model 'google/gemini-2.0-flash-001'{RESET}")
305
+ return "google/gemini-2.0-flash-001"
306
+
307
+
308
+ # Simple test if run directly
309
+ if __name__ == "__main__":
310
+ print("-" * 80)
311
+ print(f"{'Model':<50} {'Status':<10} {'Response'}")
312
+ print("-" * 80)
313
+
314
+ for model in HeckAI.AVAILABLE_MODELS:
315
+ try:
316
+ client = HeckAI(timeout=60)
317
+ # Test with a simple conversation to demonstrate format_prompt usage
318
+ response = client.chat.completions.create(
319
+ model=model,
320
+ messages=[
321
+ {"role": "system", "content": "You are a helpful assistant."},
322
+ {"role": "user", "content": "Say 'Hello' in one word"},
323
+ ],
324
+ stream=False
325
+ )
326
+
327
+ if response and response.choices and response.choices[0].message.content:
328
+ status = "✓"
329
+ # Truncate response if too long
330
+ display_text = response.choices[0].message.content.strip()
331
+ display_text = display_text[:50] + "..." if len(display_text) > 50 else display_text
332
+ else:
333
+ status = "✗"
334
+ display_text = "Empty or invalid response"
335
+ print(f"{model:<50} {status:<10} {display_text}")
336
+ except Exception as e:
337
+ print(f"{model:<50} {'✗':<10} {str(e)}")
@@ -0,0 +1,327 @@
1
+ import time
2
+ import uuid
3
+ import requests
4
+ import json
5
+ from typing import List, Dict, Optional, Union, Generator, Any
6
+
7
+ # Import base classes and utility structures
8
+ from .base import OpenAICompatibleProvider, BaseChat, BaseCompletions
9
+ from .utils import (
10
+ ChatCompletionChunk, ChatCompletion, Choice, ChoiceDelta,
11
+ ChatCompletionMessage, CompletionUsage, get_last_user_message, get_system_prompt, format_prompt # Import format_prompt
12
+ )
13
+
14
+ # Attempt to import LitAgent, fallback if not available
15
+ try:
16
+ from webscout.litagent import LitAgent
17
+ except ImportError:
18
+ # Define a dummy LitAgent if webscout is not installed or accessible
19
+ class LitAgent:
20
+ def random(self) -> str:
21
+ return "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36"
22
+
23
+ # --- LLMChatCo Client ---
24
+
25
+ class Completions(BaseCompletions):
26
+ def __init__(self, client: 'LLMChatCo'):
27
+ self._client = client
28
+
29
+ def create(
30
+ self,
31
+ *,
32
+ model: str, # Model is now mandatory per request
33
+ messages: List[Dict[str, str]],
34
+ max_tokens: Optional[int] = 2048, # Note: LLMChatCo doesn't seem to use max_tokens directly in payload
35
+ stream: bool = False,
36
+ temperature: Optional[float] = None, # Note: LLMChatCo doesn't seem to use temperature directly in payload
37
+ top_p: Optional[float] = None, # Note: LLMChatCo doesn't seem to use top_p directly in payload
38
+ web_search: bool = False, # LLMChatCo specific parameter
39
+ system_prompt: Optional[str] = "You are a helpful assistant.", # Default system prompt if not provided
40
+ **kwargs: Any
41
+ ) -> Union[ChatCompletion, Generator[ChatCompletionChunk, None, None]]:
42
+ """
43
+ Creates a model response for the given chat conversation.
44
+ Mimics openai.chat.completions.create
45
+ """
46
+ if model not in self._client.AVAILABLE_MODELS:
47
+ # Raise error as model is mandatory and must be valid for this provider
48
+ raise ValueError(f"Model '{model}' not supported by LLMChatCo. Available: {self._client.AVAILABLE_MODELS}")
49
+ actual_model = model
50
+
51
+ # Determine the effective system prompt
52
+ effective_system_prompt = system_prompt # Use the provided system_prompt or its default
53
+ message_list_system_prompt = get_system_prompt(messages)
54
+ # If a system prompt is also in messages, the explicit one takes precedence.
55
+ # We'll use the effective_system_prompt determined above.
56
+
57
+ # Prepare final messages list, ensuring only one system message at the start
58
+ final_messages = []
59
+ if effective_system_prompt:
60
+ final_messages.append({"role": "system", "content": effective_system_prompt})
61
+ final_messages.extend([msg for msg in messages if msg.get("role") != "system"])
62
+
63
+ # Extract the last user prompt using the utility function for the separate 'prompt' field
64
+ last_user_prompt = get_last_user_message(final_messages)
65
+
66
+ # Note: format_prompt is not directly used here as the API requires the structured 'messages' list
67
+ # and a separate 'prompt' field, rather than a single formatted string.
68
+
69
+ # Generate a unique ID for this message
70
+ thread_item_id = ''.join(str(uuid.uuid4()).split('-'))[:20]
71
+
72
+ payload = {
73
+ "mode": actual_model,
74
+ "prompt": last_user_prompt, # LLMChatCo seems to require the last prompt separately
75
+ "threadId": self._client.thread_id,
76
+ "messages": final_messages, # Use the reconstructed final_messages list
77
+ "mcpConfig": {}, # Keep structure as observed
78
+ "threadItemId": thread_item_id,
79
+ "parentThreadItemId": "", # Assuming no parent for simplicity
80
+ "webSearch": web_search,
81
+ "showSuggestions": True # Keep structure as observed
82
+ }
83
+
84
+ # Add any extra kwargs to the payload if needed, though LLMChatCo seems limited
85
+ payload.update(kwargs)
86
+
87
+ request_id = f"chatcmpl-{uuid.uuid4()}"
88
+ created_time = int(time.time())
89
+
90
+ if stream:
91
+ return self._create_stream(request_id, created_time, actual_model, payload)
92
+ else:
93
+ return self._create_non_stream(request_id, created_time, actual_model, payload)
94
+
95
+ def _create_stream(
96
+ self, request_id: str, created_time: int, model: str, payload: Dict[str, Any]
97
+ ) -> Generator[ChatCompletionChunk, None, None]:
98
+ try:
99
+ response = self._client.session.post(
100
+ self._client.api_endpoint,
101
+ headers=self._client.headers,
102
+ json=payload,
103
+ stream=True,
104
+ timeout=self._client.timeout
105
+ )
106
+
107
+ if not response.ok:
108
+ raise IOError(
109
+ f"LLMChatCo API Error: {response.status_code} {response.reason} - {response.text}"
110
+ )
111
+
112
+ full_response_text = ""
113
+ current_event = None
114
+ buffer = ""
115
+
116
+ for chunk_bytes in response.iter_content(chunk_size=None, decode_unicode=False):
117
+ if not chunk_bytes:
118
+ continue
119
+
120
+ buffer += chunk_bytes.decode('utf-8', errors='replace')
121
+
122
+ while '\n' in buffer:
123
+ line, buffer = buffer.split('\n', 1)
124
+ line = line.strip()
125
+
126
+ if not line: # End of an event block
127
+ current_event = None
128
+ continue
129
+
130
+ if line.startswith('event:'):
131
+ current_event = line[len('event:'):].strip()
132
+ elif line.startswith('data:'):
133
+ data_content = line[len('data:'):].strip()
134
+ if data_content and current_event == 'answer':
135
+ try:
136
+ json_data = json.loads(data_content)
137
+ answer_data = json_data.get("answer", {})
138
+ text_chunk = answer_data.get("text", "")
139
+ full_text = answer_data.get("fullText")
140
+ status = answer_data.get("status")
141
+
142
+ # Prefer fullText if available and status is COMPLETED
143
+ if full_text is not None and status == "COMPLETED":
144
+ delta_content = full_text[len(full_response_text):]
145
+ full_response_text = full_text # Update full response tracker
146
+ elif text_chunk is not None:
147
+ # Calculate delta based on potentially partial 'text' field
148
+ delta_content = text_chunk[len(full_response_text):]
149
+ full_response_text = text_chunk # Update full response tracker
150
+ else:
151
+ delta_content = None
152
+
153
+ if delta_content:
154
+ delta = ChoiceDelta(content=delta_content, role="assistant")
155
+ choice = Choice(index=0, delta=delta, finish_reason=None)
156
+ chunk = ChatCompletionChunk(
157
+ id=request_id,
158
+ choices=[choice],
159
+ created=created_time,
160
+ model=model,
161
+ )
162
+ yield chunk
163
+
164
+ except json.JSONDecodeError:
165
+ print(f"Warning: Could not decode JSON data line: {data_content}")
166
+ continue
167
+ elif data_content and current_event == 'done':
168
+ # The 'done' event signals the end of the stream
169
+ delta = ChoiceDelta() # Empty delta
170
+ choice = Choice(index=0, delta=delta, finish_reason="stop")
171
+ chunk = ChatCompletionChunk(
172
+ id=request_id,
173
+ choices=[choice],
174
+ created=created_time,
175
+ model=model,
176
+ )
177
+ yield chunk
178
+ return # End the generator
179
+
180
+ except requests.exceptions.RequestException as e:
181
+ print(f"Error during LLMChatCo stream request: {e}")
182
+ raise IOError(f"LLMChatCo request failed: {e}") from e
183
+ except Exception as e:
184
+ print(f"Unexpected error during LLMChatCo stream: {e}")
185
+ raise IOError(f"LLMChatCo stream processing failed: {e}") from e
186
+
187
+ # Fallback final chunk if 'done' event wasn't received properly
188
+ delta = ChoiceDelta()
189
+ choice = Choice(index=0, delta=delta, finish_reason="stop")
190
+ chunk = ChatCompletionChunk(
191
+ id=request_id,
192
+ choices=[choice],
193
+ created=created_time,
194
+ model=model,
195
+ )
196
+ yield chunk
197
+
198
+
199
+ def _create_non_stream(
200
+ self, request_id: str, created_time: int, model: str, payload: Dict[str, Any]
201
+ ) -> ChatCompletion:
202
+ # Non-streaming requires accumulating stream chunks
203
+ full_response_content = ""
204
+ finish_reason = "stop" # Assume stop unless error occurs
205
+
206
+ try:
207
+ stream_generator = self._create_stream(request_id, created_time, model, payload)
208
+ for chunk in stream_generator:
209
+ if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
210
+ full_response_content += chunk.choices[0].delta.content
211
+ if chunk.choices and chunk.choices[0].finish_reason:
212
+ finish_reason = chunk.choices[0].finish_reason
213
+
214
+ except IOError as e:
215
+ print(f"Error obtaining non-stream response from LLMChatCo: {e}")
216
+ # Return a partial or error response if needed, or re-raise
217
+ # For simplicity, we'll return what we have, potentially empty
218
+ finish_reason = "error" # Indicate an issue
219
+
220
+ # Construct the final ChatCompletion object
221
+ message = ChatCompletionMessage(
222
+ role="assistant",
223
+ content=full_response_content
224
+ )
225
+ choice = Choice(
226
+ index=0,
227
+ message=message,
228
+ finish_reason=finish_reason
229
+ )
230
+ # Usage data is not provided by this API, so set to 0
231
+ usage = CompletionUsage(prompt_tokens=0, completion_tokens=0, total_tokens=0)
232
+
233
+ completion = ChatCompletion(
234
+ id=request_id,
235
+ choices=[choice],
236
+ created=created_time,
237
+ model=model,
238
+ usage=usage,
239
+ )
240
+ return completion
241
+
242
+ class Chat(BaseChat):
243
+ def __init__(self, client: 'LLMChatCo'):
244
+ self.completions = Completions(client)
245
+
246
+ class LLMChatCo(OpenAICompatibleProvider):
247
+ """
248
+ OpenAI-compatible client for LLMChat.co API.
249
+
250
+ Usage:
251
+ client = LLMChatCo()
252
+ response = client.chat.completions.create(
253
+ model="gemini-flash-2.0", # Model must be specified here
254
+ messages=[{"role": "user", "content": "Hello!"}]
255
+ )
256
+ print(response.choices[0].message.content)
257
+ """
258
+ AVAILABLE_MODELS = [
259
+ "gemini-flash-2.0", # Default model
260
+ "llama-4-scout",
261
+ "gpt-4o-mini",
262
+ # "gpt-4.1",
263
+ # "gpt-4.1-mini",
264
+ "gpt-4.1-nano",
265
+ ]
266
+
267
+ def __init__(
268
+ self,
269
+ timeout: int = 60,
270
+ browser: str = "chrome" # For User-Agent generation
271
+ ):
272
+ """
273
+ Initialize the LLMChatCo client.
274
+
275
+ Args:
276
+ timeout: Request timeout in seconds.
277
+ browser: Browser name for LitAgent to generate User-Agent.
278
+ """
279
+ # Removed model, system_prompt, proxies parameters
280
+
281
+ self.timeout = timeout
282
+ # Removed self.system_prompt assignment
283
+ self.api_endpoint = "https://llmchat.co/api/completion"
284
+ self.session = requests.Session()
285
+ self.thread_id = str(uuid.uuid4()) # Unique thread ID per client instance
286
+
287
+ # Removed proxy handling block
288
+
289
+ # Initialize LitAgent for user agent generation and fingerprinting
290
+ try:
291
+ agent = LitAgent()
292
+ fingerprint = agent.generate_fingerprint(browser=browser)
293
+ except Exception as e:
294
+ print(f"Warning: Failed to generate fingerprint with LitAgent: {e}. Using fallback.")
295
+ # Fallback fingerprint data
296
+ fingerprint = {
297
+ "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
298
+ "accept_language": "en-US,en;q=0.9",
299
+ "sec_ch_ua": '"Not/A)Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
300
+ "platform": "Windows",
301
+ "user_agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36"
302
+ }
303
+
304
+ # Initialize headers using the fingerprint
305
+ self.headers = {
306
+ "Accept": fingerprint["accept"],
307
+ "Accept-Encoding": "gzip, deflate, br, zstd", # Standard encoding
308
+ "Accept-Language": fingerprint["accept_language"],
309
+ "Content-Type": "application/json",
310
+ "Cache-Control": "no-cache",
311
+ "Connection": "keep-alive",
312
+ "Origin": "https://llmchat.co", # Specific origin for LLMChatCo
313
+ "Pragma": "no-cache",
314
+ "Referer": f"https://llmchat.co/chat/{self.thread_id}", # Specific referer for LLMChatCo
315
+ "Sec-Fetch-Dest": "empty",
316
+ "Sec-Fetch-Mode": "cors",
317
+ "Sec-Fetch-Site": "same-origin",
318
+ "Sec-CH-UA": fingerprint["sec_ch_ua"] or '"Not)A;Brand";v="99", "Microsoft Edge";v="127", "Chromium";v="127"', # Fallback if empty
319
+ "Sec-CH-UA-Mobile": "?0",
320
+ "Sec-CH-UA-Platform": f'"{fingerprint["platform"]}"',
321
+ "User-Agent": fingerprint["user_agent"],
322
+ "DNT": "1", # Added back from previous version
323
+ }
324
+ self.session.headers.update(self.headers)
325
+
326
+ # Initialize the chat interface
327
+ self.chat = Chat(self)