webscout 7.0__py3-none-any.whl → 7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (147) hide show
  1. webscout/AIauto.py +191 -191
  2. webscout/AIbase.py +122 -122
  3. webscout/AIutel.py +440 -440
  4. webscout/Bard.py +343 -161
  5. webscout/DWEBS.py +489 -492
  6. webscout/Extra/YTToolkit/YTdownloader.py +995 -995
  7. webscout/Extra/YTToolkit/__init__.py +2 -2
  8. webscout/Extra/YTToolkit/transcriber.py +476 -479
  9. webscout/Extra/YTToolkit/ytapi/channel.py +307 -307
  10. webscout/Extra/YTToolkit/ytapi/playlist.py +58 -58
  11. webscout/Extra/YTToolkit/ytapi/pool.py +7 -7
  12. webscout/Extra/YTToolkit/ytapi/utils.py +62 -62
  13. webscout/Extra/YTToolkit/ytapi/video.py +103 -103
  14. webscout/Extra/autocoder/__init__.py +9 -9
  15. webscout/Extra/autocoder/autocoder_utiles.py +199 -199
  16. webscout/Extra/autocoder/rawdog.py +5 -7
  17. webscout/Extra/autollama.py +230 -230
  18. webscout/Extra/gguf.py +3 -3
  19. webscout/Extra/weather.py +171 -171
  20. webscout/LLM.py +442 -442
  21. webscout/Litlogger/__init__.py +67 -681
  22. webscout/Litlogger/core/__init__.py +6 -0
  23. webscout/Litlogger/core/level.py +20 -0
  24. webscout/Litlogger/core/logger.py +123 -0
  25. webscout/Litlogger/handlers/__init__.py +12 -0
  26. webscout/Litlogger/handlers/console.py +50 -0
  27. webscout/Litlogger/handlers/file.py +143 -0
  28. webscout/Litlogger/handlers/network.py +174 -0
  29. webscout/Litlogger/styles/__init__.py +7 -0
  30. webscout/Litlogger/styles/colors.py +231 -0
  31. webscout/Litlogger/styles/formats.py +377 -0
  32. webscout/Litlogger/styles/text.py +87 -0
  33. webscout/Litlogger/utils/__init__.py +6 -0
  34. webscout/Litlogger/utils/detectors.py +154 -0
  35. webscout/Litlogger/utils/formatters.py +200 -0
  36. webscout/Provider/AISEARCH/DeepFind.py +250 -250
  37. webscout/Provider/Blackboxai.py +136 -137
  38. webscout/Provider/ChatGPTGratis.py +226 -0
  39. webscout/Provider/Cloudflare.py +91 -78
  40. webscout/Provider/DeepSeek.py +218 -0
  41. webscout/Provider/Deepinfra.py +59 -35
  42. webscout/Provider/Free2GPT.py +131 -124
  43. webscout/Provider/Gemini.py +100 -115
  44. webscout/Provider/Glider.py +74 -59
  45. webscout/Provider/Groq.py +30 -18
  46. webscout/Provider/Jadve.py +108 -77
  47. webscout/Provider/Llama3.py +117 -94
  48. webscout/Provider/Marcus.py +191 -137
  49. webscout/Provider/Netwrck.py +62 -50
  50. webscout/Provider/PI.py +79 -124
  51. webscout/Provider/PizzaGPT.py +129 -83
  52. webscout/Provider/QwenLM.py +311 -0
  53. webscout/Provider/TTI/AiForce/__init__.py +22 -22
  54. webscout/Provider/TTI/AiForce/async_aiforce.py +257 -257
  55. webscout/Provider/TTI/AiForce/sync_aiforce.py +242 -242
  56. webscout/Provider/TTI/Nexra/__init__.py +22 -22
  57. webscout/Provider/TTI/Nexra/async_nexra.py +286 -286
  58. webscout/Provider/TTI/Nexra/sync_nexra.py +258 -258
  59. webscout/Provider/TTI/PollinationsAI/__init__.py +23 -23
  60. webscout/Provider/TTI/PollinationsAI/async_pollinations.py +330 -330
  61. webscout/Provider/TTI/PollinationsAI/sync_pollinations.py +285 -285
  62. webscout/Provider/TTI/artbit/__init__.py +22 -22
  63. webscout/Provider/TTI/artbit/async_artbit.py +184 -184
  64. webscout/Provider/TTI/artbit/sync_artbit.py +176 -176
  65. webscout/Provider/TTI/blackbox/__init__.py +4 -4
  66. webscout/Provider/TTI/blackbox/async_blackbox.py +212 -212
  67. webscout/Provider/TTI/blackbox/sync_blackbox.py +199 -199
  68. webscout/Provider/TTI/deepinfra/__init__.py +4 -4
  69. webscout/Provider/TTI/deepinfra/async_deepinfra.py +227 -227
  70. webscout/Provider/TTI/deepinfra/sync_deepinfra.py +199 -199
  71. webscout/Provider/TTI/huggingface/__init__.py +22 -22
  72. webscout/Provider/TTI/huggingface/async_huggingface.py +199 -199
  73. webscout/Provider/TTI/huggingface/sync_huggingface.py +195 -195
  74. webscout/Provider/TTI/imgninza/__init__.py +4 -4
  75. webscout/Provider/TTI/imgninza/async_ninza.py +214 -214
  76. webscout/Provider/TTI/imgninza/sync_ninza.py +209 -209
  77. webscout/Provider/TTI/talkai/__init__.py +4 -4
  78. webscout/Provider/TTI/talkai/async_talkai.py +229 -229
  79. webscout/Provider/TTI/talkai/sync_talkai.py +207 -207
  80. webscout/Provider/TTS/deepgram.py +182 -182
  81. webscout/Provider/TTS/elevenlabs.py +136 -136
  82. webscout/Provider/TTS/gesserit.py +150 -150
  83. webscout/Provider/TTS/murfai.py +138 -138
  84. webscout/Provider/TTS/parler.py +133 -134
  85. webscout/Provider/TTS/streamElements.py +360 -360
  86. webscout/Provider/TTS/utils.py +280 -280
  87. webscout/Provider/TTS/voicepod.py +116 -116
  88. webscout/Provider/TextPollinationsAI.py +74 -47
  89. webscout/Provider/WiseCat.py +193 -0
  90. webscout/Provider/__init__.py +144 -136
  91. webscout/Provider/cerebras.py +242 -227
  92. webscout/Provider/chatglm.py +204 -204
  93. webscout/Provider/dgaf.py +67 -39
  94. webscout/Provider/gaurish.py +105 -66
  95. webscout/Provider/geminiapi.py +208 -208
  96. webscout/Provider/granite.py +223 -0
  97. webscout/Provider/hermes.py +218 -218
  98. webscout/Provider/llama3mitril.py +179 -179
  99. webscout/Provider/llamatutor.py +72 -62
  100. webscout/Provider/llmchat.py +60 -35
  101. webscout/Provider/meta.py +794 -794
  102. webscout/Provider/multichat.py +331 -230
  103. webscout/Provider/typegpt.py +359 -356
  104. webscout/Provider/yep.py +5 -5
  105. webscout/__main__.py +5 -5
  106. webscout/cli.py +319 -319
  107. webscout/conversation.py +241 -242
  108. webscout/exceptions.py +328 -328
  109. webscout/litagent/__init__.py +28 -28
  110. webscout/litagent/agent.py +2 -3
  111. webscout/litprinter/__init__.py +0 -58
  112. webscout/scout/__init__.py +8 -8
  113. webscout/scout/core.py +884 -884
  114. webscout/scout/element.py +459 -459
  115. webscout/scout/parsers/__init__.py +69 -69
  116. webscout/scout/parsers/html5lib_parser.py +172 -172
  117. webscout/scout/parsers/html_parser.py +236 -236
  118. webscout/scout/parsers/lxml_parser.py +178 -178
  119. webscout/scout/utils.py +38 -38
  120. webscout/swiftcli/__init__.py +811 -811
  121. webscout/update_checker.py +2 -12
  122. webscout/version.py +1 -1
  123. webscout/webscout_search.py +1142 -1140
  124. webscout/webscout_search_async.py +635 -635
  125. webscout/zeroart/__init__.py +54 -54
  126. webscout/zeroart/base.py +60 -60
  127. webscout/zeroart/effects.py +99 -99
  128. webscout/zeroart/fonts.py +816 -816
  129. {webscout-7.0.dist-info → webscout-7.2.dist-info}/METADATA +21 -28
  130. webscout-7.2.dist-info/RECORD +217 -0
  131. webstoken/__init__.py +30 -30
  132. webstoken/classifier.py +189 -189
  133. webstoken/keywords.py +216 -216
  134. webstoken/language.py +128 -128
  135. webstoken/ner.py +164 -164
  136. webstoken/normalizer.py +35 -35
  137. webstoken/processor.py +77 -77
  138. webstoken/sentiment.py +206 -206
  139. webstoken/stemmer.py +73 -73
  140. webstoken/tagger.py +60 -60
  141. webstoken/tokenizer.py +158 -158
  142. webscout/Provider/RUBIKSAI.py +0 -272
  143. webscout-7.0.dist-info/RECORD +0 -199
  144. {webscout-7.0.dist-info → webscout-7.2.dist-info}/LICENSE.md +0 -0
  145. {webscout-7.0.dist-info → webscout-7.2.dist-info}/WHEEL +0 -0
  146. {webscout-7.0.dist-info → webscout-7.2.dist-info}/entry_points.txt +0 -0
  147. {webscout-7.0.dist-info → webscout-7.2.dist-info}/top_level.txt +0 -0
webstoken/classifier.py CHANGED
@@ -1,189 +1,189 @@
1
- """
2
- Text classification module using rule-based and statistical approaches.
3
- """
4
-
5
- from typing import Dict, List, Set, Tuple
6
- from collections import Counter
7
- import math
8
- import re
9
-
10
- from .normalizer import TextNormalizer
11
- from .tokenizer import WordTokenizer
12
-
13
-
14
- class TextClassifier:
15
- """Simple text classifier using TF-IDF and cosine similarity."""
16
-
17
- def __init__(self):
18
- self.word_tokenizer = WordTokenizer()
19
- self.normalizer = TextNormalizer()
20
- self.documents: Dict[str, List[str]] = {} # category -> list of documents
21
- self.vocabulary: Set[str] = set()
22
- self.idf_scores: Dict[str, float] = {}
23
- self.category_vectors: Dict[str, Dict[str, float]] = {}
24
-
25
- def train(self, documents: Dict[str, List[str]]) -> None:
26
- """
27
- Train the classifier on labeled documents.
28
-
29
- Args:
30
- documents: Dict mapping categories to lists of documents
31
- """
32
- self.documents = documents
33
-
34
- # Build vocabulary and document frequencies
35
- doc_frequencies: Dict[str, int] = Counter()
36
- total_docs = sum(len(docs) for docs in documents.values())
37
-
38
- for category, docs in documents.items():
39
- for doc in docs:
40
- # Normalize and tokenize
41
- doc = self.normalizer.normalize(doc)
42
- tokens = self.word_tokenizer.tokenize(doc)
43
-
44
- # Update vocabulary and document frequencies
45
- unique_tokens = set(tokens)
46
- self.vocabulary.update(unique_tokens)
47
- doc_frequencies.update(unique_tokens)
48
-
49
- # Calculate IDF scores
50
- self.idf_scores = {
51
- word: math.log(total_docs / (freq + 1))
52
- for word, freq in doc_frequencies.items()
53
- }
54
-
55
- # Calculate TF-IDF vectors for each category
56
- for category, docs in documents.items():
57
- category_vector: Dict[str, float] = {word: 0.0 for word in self.vocabulary}
58
-
59
- for doc in docs:
60
- # Get term frequencies
61
- doc = self.normalizer.normalize(doc)
62
- tokens = self.word_tokenizer.tokenize(doc)
63
- term_freqs = Counter(tokens)
64
-
65
- # Update category vector with TF-IDF scores
66
- for word, tf in term_freqs.items():
67
- if word in self.idf_scores:
68
- category_vector[word] += tf * self.idf_scores[word]
69
-
70
- # Average the scores
71
- for word in category_vector:
72
- category_vector[word] /= len(docs)
73
-
74
- self.category_vectors[category] = category_vector
75
-
76
- def _calculate_vector(self, text: str) -> Dict[str, float]:
77
- """Calculate TF-IDF vector for input text."""
78
- # Normalize and tokenize
79
- text = self.normalizer.normalize(text)
80
- tokens = self.word_tokenizer.tokenize(text)
81
- term_freqs = Counter(tokens)
82
-
83
- # Calculate TF-IDF scores
84
- vector = {word: 0.0 for word in self.vocabulary}
85
- for word, tf in term_freqs.items():
86
- if word in self.idf_scores:
87
- vector[word] = tf * self.idf_scores[word]
88
-
89
- return vector
90
-
91
- def _cosine_similarity(self, vec1: Dict[str, float], vec2: Dict[str, float]) -> float:
92
- """Calculate cosine similarity between two vectors."""
93
- dot_product = sum(vec1[word] * vec2[word] for word in vec1)
94
- norm1 = math.sqrt(sum(score * score for score in vec1.values()))
95
- norm2 = math.sqrt(sum(score * score for score in vec2.values()))
96
-
97
- if norm1 == 0 or norm2 == 0:
98
- return 0.0
99
- return dot_product / (norm1 * norm2)
100
-
101
- def classify(self, text: str) -> List[Tuple[str, float]]:
102
- """
103
- Classify text into categories with confidence scores.
104
-
105
- Returns:
106
- List of (category, confidence) tuples, sorted by confidence
107
- """
108
- if not self.category_vectors:
109
- raise ValueError("Classifier must be trained before classification")
110
-
111
- # Calculate vector for input text
112
- text_vector = self._calculate_vector(text)
113
-
114
- # Calculate similarity with each category
115
- similarities = [
116
- (category, self._cosine_similarity(text_vector, category_vec))
117
- for category, category_vec in self.category_vectors.items()
118
- ]
119
-
120
- # Sort by similarity score
121
- return sorted(similarities, key=lambda x: x[1], reverse=True)
122
-
123
-
124
- class TopicClassifier:
125
- """Rule-based topic classifier using keyword matching."""
126
-
127
- def __init__(self):
128
- # Define topic keywords
129
- self.topic_keywords = {
130
- 'TECHNOLOGY': {
131
- 'computer', 'software', 'hardware', 'internet', 'programming',
132
- 'digital', 'data', 'algorithm', 'code', 'web', 'app', 'mobile',
133
- 'cyber', 'robot', 'ai', 'artificial intelligence', 'machine learning'
134
- },
135
- 'SCIENCE': {
136
- 'research', 'experiment', 'laboratory', 'scientific', 'physics',
137
- 'chemistry', 'biology', 'mathematics', 'theory', 'hypothesis',
138
- 'study', 'discovery', 'innovation', 'analysis', 'observation'
139
- },
140
- 'BUSINESS': {
141
- 'company', 'market', 'finance', 'investment', 'stock', 'trade',
142
- 'economy', 'business', 'corporate', 'startup', 'entrepreneur',
143
- 'profit', 'revenue', 'management', 'strategy', 'commercial'
144
- },
145
- 'POLITICS': {
146
- 'government', 'policy', 'election', 'political', 'democracy',
147
- 'parliament', 'congress', 'law', 'legislation', 'party',
148
- 'vote', 'campaign', 'president', 'minister', 'diplomatic'
149
- },
150
- 'SPORTS': {
151
- 'game', 'team', 'player', 'competition', 'tournament',
152
- 'championship', 'score', 'match', 'athlete', 'sport',
153
- 'win', 'lose', 'victory', 'defeat', 'coach', 'training'
154
- },
155
- 'ENTERTAINMENT': {
156
- 'movie', 'film', 'music', 'song', 'concert', 'actor',
157
- 'actress', 'celebrity', 'show', 'performance', 'art',
158
- 'entertainment', 'theater', 'dance', 'festival', 'media'
159
- }
160
- }
161
-
162
- # Compile regex patterns for each topic
163
- self.topic_patterns = {
164
- topic: re.compile(r'\b(' + '|'.join(re.escape(kw) for kw in keywords) + r')\b', re.IGNORECASE)
165
- for topic, keywords in self.topic_keywords.items()
166
- }
167
-
168
- def classify(self, text: str) -> List[Tuple[str, float]]:
169
- """
170
- Classify text into topics with confidence scores.
171
-
172
- Returns:
173
- List of (topic, confidence) tuples, sorted by confidence
174
- """
175
- # Count keyword matches for each topic
176
- topic_matches = {
177
- topic: len(pattern.findall(text))
178
- for topic, pattern in self.topic_patterns.items()
179
- }
180
-
181
- # Calculate confidence scores
182
- total_matches = sum(topic_matches.values()) or 1 # Avoid division by zero
183
- topic_scores = [
184
- (topic, count / total_matches)
185
- for topic, count in topic_matches.items()
186
- ]
187
-
188
- # Sort by score
189
- return sorted(topic_scores, key=lambda x: x[1], reverse=True)
1
+ """
2
+ Text classification module using rule-based and statistical approaches.
3
+ """
4
+
5
+ from typing import Dict, List, Set, Tuple
6
+ from collections import Counter
7
+ import math
8
+ import re
9
+
10
+ from .normalizer import TextNormalizer
11
+ from .tokenizer import WordTokenizer
12
+
13
+
14
+ class TextClassifier:
15
+ """Simple text classifier using TF-IDF and cosine similarity."""
16
+
17
+ def __init__(self):
18
+ self.word_tokenizer = WordTokenizer()
19
+ self.normalizer = TextNormalizer()
20
+ self.documents: Dict[str, List[str]] = {} # category -> list of documents
21
+ self.vocabulary: Set[str] = set()
22
+ self.idf_scores: Dict[str, float] = {}
23
+ self.category_vectors: Dict[str, Dict[str, float]] = {}
24
+
25
+ def train(self, documents: Dict[str, List[str]]) -> None:
26
+ """
27
+ Train the classifier on labeled documents.
28
+
29
+ Args:
30
+ documents: Dict mapping categories to lists of documents
31
+ """
32
+ self.documents = documents
33
+
34
+ # Build vocabulary and document frequencies
35
+ doc_frequencies: Dict[str, int] = Counter()
36
+ total_docs = sum(len(docs) for docs in documents.values())
37
+
38
+ for category, docs in documents.items():
39
+ for doc in docs:
40
+ # Normalize and tokenize
41
+ doc = self.normalizer.normalize(doc)
42
+ tokens = self.word_tokenizer.tokenize(doc)
43
+
44
+ # Update vocabulary and document frequencies
45
+ unique_tokens = set(tokens)
46
+ self.vocabulary.update(unique_tokens)
47
+ doc_frequencies.update(unique_tokens)
48
+
49
+ # Calculate IDF scores
50
+ self.idf_scores = {
51
+ word: math.log(total_docs / (freq + 1))
52
+ for word, freq in doc_frequencies.items()
53
+ }
54
+
55
+ # Calculate TF-IDF vectors for each category
56
+ for category, docs in documents.items():
57
+ category_vector: Dict[str, float] = {word: 0.0 for word in self.vocabulary}
58
+
59
+ for doc in docs:
60
+ # Get term frequencies
61
+ doc = self.normalizer.normalize(doc)
62
+ tokens = self.word_tokenizer.tokenize(doc)
63
+ term_freqs = Counter(tokens)
64
+
65
+ # Update category vector with TF-IDF scores
66
+ for word, tf in term_freqs.items():
67
+ if word in self.idf_scores:
68
+ category_vector[word] += tf * self.idf_scores[word]
69
+
70
+ # Average the scores
71
+ for word in category_vector:
72
+ category_vector[word] /= len(docs)
73
+
74
+ self.category_vectors[category] = category_vector
75
+
76
+ def _calculate_vector(self, text: str) -> Dict[str, float]:
77
+ """Calculate TF-IDF vector for input text."""
78
+ # Normalize and tokenize
79
+ text = self.normalizer.normalize(text)
80
+ tokens = self.word_tokenizer.tokenize(text)
81
+ term_freqs = Counter(tokens)
82
+
83
+ # Calculate TF-IDF scores
84
+ vector = {word: 0.0 for word in self.vocabulary}
85
+ for word, tf in term_freqs.items():
86
+ if word in self.idf_scores:
87
+ vector[word] = tf * self.idf_scores[word]
88
+
89
+ return vector
90
+
91
+ def _cosine_similarity(self, vec1: Dict[str, float], vec2: Dict[str, float]) -> float:
92
+ """Calculate cosine similarity between two vectors."""
93
+ dot_product = sum(vec1[word] * vec2[word] for word in vec1)
94
+ norm1 = math.sqrt(sum(score * score for score in vec1.values()))
95
+ norm2 = math.sqrt(sum(score * score for score in vec2.values()))
96
+
97
+ if norm1 == 0 or norm2 == 0:
98
+ return 0.0
99
+ return dot_product / (norm1 * norm2)
100
+
101
+ def classify(self, text: str) -> List[Tuple[str, float]]:
102
+ """
103
+ Classify text into categories with confidence scores.
104
+
105
+ Returns:
106
+ List of (category, confidence) tuples, sorted by confidence
107
+ """
108
+ if not self.category_vectors:
109
+ raise ValueError("Classifier must be trained before classification")
110
+
111
+ # Calculate vector for input text
112
+ text_vector = self._calculate_vector(text)
113
+
114
+ # Calculate similarity with each category
115
+ similarities = [
116
+ (category, self._cosine_similarity(text_vector, category_vec))
117
+ for category, category_vec in self.category_vectors.items()
118
+ ]
119
+
120
+ # Sort by similarity score
121
+ return sorted(similarities, key=lambda x: x[1], reverse=True)
122
+
123
+
124
+ class TopicClassifier:
125
+ """Rule-based topic classifier using keyword matching."""
126
+
127
+ def __init__(self):
128
+ # Define topic keywords
129
+ self.topic_keywords = {
130
+ 'TECHNOLOGY': {
131
+ 'computer', 'software', 'hardware', 'internet', 'programming',
132
+ 'digital', 'data', 'algorithm', 'code', 'web', 'app', 'mobile',
133
+ 'cyber', 'robot', 'ai', 'artificial intelligence', 'machine learning'
134
+ },
135
+ 'SCIENCE': {
136
+ 'research', 'experiment', 'laboratory', 'scientific', 'physics',
137
+ 'chemistry', 'biology', 'mathematics', 'theory', 'hypothesis',
138
+ 'study', 'discovery', 'innovation', 'analysis', 'observation'
139
+ },
140
+ 'BUSINESS': {
141
+ 'company', 'market', 'finance', 'investment', 'stock', 'trade',
142
+ 'economy', 'business', 'corporate', 'startup', 'entrepreneur',
143
+ 'profit', 'revenue', 'management', 'strategy', 'commercial'
144
+ },
145
+ 'POLITICS': {
146
+ 'government', 'policy', 'election', 'political', 'democracy',
147
+ 'parliament', 'congress', 'law', 'legislation', 'party',
148
+ 'vote', 'campaign', 'president', 'minister', 'diplomatic'
149
+ },
150
+ 'SPORTS': {
151
+ 'game', 'team', 'player', 'competition', 'tournament',
152
+ 'championship', 'score', 'match', 'athlete', 'sport',
153
+ 'win', 'lose', 'victory', 'defeat', 'coach', 'training'
154
+ },
155
+ 'ENTERTAINMENT': {
156
+ 'movie', 'film', 'music', 'song', 'concert', 'actor',
157
+ 'actress', 'celebrity', 'show', 'performance', 'art',
158
+ 'entertainment', 'theater', 'dance', 'festival', 'media'
159
+ }
160
+ }
161
+
162
+ # Compile regex patterns for each topic
163
+ self.topic_patterns = {
164
+ topic: re.compile(r'\b(' + '|'.join(re.escape(kw) for kw in keywords) + r')\b', re.IGNORECASE)
165
+ for topic, keywords in self.topic_keywords.items()
166
+ }
167
+
168
+ def classify(self, text: str) -> List[Tuple[str, float]]:
169
+ """
170
+ Classify text into topics with confidence scores.
171
+
172
+ Returns:
173
+ List of (topic, confidence) tuples, sorted by confidence
174
+ """
175
+ # Count keyword matches for each topic
176
+ topic_matches = {
177
+ topic: len(pattern.findall(text))
178
+ for topic, pattern in self.topic_patterns.items()
179
+ }
180
+
181
+ # Calculate confidence scores
182
+ total_matches = sum(topic_matches.values()) or 1 # Avoid division by zero
183
+ topic_scores = [
184
+ (topic, count / total_matches)
185
+ for topic, count in topic_matches.items()
186
+ ]
187
+
188
+ # Sort by score
189
+ return sorted(topic_scores, key=lambda x: x[1], reverse=True)