webscout 7.2__py3-none-any.whl → 7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (47) hide show
  1. webscout/Bard.py +2 -2
  2. webscout/Litlogger/core/level.py +3 -0
  3. webscout/Litlogger/core/logger.py +101 -58
  4. webscout/Litlogger/handlers/console.py +14 -31
  5. webscout/Litlogger/handlers/network.py +16 -17
  6. webscout/Litlogger/styles/colors.py +81 -63
  7. webscout/Litlogger/styles/formats.py +163 -80
  8. webscout/Provider/AISEARCH/ISou.py +277 -0
  9. webscout/Provider/AISEARCH/__init__.py +4 -2
  10. webscout/Provider/AISEARCH/genspark_search.py +208 -0
  11. webscout/Provider/AllenAI.py +282 -0
  12. webscout/Provider/Deepinfra.py +52 -37
  13. webscout/Provider/ElectronHub.py +634 -0
  14. webscout/Provider/Glider.py +7 -41
  15. webscout/Provider/HeckAI.py +200 -0
  16. webscout/Provider/Jadve.py +49 -63
  17. webscout/Provider/PI.py +106 -93
  18. webscout/Provider/Perplexitylabs.py +395 -0
  19. webscout/Provider/QwenLM.py +7 -61
  20. webscout/Provider/TTI/FreeAIPlayground/__init__.py +9 -0
  21. webscout/Provider/TTI/FreeAIPlayground/async_freeaiplayground.py +206 -0
  22. webscout/Provider/TTI/FreeAIPlayground/sync_freeaiplayground.py +192 -0
  23. webscout/Provider/TTI/__init__.py +3 -1
  24. webscout/Provider/TTI/piclumen/__init__.py +23 -0
  25. webscout/Provider/TTI/piclumen/async_piclumen.py +268 -0
  26. webscout/Provider/TTI/piclumen/sync_piclumen.py +233 -0
  27. webscout/Provider/TextPollinationsAI.py +28 -6
  28. webscout/Provider/TwoAI.py +200 -0
  29. webscout/Provider/Venice.py +200 -0
  30. webscout/Provider/WiseCat.py +1 -18
  31. webscout/Provider/__init__.py +14 -0
  32. webscout/Provider/akashgpt.py +312 -0
  33. webscout/Provider/chatglm.py +5 -5
  34. webscout/Provider/freeaichat.py +251 -0
  35. webscout/Provider/koala.py +9 -1
  36. webscout/Provider/yep.py +5 -25
  37. webscout/__init__.py +1 -0
  38. webscout/version.py +1 -1
  39. webscout/webscout_search.py +82 -2
  40. webscout/webscout_search_async.py +58 -1
  41. webscout/yep_search.py +297 -0
  42. {webscout-7.2.dist-info → webscout-7.4.dist-info}/METADATA +99 -65
  43. {webscout-7.2.dist-info → webscout-7.4.dist-info}/RECORD +47 -30
  44. {webscout-7.2.dist-info → webscout-7.4.dist-info}/WHEEL +1 -1
  45. {webscout-7.2.dist-info → webscout-7.4.dist-info}/LICENSE.md +0 -0
  46. {webscout-7.2.dist-info → webscout-7.4.dist-info}/entry_points.txt +0 -0
  47. {webscout-7.2.dist-info → webscout-7.4.dist-info}/top_level.txt +0 -0
@@ -5,12 +5,11 @@ from typing import Any, Dict, Generator, Optional
5
5
  from webscout.AIutel import Optimizers, Conversation, AwesomePrompts
6
6
  from webscout.AIbase import Provider
7
7
  from webscout import exceptions
8
- from webscout.Litlogger import Logger, LogFormat
9
8
  from webscout import LitAgent as Lit
10
9
 
11
10
  class GliderAI(Provider):
12
11
  """
13
- A class to interact with the Glider.so API with comprehensive logging.
12
+ A class to interact with the Glider.so API.
14
13
  """
15
14
 
16
15
  AVAILABLE_MODELS = {
@@ -32,22 +31,12 @@ class GliderAI(Provider):
32
31
  history_offset: int = 10250,
33
32
  act: Optional[str] = None,
34
33
  model: str = "chat-llama-3-1-70b",
35
- system_prompt: str = "You are a helpful AI assistant.",
36
- logging: bool = False
34
+ system_prompt: str = "You are a helpful AI assistant."
37
35
  ):
38
- """Initializes the GliderAI API client with logging capabilities."""
36
+ """Initializes the GliderAI API client."""
39
37
  if model not in self.AVAILABLE_MODELS:
40
38
  raise ValueError(f"Invalid model: {model}. Choose from: {', '.join(self.AVAILABLE_MODELS)}")
41
39
 
42
- self.logger = Logger(
43
- name="GliderAI",
44
- format=LogFormat.MODERN_EMOJI,
45
-
46
- ) if logging else None
47
-
48
- if self.logger:
49
- self.logger.info(f"Initializing GliderAI with model: {model}")
50
-
51
40
  self.session = requests.Session()
52
41
  self.is_conversation = is_conversation
53
42
  self.max_tokens_to_sample = max_tokens
@@ -85,9 +74,6 @@ class GliderAI(Provider):
85
74
  )
86
75
  self.conversation.history_offset = history_offset
87
76
 
88
- if self.logger:
89
- self.logger.info("GliderAI initialized successfully")
90
-
91
77
  def ask(
92
78
  self,
93
79
  prompt: str,
@@ -96,7 +82,7 @@ class GliderAI(Provider):
96
82
  optimizer: Optional[str] = None,
97
83
  conversationally: bool = False,
98
84
  ) -> Dict[str, Any] | Generator[Dict[str, Any], None, None]:
99
- """Chat with AI with logging capabilities.
85
+ """Chat with AI.
100
86
 
101
87
  Args:
102
88
  prompt (str): Prompt to be sent.
@@ -107,21 +93,13 @@ class GliderAI(Provider):
107
93
  Returns:
108
94
  dict or Generator[dict, None, None]: The response from the API.
109
95
  """
110
- if self.logger:
111
- self.logger.debug(f"Processing request - Prompt: {prompt[:50]}...")
112
- self.logger.debug(f"Stream: {stream}, Optimizer: {optimizer}")
113
-
114
96
  conversation_prompt = self.conversation.gen_complete_prompt(prompt)
115
97
  if optimizer:
116
98
  if optimizer in self.__available_optimizers:
117
99
  conversation_prompt = getattr(Optimizers, optimizer)(
118
100
  conversation_prompt if conversationally else prompt
119
101
  )
120
- if self.logger:
121
- self.logger.debug(f"Applied optimizer: {optimizer}")
122
102
  else:
123
- if self.logger:
124
- self.logger.error(f"Invalid optimizer requested: {optimizer}")
125
103
  raise Exception(f"Optimizer is not one of {list(self.__available_optimizers)}")
126
104
 
127
105
  payload = {
@@ -133,16 +111,10 @@ class GliderAI(Provider):
133
111
  }
134
112
 
135
113
  def for_stream():
136
- if self.logger:
137
- self.logger.debug("Initiating streaming request to API")
138
114
  response = self.session.post(
139
115
  self.api_endpoint, json=payload, stream=True, timeout=self.timeout
140
116
  )
141
117
  if not response.ok:
142
- if self.logger:
143
- self.logger.error(
144
- f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
145
- )
146
118
  raise exceptions.FailedToGenerateResponseError(
147
119
  f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
148
120
  )
@@ -161,12 +133,8 @@ class GliderAI(Provider):
161
133
  break
162
134
  self.last_response.update(dict(text=streaming_text))
163
135
  self.conversation.update_chat_history(prompt, self.get_message(self.last_response))
164
- if self.logger:
165
- self.logger.debug("Response processing completed")
166
136
 
167
137
  def for_non_stream():
168
- if self.logger:
169
- self.logger.debug("Processing non-streaming request")
170
138
  for _ in for_stream():
171
139
  pass
172
140
  return self.last_response
@@ -180,7 +148,7 @@ class GliderAI(Provider):
180
148
  optimizer: Optional[str] = None,
181
149
  conversationally: bool = False,
182
150
  ) -> str | Generator[str, None, None]:
183
- """Generate response as a string with logging.
151
+ """Generate response as a string.
184
152
 
185
153
  Args:
186
154
  prompt (str): Prompt to be sent.
@@ -190,8 +158,6 @@ class GliderAI(Provider):
190
158
  Returns:
191
159
  str or Generator[str, None, None]: The response generated.
192
160
  """
193
- if self.logger:
194
- self.logger.debug(f"Chat request initiated - Prompt: {prompt[:50]}...")
195
161
  def for_stream():
196
162
  for response in self.ask(
197
163
  prompt, True, optimizer=optimizer, conversationally=conversationally
@@ -215,8 +181,8 @@ class GliderAI(Provider):
215
181
 
216
182
  if __name__ == "__main__":
217
183
  from rich import print
218
- # For testing with logging enabled
219
- ai = GliderAI(model="chat-llama-3-1-70b", logging=True)
184
+ # For testing
185
+ ai = GliderAI(model="chat-llama-3-1-70b")
220
186
  response = ai.chat("Meaning of Life", stream=True)
221
187
  for chunk in response:
222
188
  print(chunk, end="", flush=True)
@@ -0,0 +1,200 @@
1
+ import requests
2
+ import json
3
+ import uuid
4
+ import sys
5
+ from typing import Any, Dict, Optional, Generator, Union
6
+
7
+ from webscout.AIutel import Optimizers
8
+ from webscout.AIutel import Conversation
9
+ from webscout.AIutel import AwesomePrompts, sanitize_stream
10
+ from webscout.AIbase import Provider, AsyncProvider
11
+ from webscout import exceptions
12
+ from webscout import LitAgent
13
+
14
+ class HeckAI(Provider):
15
+ """
16
+ A class to interact with the HeckAI API with LitAgent user-agent.
17
+ """
18
+
19
+ AVAILABLE_MODELS = [
20
+ "deepseek/deepseek-chat",
21
+ "openai/gpt-4o-mini",
22
+ "deepseek/deepseek-r1",
23
+ "google/gemini-2.0-flash-001"
24
+ ]
25
+
26
+ def __init__(
27
+ self,
28
+ is_conversation: bool = True,
29
+ max_tokens: int = 2049,
30
+ timeout: int = 30,
31
+ intro: str = None,
32
+ filepath: str = None,
33
+ update_file: bool = True,
34
+ proxies: dict = {},
35
+ history_offset: int = 10250,
36
+ act: str = None,
37
+ model: str = "google/gemini-2.0-flash-001",
38
+ language: str = "English"
39
+ ):
40
+ """Initializes the HeckAI API client."""
41
+ if model not in self.AVAILABLE_MODELS:
42
+ raise ValueError(f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}")
43
+
44
+ self.url = "https://api.heckai.weight-wave.com/api/ha/v1/chat"
45
+ self.session_id = str(uuid.uuid4())
46
+ self.language = language
47
+
48
+ # Use LitAgent for user-agent
49
+ self.headers = {
50
+ 'User-Agent': LitAgent().random(),
51
+ 'Content-Type': 'application/json',
52
+ 'Origin': 'https://heck.ai',
53
+ 'Referer': 'https://heck.ai/',
54
+ 'Connection': 'keep-alive'
55
+ }
56
+
57
+ self.session = requests.Session()
58
+ self.session.headers.update(self.headers)
59
+ self.session.proxies.update(proxies)
60
+
61
+ self.is_conversation = is_conversation
62
+ self.max_tokens_to_sample = max_tokens
63
+ self.timeout = timeout
64
+ self.last_response = {}
65
+ self.model = model
66
+ self.previous_question = None
67
+ self.previous_answer = None
68
+
69
+ self.__available_optimizers = (
70
+ method
71
+ for method in dir(Optimizers)
72
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
73
+ )
74
+ Conversation.intro = (
75
+ AwesomePrompts().get_act(
76
+ act, raise_not_found=True, default=None, case_insensitive=True
77
+ )
78
+ if act
79
+ else intro or Conversation.intro
80
+ )
81
+
82
+ self.conversation = Conversation(
83
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
84
+ )
85
+ self.conversation.history_offset = history_offset
86
+
87
+ def ask(
88
+ self,
89
+ prompt: str,
90
+ stream: bool = False,
91
+ raw: bool = False,
92
+ optimizer: str = None,
93
+ conversationally: bool = False,
94
+ ) -> Union[Dict[str, Any], Generator]:
95
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
96
+ if optimizer:
97
+ if optimizer in self.__available_optimizers:
98
+ conversation_prompt = getattr(Optimizers, optimizer)(
99
+ conversation_prompt if conversationally else prompt
100
+ )
101
+ else:
102
+ raise Exception(f"Optimizer is not one of {self.__available_optimizers}")
103
+
104
+ # Payload construction
105
+ payload = {
106
+ "model": self.model,
107
+ "question": conversation_prompt,
108
+ "language": self.language,
109
+ "sessionId": self.session_id,
110
+ "previousQuestion": self.previous_question,
111
+ "previousAnswer": self.previous_answer,
112
+ "imgUrls": []
113
+ }
114
+
115
+ # Store this message as previous for next request
116
+ self.previous_question = conversation_prompt
117
+
118
+ def for_stream():
119
+ try:
120
+ with requests.post(self.url, headers=self.headers, data=json.dumps(payload), stream=True, timeout=self.timeout) as response:
121
+ if response.status_code != 200:
122
+ raise exceptions.FailedToGenerateResponseError(
123
+ f"Request failed with status code {response.status_code}"
124
+ )
125
+
126
+ streaming_text = ""
127
+ in_answer = False
128
+
129
+ for line in response.iter_lines(decode_unicode=True):
130
+ if not line:
131
+ continue
132
+
133
+ # Remove "data: " prefix
134
+ if line.startswith("data: "):
135
+ data = line[6:]
136
+ else:
137
+ continue
138
+
139
+ # Check for control markers
140
+ if data == "[ANSWER_START]":
141
+ in_answer = True
142
+ continue
143
+
144
+ if data == "[ANSWER_DONE]":
145
+ in_answer = False
146
+ continue
147
+
148
+ if data == "[RELATE_Q_START]" or data == "[RELATE_Q_DONE]":
149
+ continue
150
+
151
+ # Process content if we're in an answer section
152
+ if in_answer:
153
+ streaming_text += data
154
+ resp = dict(text=data)
155
+ yield resp if raw else resp
156
+
157
+ self.previous_answer = streaming_text
158
+ self.conversation.update_chat_history(prompt, streaming_text)
159
+
160
+ except requests.RequestException as e:
161
+ raise exceptions.FailedToGenerateResponseError(f"Request failed: {str(e)}")
162
+
163
+ def for_non_stream():
164
+ full_text = ""
165
+ for chunk in for_stream():
166
+ if isinstance(chunk, dict) and "text" in chunk:
167
+ full_text += chunk["text"]
168
+ self.last_response = {"text": full_text}
169
+ return self.last_response
170
+
171
+ return for_stream() if stream else for_non_stream()
172
+
173
+ def chat(
174
+ self,
175
+ prompt: str,
176
+ stream: bool = False,
177
+ optimizer: str = None,
178
+ conversationally: bool = False,
179
+ ) -> str:
180
+ def for_stream():
181
+ for response in self.ask(prompt, True, optimizer=optimizer, conversationally=conversationally):
182
+ yield self.get_message(response)
183
+
184
+ def for_non_stream():
185
+ return self.get_message(
186
+ self.ask(prompt, False, optimizer=optimizer, conversationally=conversationally)
187
+ )
188
+
189
+ return for_stream() if stream else for_non_stream()
190
+
191
+ def get_message(self, response: dict) -> str:
192
+ assert isinstance(response, dict), "Response should be of dict data-type only"
193
+ return response["text"]
194
+
195
+ if __name__ == "__main__":
196
+ from rich import print
197
+ ai = HeckAI(timeout=120)
198
+ response = ai.chat("Write a short poem about artificial intelligence", stream=True)
199
+ for chunk in response:
200
+ print(chunk, end="", flush=True)
@@ -1,4 +1,3 @@
1
-
2
1
  import requests
3
2
  import json
4
3
  import re
@@ -8,15 +7,13 @@ from webscout.AIutel import Optimizers, Conversation, AwesomePrompts
8
7
  from webscout.AIbase import Provider
9
8
  from webscout import exceptions
10
9
  from webscout.litagent import LitAgent
11
- from webscout.Litlogger import Logger, LogFormat
12
10
 
13
11
  class JadveOpenAI(Provider):
14
12
  """
15
13
  A class to interact with the OpenAI API through jadve.com using the streaming endpoint.
16
- Includes optional logging capabilities.
17
14
  """
18
15
 
19
- AVAILABLE_MODELS = ["gpt-4o", "gpt-4o-mini"]
16
+ AVAILABLE_MODELS = ["gpt-4o", "gpt-4o-mini", "claude-3-7-sonnet-20250219", "claude-3-5-sonnet-20240620", "o1-mini", "deepseek-chat", "o1-mini", "claude-3-5-haiku-20241022"]
20
17
 
21
18
  def __init__(
22
19
  self,
@@ -29,12 +26,11 @@ class JadveOpenAI(Provider):
29
26
  proxies: dict = {},
30
27
  history_offset: int = 10250,
31
28
  act: str = None,
32
- model: str = "gpt-4o-mini",
33
- system_prompt: str = "You are a helpful AI assistant.",
34
- logging: bool = False
29
+ model: str = "claude-3-7-sonnet-20250219",
30
+ system_prompt: str = "You are a helpful AI assistant."
35
31
  ):
36
32
  """
37
- Initializes the JadveOpenAI client with optional logging support.
33
+ Initializes the JadveOpenAI client.
38
34
 
39
35
  Args:
40
36
  is_conversation (bool, optional): Enable conversational mode. Defaults to True.
@@ -48,24 +44,13 @@ class JadveOpenAI(Provider):
48
44
  act (str|int, optional): Act key for AwesomePrompts. Defaults to None.
49
45
  model (str, optional): AI model to be used. Defaults to "gpt-4o-mini".
50
46
  system_prompt (str, optional): System prompt text. Defaults to "You are a helpful AI assistant."
51
- logging (bool, optional): Enable logging functionality. Defaults to False.
52
47
  """
53
48
  if model not in self.AVAILABLE_MODELS:
54
49
  raise ValueError(f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}")
55
50
 
56
- self.logger = Logger(
57
- name="JadveOpenAI",
58
- format=LogFormat.MODERN_EMOJI,
59
-
60
- ) if logging else None
61
-
62
- if self.logger:
63
- self.logger.info(f"Initializing JadveOpenAI with model: {model}")
64
-
65
51
  self.session = requests.Session()
66
52
  self.is_conversation = is_conversation
67
53
  self.max_tokens_to_sample = max_tokens
68
- # Streaming endpoint for jadve.com
69
54
  self.api_endpoint = "https://openai.jadve.com/stream"
70
55
  self.stream_chunk_size = 64
71
56
  self.timeout = timeout
@@ -73,17 +58,17 @@ class JadveOpenAI(Provider):
73
58
  self.model = model
74
59
  self.system_prompt = system_prompt
75
60
 
76
- # Updated headers with required x-authorization header.
61
+ # Headers for API requests
77
62
  self.headers = {
78
63
  "accept": "*/*",
79
64
  "accept-encoding": "gzip, deflate, br, zstd",
80
- "accept-language": "en",
65
+ "accept-language": "en-US,en;q=0.9,en-IN;q=0.8",
81
66
  "content-type": "application/json",
82
67
  "dnt": "1",
83
68
  "origin": "https://jadve.com",
84
69
  "priority": "u=1, i",
85
70
  "referer": "https://jadve.com/",
86
- "sec-ch-ua": '"Microsoft Edge";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
71
+ "sec-ch-ua": '"Not(A:Brand";v="99", "Microsoft Edge";v="133", "Chromium";v="133"',
87
72
  "sec-ch-ua-mobile": "?0",
88
73
  "sec-ch-ua-platform": '"Windows"',
89
74
  "sec-fetch-dest": "empty",
@@ -113,9 +98,6 @@ class JadveOpenAI(Provider):
113
98
  )
114
99
  self.conversation.history_offset = history_offset
115
100
 
116
- if self.logger:
117
- self.logger.info("JadveOpenAI initialized successfully.")
118
-
119
101
  def ask(
120
102
  self,
121
103
  prompt: str,
@@ -136,21 +118,13 @@ class JadveOpenAI(Provider):
136
118
  Returns:
137
119
  dict or generator: A dictionary with the generated text or a generator yielding text chunks.
138
120
  """
139
- if self.logger:
140
- self.logger.debug(f"Processing request - Prompt: {prompt[:50]}...")
141
- self.logger.debug(f"Stream: {stream}, Optimizer: {optimizer}")
142
-
143
121
  conversation_prompt = self.conversation.gen_complete_prompt(prompt)
144
122
  if optimizer:
145
123
  if optimizer in self.__available_optimizers:
146
124
  conversation_prompt = getattr(Optimizers, optimizer)(
147
125
  conversation_prompt if conversationally else prompt
148
126
  )
149
- if self.logger:
150
- self.logger.debug(f"Applied optimizer: {optimizer}")
151
127
  else:
152
- if self.logger:
153
- self.logger.error(f"Invalid optimizer requested: {optimizer}")
154
128
  raise Exception(
155
129
  f"Optimizer is not one of {list(self.__available_optimizers)}"
156
130
  )
@@ -169,43 +143,59 @@ class JadveOpenAI(Provider):
169
143
  }
170
144
 
171
145
  def for_stream():
172
- if self.logger:
173
- self.logger.debug("Initiating streaming request to API")
174
146
  response = self.session.post(
175
147
  self.api_endpoint, headers=self.headers, json=payload, stream=True, timeout=self.timeout
176
148
  )
177
149
 
178
150
  if not response.ok:
179
- if self.logger:
180
- self.logger.error(f"API request failed. Status: {response.status_code}, Reason: {response.reason}")
181
151
  raise exceptions.FailedToGenerateResponseError(
182
152
  f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
183
153
  )
184
154
 
185
- if self.logger:
186
- self.logger.info(f"API connection established successfully. Status: {response.status_code}")
187
-
188
- # Read the entire response text.
189
- response_text = response.text
155
+ # Pattern to match the streaming chunks format: 0:"text"
190
156
  pattern = r'0:"(.*?)"'
191
- chunks = re.findall(pattern, response_text)
192
- streaming_text = ""
193
- for content in chunks:
194
- streaming_text += content
195
-
196
- yield content if raw else dict(text=content)
197
-
198
- self.last_response.update(dict(text=streaming_text))
157
+ full_response_text = ""
158
+
159
+ # Process the response as it comes in
160
+ buffer = ""
161
+
162
+ for line in response.iter_lines(decode_unicode=True):
163
+ if not line:
164
+ continue
165
+
166
+ buffer += line
167
+
168
+ # Try to match chunks in the current buffer
169
+ matches = re.findall(pattern, buffer)
170
+ if matches:
171
+ for chunk in matches:
172
+ full_response_text += chunk
173
+ # Return the current chunk
174
+ yield chunk if raw else dict(text=chunk)
175
+
176
+ # Remove matched parts from the buffer
177
+ matched_parts = [f'0:"{match}"' for match in matches]
178
+ for part in matched_parts:
179
+ buffer = buffer.replace(part, '', 1)
180
+
181
+ # Check if we've reached the end of the response
182
+ if 'e:' in line or 'd:' in line:
183
+ # No need to process usage data without logging
184
+ break
185
+
186
+ self.last_response.update(dict(text=full_response_text))
199
187
  self.conversation.update_chat_history(prompt, self.get_message(self.last_response))
200
188
 
201
- if self.logger:
202
- self.logger.debug("Response processing completed.")
203
-
204
189
  def for_non_stream():
205
- if self.logger:
206
- self.logger.debug("Processing non-streaming request")
207
- for _ in for_stream():
208
- pass
190
+ # For non-streaming requests, we collect all chunks and return the complete response
191
+ collected_text = ""
192
+ for chunk in for_stream():
193
+ if raw:
194
+ collected_text += chunk
195
+ else:
196
+ collected_text += chunk.get("text", "")
197
+
198
+ self.last_response = {"text": collected_text}
209
199
  return self.last_response
210
200
 
211
201
  return for_stream() if stream else for_non_stream()
@@ -228,9 +218,6 @@ class JadveOpenAI(Provider):
228
218
  Returns:
229
219
  str or generator: Generated response string or generator yielding response chunks.
230
220
  """
231
- if self.logger:
232
- self.logger.debug(f"Chat request initiated - Prompt: {prompt[:50]}...")
233
-
234
221
  def for_stream():
235
222
  for response in self.ask(
236
223
  prompt, stream=True, optimizer=optimizer, conversationally=conversationally
@@ -258,8 +245,7 @@ class JadveOpenAI(Provider):
258
245
 
259
246
  if __name__ == "__main__":
260
247
  from rich import print
261
- ai = JadveOpenAI(timeout=5000, logging=False)
262
- # For streaming response demonstration.
263
- response = ai.chat("yo what's up", stream=True)
248
+ ai = JadveOpenAI(timeout=5000)
249
+ response = ai.chat("Who made u?", stream=True)
264
250
  for chunk in response:
265
251
  print(chunk, end="", flush=True)