webscout 7.3__py3-none-any.whl → 7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -0,0 +1,395 @@
1
+ import ssl
2
+ import json
3
+ import time
4
+ import socket
5
+ import random
6
+ from threading import Thread, Event
7
+ from curl_cffi import requests
8
+ from websocket import WebSocketApp
9
+ from typing import Dict, Any, Union, Generator, List, Optional
10
+
11
+ from webscout.AIutel import Optimizers
12
+ from webscout.AIutel import Conversation
13
+ from webscout.AIutel import AwesomePrompts, sanitize_stream
14
+ from webscout.AIbase import Provider
15
+ from webscout import exceptions
16
+ from webscout import LitAgent
17
+
18
+ class PerplexityLabs(Provider):
19
+ """
20
+ A client for interacting with the Perplexity AI Labs API.
21
+ """
22
+
23
+ AVAILABLE_MODELS = [
24
+ "r1-1776",
25
+ "sonar-pro",
26
+ "sonar",
27
+ "sonar-reasoning-pro",
28
+ "sonar-reasoning"
29
+ ]
30
+
31
+ def __init__(
32
+ self,
33
+ is_conversation: bool = True,
34
+ max_tokens: int = 2048,
35
+ timeout: int = 60,
36
+ intro: str = None,
37
+ filepath: str = None,
38
+ update_file: bool = True,
39
+ proxies: dict = {},
40
+ history_offset: int = 10250,
41
+ act: str = None,
42
+ model: str = "r1-1776",
43
+ connection_timeout: float = 10.0,
44
+ max_retries: int = 3,
45
+ ):
46
+ """
47
+ Initialize the Perplexity client.
48
+
49
+ Args:
50
+ is_conversation: Whether to maintain conversation context
51
+ max_tokens: Maximum token limit for responses
52
+ timeout: Response timeout in seconds
53
+ intro: Conversation intro/system prompt
54
+ filepath: Path for conversation history persistence
55
+ update_file: Whether to update the conversation file
56
+ proxies: Optional proxy configuration
57
+ history_offset: History truncation limit
58
+ act: Persona to use for responses
59
+ model: Default model to use
60
+ connection_timeout: Maximum time to wait for connection
61
+ max_retries: Number of connection retry attempts
62
+ """
63
+ if model not in self.AVAILABLE_MODELS:
64
+ raise ValueError(f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}")
65
+
66
+ self.model = model
67
+ self.connection_timeout = connection_timeout
68
+ self.timeout = timeout
69
+ self.max_retries = max_retries
70
+ self.connected = Event()
71
+ self.last_answer = None
72
+
73
+ # Initialize session with headers using LitAgent user agent
74
+ self.session = requests.Session(headers={
75
+ 'User-Agent': LitAgent().random(),
76
+ 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
77
+ 'accept-language': 'en-US,en;q=0.9',
78
+ 'cache-control': 'max-age=0',
79
+ 'dnt': '1',
80
+ 'priority': 'u=0, i',
81
+ 'sec-ch-ua': '"Not;A=Brand";v="24", "Chromium";v="128"',
82
+ 'sec-ch-ua-mobile': '?0',
83
+ 'sec-ch-ua-platform': '"Windows"',
84
+ 'sec-fetch-dest': 'document',
85
+ 'sec-fetch-mode': 'navigate',
86
+ 'sec-fetch-site': 'same-origin',
87
+ 'sec-fetch-user': '?1',
88
+ 'upgrade-insecure-requests': '1',
89
+ })
90
+
91
+ # Apply proxies if provided
92
+ self.session.proxies.update(proxies)
93
+
94
+ # Set up conversation handling
95
+ self.is_conversation = is_conversation
96
+ self.max_tokens_to_sample = max_tokens
97
+
98
+ self.__available_optimizers = (
99
+ method
100
+ for method in dir(Optimizers)
101
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
102
+ )
103
+ Conversation.intro = (
104
+ AwesomePrompts().get_act(
105
+ act, raise_not_found=True, default=None, case_insensitive=True
106
+ )
107
+ if act
108
+ else intro or Conversation.intro
109
+ )
110
+
111
+ self.conversation = Conversation(
112
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
113
+ )
114
+ self.conversation.history_offset = history_offset
115
+
116
+ # Initialize connection
117
+ self._initialize_connection()
118
+
119
+ def _initialize_connection(self) -> None:
120
+ """Initialize the connection to Perplexity with retries"""
121
+ for attempt in range(1, self.max_retries + 1):
122
+ try:
123
+ # Get a session ID via polling
124
+ self.timestamp = format(random.getrandbits(32), '08x')
125
+ poll_url = f'https://www.perplexity.ai/socket.io/?EIO=4&transport=polling&t={self.timestamp}'
126
+
127
+ response = self.session.get(poll_url)
128
+ if response.status_code != 200:
129
+ if attempt == self.max_retries:
130
+ raise ConnectionError(f"Failed to get session ID: HTTP {response.status_code}")
131
+ continue
132
+
133
+ # Extract the session ID
134
+ try:
135
+ self.sid = json.loads(response.text[1:])['sid']
136
+ except (json.JSONDecodeError, KeyError) as e:
137
+ if attempt == self.max_retries:
138
+ raise ConnectionError(f"Failed to parse session ID: {e}")
139
+ continue
140
+
141
+ # Authenticate the session
142
+ auth_url = f'https://www.perplexity.ai/socket.io/?EIO=4&transport=polling&t={self.timestamp}&sid={self.sid}'
143
+ auth_response = self.session.post(auth_url, data='40{"jwt":"anonymous-ask-user"}')
144
+
145
+ if auth_response.status_code != 200 or auth_response.text != 'OK':
146
+ if attempt == self.max_retries:
147
+ raise ConnectionError("Authentication failed")
148
+ continue
149
+
150
+ # Setup SSL socket
151
+ context = ssl.create_default_context()
152
+ context.minimum_version = ssl.TLSVersion.TLSv1_3
153
+ try:
154
+ self.sock = context.wrap_socket(
155
+ socket.create_connection(('www.perplexity.ai', 443), timeout=self.connection_timeout),
156
+ server_hostname='www.perplexity.ai'
157
+ )
158
+ except (socket.timeout, socket.error, ssl.SSLError) as e:
159
+ if attempt == self.max_retries:
160
+ raise ConnectionError(f"Socket connection failed: {e}")
161
+ continue
162
+
163
+ # Setup WebSocket
164
+ ws_url = f'wss://www.perplexity.ai/socket.io/?EIO=4&transport=websocket&sid={self.sid}'
165
+ cookies = '; '.join([f'{key}={value}' for key, value in self.session.cookies.get_dict().items()])
166
+
167
+ self.connected.clear()
168
+ self.ws = WebSocketApp(
169
+ url=ws_url,
170
+ header={'User-Agent': self.session.headers['User-Agent']},
171
+ cookie=cookies,
172
+ on_open=self._on_open,
173
+ on_message=self._on_message,
174
+ on_error=self._on_error,
175
+ on_close=self._on_close,
176
+ socket=self.sock
177
+ )
178
+
179
+ # Start WebSocket in a thread
180
+ self.ws_thread = Thread(target=self.ws.run_forever, daemon=True)
181
+ self.ws_thread.start()
182
+
183
+ # Wait for connection to be established
184
+ if self.connected.wait(timeout=self.connection_timeout):
185
+ return
186
+
187
+ except Exception as e:
188
+ if attempt == self.max_retries:
189
+ raise exceptions.FailedToGenerateResponseError(f"Failed to connect: {e}")
190
+
191
+ # If we get here, the attempt failed, wait before retrying
192
+ if attempt < self.max_retries:
193
+ retry_delay = 2 ** attempt # Exponential backoff
194
+ time.sleep(retry_delay)
195
+
196
+ raise exceptions.FailedToGenerateResponseError("Failed to connect to Perplexity after multiple attempts")
197
+
198
+ def _on_open(self, ws):
199
+ """Handle websocket open event"""
200
+ ws.send('2probe')
201
+ ws.send('5')
202
+
203
+ def _on_close(self, ws, close_status_code, close_msg):
204
+ """Handle websocket close event"""
205
+ self.connected.clear()
206
+
207
+ def _on_message(self, ws, message):
208
+ """Handle websocket message events"""
209
+ if message == '2':
210
+ ws.send('3')
211
+
212
+ elif message == '3probe':
213
+ self.connected.set()
214
+
215
+ elif message.startswith('40'):
216
+ self.connected.set()
217
+
218
+ elif message.startswith('42'):
219
+ try:
220
+ response = json.loads(message[2:])[1]
221
+ if 'final' in response or 'partial' in response:
222
+ self.last_answer = response
223
+ except (json.JSONDecodeError, IndexError):
224
+ pass
225
+
226
+ def _on_error(self, ws, error):
227
+ """Handle websocket error events"""
228
+ self.connected.clear()
229
+
230
+ def ask(
231
+ self,
232
+ prompt: str,
233
+ stream: bool = False,
234
+ raw: bool = False,
235
+ optimizer: str = None,
236
+ conversationally: bool = False,
237
+ model: str = None
238
+ ) -> Union[Dict[str, Any], Generator]:
239
+ """
240
+ Send a query to Perplexity AI and get a response.
241
+
242
+ Args:
243
+ prompt: The question to ask
244
+ stream: Whether to stream the response
245
+ raw: Return raw response format
246
+ optimizer: Optimizer function to apply to prompt
247
+ conversationally: Use conversation context
248
+ model: Override the model to use
249
+
250
+ Returns:
251
+ If stream=True: Generator yielding response updates
252
+ If stream=False: Final response dictionary
253
+ """
254
+ # Check if connection is still active and reconnect if needed
255
+ if not self.connected.is_set():
256
+ self._initialize_connection()
257
+
258
+ # Use specified model or default
259
+ use_model = model or self.model
260
+ if use_model not in self.AVAILABLE_MODELS:
261
+ raise ValueError(f"Invalid model: {use_model}. Choose from: {', '.join(self.AVAILABLE_MODELS)}")
262
+
263
+ # Process prompt with conversation and optimizers
264
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
265
+ if optimizer:
266
+ if optimizer in self.__available_optimizers:
267
+ conversation_prompt = getattr(Optimizers, optimizer)(
268
+ conversation_prompt if conversationally else prompt
269
+ )
270
+ else:
271
+ raise Exception(f"Optimizer is not one of {self.__available_optimizers}")
272
+
273
+ self.last_answer = None
274
+
275
+ # Send the query through websocket
276
+ payload = json.dumps([
277
+ 'perplexity_labs',
278
+ {
279
+ 'messages': [{'role': 'user', 'content': conversation_prompt}],
280
+ 'model': use_model,
281
+ 'source': 'default',
282
+ 'version': '2.18',
283
+ }
284
+ ])
285
+ self.ws.send('42' + payload)
286
+
287
+ def for_stream():
288
+ """Handle streaming responses"""
289
+ last_seen = None
290
+ start_time = time.time()
291
+ streaming_text = ""
292
+
293
+ while True:
294
+ # Check for timeout
295
+ if time.time() - start_time > self.timeout:
296
+ raise exceptions.FailedToGenerateResponseError("Response stream timed out")
297
+
298
+ # If we have a new response different from what we've seen
299
+ if self.last_answer != last_seen:
300
+ last_seen = self.last_answer
301
+ if last_seen is not None:
302
+ if 'output' in last_seen:
303
+ current_output = last_seen['output']
304
+ # For delta output in streaming
305
+ delta = current_output[len(streaming_text):]
306
+ streaming_text = current_output
307
+ resp = dict(text=delta)
308
+ yield resp if raw else resp
309
+
310
+ # If we have the final response, add to history and return
311
+ if self.last_answer and self.last_answer.get('final', False):
312
+ answer = self.last_answer
313
+ self.conversation.update_chat_history(prompt, streaming_text)
314
+ return
315
+
316
+ time.sleep(0.01)
317
+
318
+ def for_non_stream():
319
+ """Handle non-streaming responses"""
320
+ start_time = time.time()
321
+
322
+ while True:
323
+ # Check for successful response
324
+ if self.last_answer and self.last_answer.get('final', False):
325
+ answer = self.last_answer
326
+ self.conversation.update_chat_history(prompt, answer['output'])
327
+ return answer if raw else dict(text=answer['output'])
328
+
329
+ # Check for timeout
330
+ if time.time() - start_time > self.timeout:
331
+ raise exceptions.FailedToGenerateResponseError("Response timed out")
332
+
333
+ time.sleep(0.01)
334
+
335
+ return for_stream() if stream else for_non_stream()
336
+
337
+ def chat(
338
+ self,
339
+ prompt: str,
340
+ stream: bool = False,
341
+ optimizer: str = None,
342
+ conversationally: bool = False,
343
+ model: str = None
344
+ ) -> Union[str, Generator[str, None, None]]:
345
+ """
346
+ Send a query and get just the text response.
347
+
348
+ Args:
349
+ prompt: The question to ask
350
+ stream: Whether to stream the response
351
+ optimizer: Optimizer function to apply to prompt
352
+ conversationally: Use conversation context
353
+ model: Override the model to use
354
+
355
+ Returns:
356
+ If stream=True: Generator yielding text chunks
357
+ If stream=False: Complete response text
358
+ """
359
+ def for_stream():
360
+ for response in self.ask(
361
+ prompt,
362
+ stream=True,
363
+ optimizer=optimizer,
364
+ conversationally=conversationally,
365
+ model=model
366
+ ):
367
+ yield self.get_message(response)
368
+
369
+ def for_non_stream():
370
+ return self.get_message(
371
+ self.ask(
372
+ prompt,
373
+ stream=False,
374
+ optimizer=optimizer,
375
+ conversationally=conversationally,
376
+ model=model
377
+ )
378
+ )
379
+
380
+ return for_stream() if stream else for_non_stream()
381
+
382
+ def get_message(self, response: dict) -> str:
383
+ """Extract text from response dictionary"""
384
+ assert isinstance(response, dict), "Response should be of dict data-type only"
385
+ return response["text"]
386
+
387
+
388
+ if __name__ == "__main__":
389
+ from rich import print
390
+
391
+ # Example usage
392
+ ai = PerplexityLabs(timeout=60, model="r1-1776")
393
+
394
+ for chunk in ai.chat("Explain the concept of neural networks", stream=True):
395
+ print(chunk, end="", flush=True)
@@ -1,4 +1,3 @@
1
-
2
1
  import requests
3
2
  import json
4
3
  from typing import Any, Dict, Generator, Optional
@@ -11,10 +10,6 @@ from webscout.AIutel import Optimizers, Conversation, AwesomePrompts
11
10
  from webscout.AIbase import Provider, AsyncProvider
12
11
  from webscout import exceptions
13
12
 
14
- # Import logging tools from our internal modules
15
- from webscout.Litlogger import Logger, LogFormat
16
- from webscout import LitAgent as Lit
17
-
18
13
  class QwenLM(Provider):
19
14
  """
20
15
  A class to interact with the QwenLM API
@@ -24,7 +19,7 @@ class QwenLM(Provider):
24
19
  "qwen-max-latest",
25
20
  "qwen-plus-latest",
26
21
  "qwen2.5-14b-instruct-1m",
27
- "qwq-32b-preview",
22
+ "qwq-32b",
28
23
  "qwen2.5-coder-32b-instruct",
29
24
  "qwen-turbo-latest",
30
25
  "qwen2.5-72b-instruct",
@@ -45,25 +40,14 @@ class QwenLM(Provider):
45
40
  history_offset: int = 10250,
46
41
  act: Optional[str] = None,
47
42
  model: str = "qwen-plus-latest",
48
- system_prompt: str = "You are a helpful AI assistant.",
49
- logging: bool = False # New parameter to enable logging
43
+ system_prompt: str = "You are a helpful AI assistant."
50
44
  ):
51
- """Initializes the QwenLM API client with optional logging."""
45
+ """Initializes the QwenLM API client."""
52
46
  if model not in self.AVAILABLE_MODELS:
53
47
  raise ValueError(
54
48
  f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}"
55
49
  )
56
50
 
57
- # Setup logger if logging is enabled
58
- self.logger = Logger(
59
- name="QwenLM",
60
- format=LogFormat.MODERN_EMOJI,
61
-
62
- ) if logging else None
63
-
64
- if self.logger:
65
- self.logger.info(f"Initializing QwenLM with model: {model}")
66
-
67
51
  self.session = cloudscraper.create_scraper()
68
52
  self.is_conversation = is_conversation
69
53
  self.max_tokens_to_sample = max_tokens
@@ -91,7 +75,7 @@ class QwenLM(Provider):
91
75
  if self.chat_type != "t2t":
92
76
  AVAILABLE_MODELS = [
93
77
  'qwen-plus-latest', 'qvq-72b-preview',
94
- 'qvq-32b-preview', 'qwen-turbo-latest',
78
+ 'qvq-32b', 'qwen-turbo-latest',
95
79
  'qwen-max-latest'
96
80
  ]
97
81
 
@@ -113,9 +97,6 @@ class QwenLM(Provider):
113
97
  )
114
98
  self.conversation.history_offset = history_offset
115
99
 
116
- if self.logger:
117
- self.logger.info("QwenLM initialized successfully")
118
-
119
100
  def _load_cookies(self) -> tuple[str, str]:
120
101
  """Load cookies from a JSON file and build a cookie header string."""
121
102
  try:
@@ -128,18 +109,12 @@ class QwenLM(Provider):
128
109
  (cookie.get("value") for cookie in cookies if cookie.get("name") == "token"),
129
110
  "",
130
111
  )
131
- if self.logger:
132
- self.logger.debug("Cookies loaded successfully")
133
112
  return cookie_string, token
134
113
  except FileNotFoundError:
135
- if self.logger:
136
- self.logger.error("cookies.json file not found!")
137
114
  raise exceptions.InvalidAuthenticationError(
138
115
  "Error: cookies.json file not found!"
139
116
  )
140
117
  except json.JSONDecodeError:
141
- if self.logger:
142
- self.logger.error("Invalid JSON format in cookies.json!")
143
118
  raise exceptions.InvalidAuthenticationError(
144
119
  "Error: Invalid JSON format in cookies.json!"
145
120
  )
@@ -152,10 +127,7 @@ class QwenLM(Provider):
152
127
  optimizer: Optional[str] = None,
153
128
  conversationally: bool = False,
154
129
  ) -> Dict[str, Any] | Generator[Dict[str, Any], None, None]:
155
- """Chat with AI and log the steps if logging is enabled."""
156
- if self.logger:
157
- self.logger.debug(f"Processing ask() request. Prompt: {prompt[:50]}...")
158
- self.logger.debug(f"Stream: {stream}, Optimizer: {optimizer}")
130
+ """Chat with AI."""
159
131
 
160
132
  conversation_prompt = self.conversation.gen_complete_prompt(prompt)
161
133
  if optimizer:
@@ -163,11 +135,7 @@ class QwenLM(Provider):
163
135
  conversation_prompt = getattr(Optimizers, optimizer)(
164
136
  conversation_prompt if conversationally else prompt
165
137
  )
166
- if self.logger:
167
- self.logger.debug(f"Applied optimizer: {optimizer}")
168
138
  else:
169
- if self.logger:
170
- self.logger.error(f"Invalid optimizer: {optimizer}")
171
139
  raise Exception(
172
140
  f"Optimizer is not one of {list(self.__available_optimizers)}"
173
141
  )
@@ -184,15 +152,10 @@ class QwenLM(Provider):
184
152
  }
185
153
 
186
154
  def for_stream() -> Generator[Dict[str, Any], None, None]:
187
- if self.logger:
188
- self.logger.debug("Sending streaming request to QwenLM API")
189
-
190
155
  response = self.session.post(
191
156
  self.api_endpoint, json=payload, headers=self.headers, stream=True, timeout=self.timeout
192
157
  )
193
158
  if not response.ok:
194
- if self.logger:
195
- self.logger.error(f"API request failed - Status: {response.status_code}, Reason: {response.reason}")
196
159
  raise exceptions.FailedToGenerateResponseError(
197
160
  f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
198
161
  )
@@ -202,8 +165,6 @@ class QwenLM(Provider):
202
165
  if line and line.startswith("data: "):
203
166
  data = line[6:]
204
167
  if data == "[DONE]":
205
- if self.logger:
206
- self.logger.debug("Stream finished with [DONE] marker")
207
168
  break
208
169
  try:
209
170
  json_data = json.loads(data)
@@ -225,26 +186,18 @@ class QwenLM(Provider):
225
186
  delta = new_content[len(cumulative_text):]
226
187
  cumulative_text = new_content
227
188
  if delta:
228
- if self.logger:
229
- self.logger.debug(f"Yielding delta: {delta}")
230
189
  yield delta if raw else {"text": delta}
231
190
  except json.JSONDecodeError:
232
- if self.logger:
233
- self.logger.error("JSON decode error during streaming")
234
191
  continue
235
192
  self.last_response.update(dict(text=cumulative_text))
236
193
  self.conversation.update_chat_history(
237
194
  prompt, self.get_message(self.last_response)
238
195
  )
239
- if self.logger:
240
- self.logger.debug("Finished processing stream response")
241
196
 
242
197
  def for_non_stream() -> Dict[str, Any]:
243
198
  """
244
199
  Handles non-streaming responses by aggregating all streamed chunks into a single string.
245
200
  """
246
- if self.logger:
247
- self.logger.debug("Processing non-streaming request")
248
201
 
249
202
  # Initialize an empty string to accumulate the full response
250
203
  full_response = ""
@@ -257,7 +210,6 @@ class QwenLM(Provider):
257
210
  elif isinstance(response, str): # If the response is a string, directly append it
258
211
  full_response += response
259
212
  except Exception as e:
260
- self.logger.error(f"Error processing response: {str(e)}")
261
213
  raise
262
214
 
263
215
  # Ensure last_response is updated with the aggregated text
@@ -266,9 +218,6 @@ class QwenLM(Provider):
266
218
  # Update conversation history with the final response
267
219
  self.conversation.update_chat_history(prompt, self.get_message(self.last_response))
268
220
 
269
- if self.logger:
270
- self.logger.debug(f"Non-streaming response: {full_response}")
271
-
272
221
  return {"text": full_response} # Return the dictionary containing the full response
273
222
 
274
223
  return for_stream() if stream else for_non_stream()
@@ -281,9 +230,7 @@ class QwenLM(Provider):
281
230
  optimizer: Optional[str] = None,
282
231
  conversationally: bool = False,
283
232
  ) -> str | Generator[str, None, None]:
284
- """Generate response string from chat, with logging if enabled."""
285
- if self.logger:
286
- self.logger.debug(f"Processing chat() request. Prompt: {prompt[:50]}...")
233
+ """Generate response string from chat."""
287
234
 
288
235
  def for_stream() -> Generator[str, None, None]:
289
236
  for response in self.ask(prompt, True, optimizer=optimizer, conversationally=conversationally):
@@ -302,8 +249,7 @@ class QwenLM(Provider):
302
249
 
303
250
  if __name__ == "__main__":
304
251
  from rich import print
305
- # Enable logging for a test run
306
- ai = QwenLM(cookies_path="cookies.json", logging=False)
252
+ ai = QwenLM(cookies_path="cookies.json")
307
253
  response = ai.chat(input(">>> "), stream=False)
308
254
  ai.chat_type = "search" # search - used WEB, t2t - chatbot, t2i - image_gen
309
255
  print(response)
@@ -8,3 +8,4 @@ from .huggingface import *
8
8
  from .artbit import *
9
9
  from .imgninza import *
10
10
  from .talkai import *
11
+ from .piclumen import *
@@ -0,0 +1,23 @@
1
+ """PiclumenImager Provider Package - Your go-to for high-quality AI art! 🎨
2
+
3
+ Examples:
4
+ >>> # Synchronous usage
5
+ >>> from webscout import PiclumenImager
6
+ >>> provider = PiclumenImager()
7
+ >>> images = provider.generate("A cool underwater creature")
8
+ >>> provider.save(images, dir="my_images")
9
+ >>>
10
+ >>> # Asynchronous usage
11
+ >>> import asyncio
12
+ >>> from webscout import AsyncPiclumenImager
13
+ >>> async def main():
14
+ ... provider = AsyncPiclumenImager()
15
+ ... images = await provider.generate("A cool cyberpunk city")
16
+ ... await provider.save(images, dir="my_images")
17
+ >>> asyncio.run(main())
18
+ """
19
+
20
+ from .sync_piclumen import PiclumenImager
21
+ from .async_piclumen import AsyncPiclumenImager
22
+
23
+ __all__ = ["PiclumenImager", "AsyncPiclumenImager"]