webscout 6.7__py3-none-any.whl → 6.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -1,227 +0,0 @@
1
- import requests
2
- import json
3
- from typing import Any, Dict, Optional
4
-
5
- from webscout.AIutel import Optimizers
6
- from webscout.AIutel import Conversation
7
- from webscout.AIutel import AwesomePrompts
8
- from webscout.AIbase import Provider, AsyncProvider
9
- from webscout import exceptions
10
-
11
-
12
- class Farfalle(Provider):
13
- """
14
- A class to interact with the Farfalle.dev API.
15
- """
16
-
17
- AVAILABLE_MODELS = [
18
- "gpt-3.5-turbo",
19
-
20
- ]
21
-
22
- def __init__(
23
- self,
24
- is_conversation: bool = True,
25
- max_tokens: int = 600,
26
- timeout: int = 30,
27
- intro: str = None,
28
- filepath: str = None,
29
- update_file: bool = True,
30
- proxies: dict = {},
31
- history_offset: int = 10250,
32
- act: str = None,
33
- model: str = "gpt-3.5-turbo",
34
- ) -> None:
35
- """
36
- Initializes the Farfalle.dev API with given parameters.
37
-
38
- Args:
39
- is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
40
- max_tokens (int, optional): Maximum number of tokens to be generated upon completion.
41
- Defaults to 600.
42
- timeout (int, optional): Http request timeout. Defaults to 30.
43
- intro (str, optional): Conversation introductory prompt. Defaults to None.
44
- filepath (str, optional): Path to file containing conversation history. Defaults to None.
45
- update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
46
- proxies (dict, optional): Http request proxies. Defaults to {}.
47
- history_offset (int, optional): Limit conversation history to this number of last texts.
48
- Defaults to 10250.
49
- act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
50
- model (str, optional): AI model to use. Defaults to "gpt-3.5-turbo".
51
- Options: "gpt-3.5-turbo", "gpt-4"
52
- """
53
- if model not in self.AVAILABLE_MODELS:
54
- raise ValueError(f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}")
55
-
56
- self.session = requests.Session()
57
- self.is_conversation = is_conversation
58
- self.max_tokens_to_sample = max_tokens
59
- self.api_endpoint = "https://api.farfalle.dev/chat"
60
- self.stream_chunk_size = 64
61
- self.timeout = timeout
62
- self.last_response = {}
63
- self.model = model
64
- self.headers = {
65
- "accept": "text/event-stream",
66
- "accept-encoding": "gzip, deflate, br, zstd",
67
- "accept-language": "en-US,en;q=0.9,en-IN;q=0.8",
68
- "content-type": "application/json",
69
- "dnt": "1",
70
- "origin": "https://www.farfalle.dev",
71
- "priority": "u=1, i",
72
- "referer": "https://www.farfalle.dev/",
73
- "sec-ch-ua": '"Not)A;Brand";v="99", "Microsoft Edge";v="127", "Chromium";v="127"',
74
- "sec-ch-ua-mobile": "?0",
75
- "sec-ch-ua-platform": '"Windows"',
76
- "sec-fetch-dest": "empty",
77
- "sec-fetch-mode": "cors",
78
- "sec-fetch-site": "same-site",
79
- "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0"
80
- }
81
-
82
- self.__available_optimizers = (
83
- method
84
- for method in dir(Optimizers)
85
- if callable(getattr(Optimizers, method)) and not method.startswith("__")
86
- )
87
- self.session.headers.update(self.headers)
88
- Conversation.intro = (
89
- AwesomePrompts().get_act(
90
- act, raise_not_found=True, default=None, case_insensitive=True
91
- )
92
- if act
93
- else intro or Conversation.intro
94
- )
95
- self.conversation = Conversation(
96
- is_conversation, self.max_tokens_to_sample, filepath, update_file
97
- )
98
- self.conversation.history_offset = history_offset
99
- self.session.proxies = proxies
100
-
101
- def ask(
102
- self,
103
- prompt: str,
104
- stream: bool = False,
105
- raw: bool = False,
106
- optimizer: str = None,
107
- conversationally: bool = False,
108
- ) -> Dict[str, Any]:
109
- """
110
- Sends a prompt to the Farfalle.dev API and returns the response.
111
-
112
- Args:
113
- prompt: The text prompt to generate text from.
114
- stream (bool, optional): Whether to stream the response. Defaults to False.
115
- raw (bool, optional): Whether to return the raw response. Defaults to False.
116
- optimizer (str, optional): The name of the optimizer to use. Defaults to None.
117
- conversationally (bool, optional): Whether to chat conversationally. Defaults to False.
118
-
119
- Returns:
120
- The response from the API.
121
- """
122
- conversation_prompt = self.conversation.gen_complete_prompt(prompt)
123
- if optimizer:
124
- if optimizer in self.__available_optimizers:
125
- conversation_prompt = getattr(Optimizers, optimizer)(
126
- conversation_prompt if conversationally else prompt
127
- )
128
- else:
129
- raise Exception(
130
- f"Optimizer is not one of {self.__available_optimizers}"
131
- )
132
-
133
- payload = {
134
- "query": conversation_prompt,
135
- "model": self.model
136
- }
137
-
138
- def for_stream():
139
- response = self.session.post(
140
- self.api_endpoint, json=payload, headers=self.headers, stream=True, timeout=self.timeout
141
- )
142
-
143
- if not response.ok:
144
- raise exceptions.FailedToGenerateResponseError(
145
- f"Failed to generate response - ({response.status_code}, {response.reason})"
146
- )
147
-
148
- streaming_response = ""
149
- for line in response.iter_lines():
150
- if line:
151
- decoded_line = line.decode('utf-8')
152
- if decoded_line.startswith("data:"):
153
- data = decoded_line[len("data:"):].strip()
154
- if data:
155
- try:
156
- event = json.loads(data)
157
- if event.get("event") == "final-response":
158
- message = event['data'].get('message', '')
159
- streaming_response += message
160
- yield message if raw else dict(text=streaming_response)
161
- except json.decoder.JSONDecodeError:
162
- continue
163
- self.last_response.update(dict(text=streaming_response))
164
- self.conversation.update_chat_history(
165
- prompt, self.get_message(self.last_response)
166
- )
167
- def for_non_stream():
168
- for _ in for_stream():
169
- pass
170
- return self.last_response
171
-
172
- return for_stream() if stream else for_non_stream()
173
-
174
- def chat(
175
- self,
176
- prompt: str,
177
- stream: bool = False,
178
- optimizer: str = None,
179
- conversationally: bool = False,
180
- ) -> str:
181
- """Generate response `str`
182
- Args:
183
- prompt (str): Prompt to be send.
184
- stream (bool, optional): Flag for streaming response. Defaults to False.
185
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
186
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
187
- Returns:
188
- str: Response generated
189
- """
190
-
191
- def for_stream():
192
- for response in self.ask(
193
- prompt, True, optimizer=optimizer, conversationally=conversationally
194
- ):
195
- yield self.get_message(response)
196
-
197
- def for_non_stream():
198
- return self.get_message(
199
- self.ask(
200
- prompt,
201
- False,
202
- optimizer=optimizer,
203
- conversationally=conversationally,
204
- )
205
- )
206
-
207
- return for_stream() if stream else for_non_stream()
208
-
209
- def get_message(self, response: dict) -> str:
210
- """Retrieves message only from response
211
-
212
- Args:
213
- response (dict): Response generated by `self.ask`
214
-
215
- Returns:
216
- str: Message extracted
217
- """
218
- assert isinstance(response, dict), "Response should be of dict data-type only"
219
- return response["text"]
220
- if __name__ == "__main__":
221
- from rich import print
222
-
223
- ai = Farfalle()
224
- # Stream the response
225
- response = ai.chat("who is pm of india")
226
- for chunk in response:
227
- print(chunk, end="", flush=True)
@@ -1,200 +0,0 @@
1
- import requests
2
- import json
3
- import os
4
- from typing import Any, Dict, Optional, Generator, List, Union
5
-
6
- from webscout.AIutel import Optimizers
7
- from webscout.AIutel import Conversation
8
- from webscout.AIutel import AwesomePrompts, sanitize_stream
9
- from webscout.AIbase import Provider, AsyncProvider
10
- from webscout import exceptions
11
-
12
-
13
- class NinjaChat(Provider):
14
- """
15
- A class to interact with the NinjaChat API.
16
- """
17
-
18
- AVAILABLE_MODELS = {
19
- "mistral": "https://www.ninjachat.ai/api/mistral",
20
- "perplexity": "https://www.ninjachat.ai/api/perplexity",
21
- "claude-3.5": "https://www.ninjachat.ai/api/claude-pro",
22
- "gemini-1.5-pro": "https://www.ninjachat.ai/api/gemini",
23
- "llama": "https://www.ninjachat.ai/api/llama-pro",
24
- "o1-mini": "https://www.ninjachat.ai/api/o1-mini",
25
- }
26
-
27
- def __init__(
28
- self,
29
- is_conversation: bool = True,
30
- max_tokens: int = 2049,
31
- timeout: int = 30,
32
- intro: str = None, # System message/intro prompt
33
- filepath: str = None,
34
- update_file: bool = True,
35
- proxies: dict = {},
36
- history_offset: int = 10250,
37
- act: str = None,
38
- model: str = "llama", # Default model
39
- system_message: str = "You are a helpful AI assistant.", # Default system message
40
- ):
41
- """Initializes the NinjaChat API client."""
42
-
43
- self.headers = {
44
- "Accept": "*/*",
45
- "Accept-Encoding": "gzip, deflate, br, zstd",
46
- "Accept-Language": "en-US,en;q=0.9,en-IN;q=0.8",
47
- "Content-Type": "application/json",
48
- "Cookie": "_ga=GA1.1.298084589.1727859540; _ga_11N4NZX9WP=GS1.1.1727859539.1.0.1727859552.0.0.0; __stripe_mid=4f63db68-c41d-45b4-9111-2457a6cf1b538696a9; __Host-next-auth.csrf-token=a5cb5a40c73df3e808ebc072dcb116fe7dd4b9b8d39d8002ef7e54153e6aa665%7Cbffe3f934f2db43330d281453af2cd0b4757f439b958f2d1a06a36cea63e9cc8; __stripe_sid=118678d1-403a-43f9-b3b9-d80ed9392a0d2ac131; __Secure-next-auth.callback-url=https%3A%2F%2Fwww.ninjachat.ai%2Fdashboard; __Secure-next-auth.session-token=eyJhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..l34CIFGTJCtstUqU.VjEYgaUUPpgp-49wueXFlFYvbm8csuyX0HichHrPNH45nX4s_LeZX2VhK1ZvwmUpfdlsMD4bi8VzFfQUEgs8FLPhkbKnoZDP939vobV7K_2Q9CA8PgC0oXEsQf_azWmILZ8rOE37uYzTu1evCnOjCucDYrC1ONXzl9NbGNPVa8AQr7hXvatuqtqe-lBUQXWdrw3QLulbqxvh6yLoxJj04gqC-nPudGciU-_-3TZJYr98u8o7KtUGio1ZX9vHNFfv8djWM1NCkji3Kl9eUhiyMj71.6uhUS39UcCVRa6tFzHxz2g; ph_phc_wWUtqcGWqyyochfPvwKlXMkMjIoIQKUwcnHE3KMKm8K_posthog=%7B%22distinct_id%22%3A%2201924c74-2926-7042-a1fb-5b5debdbcd1c%22%2C%22%24sesid%22%3A%5B1727966419499%2C%22019252bb-9de4-75db-9f85-a389fb401670%22%2C1727964880355%5D%7D",
49
- "DNT": "1",
50
- "Origin": "https://www.ninjachat.ai",
51
- "Priority": "u=1, i",
52
- "Referer": "https://www.ninjachat.ai/dashboard",
53
- "Sec-CH-UA": '"Microsoft Edge";v="129", "Not=A?Brand";v="8", "Chromium";v="129"',
54
- "Sec-CH-UA-Mobile": "?0",
55
- "Sec-CH-UA-Platform": '"Windows"',
56
- "Sec-Fetch-Dest": "empty",
57
- "Sec-Fetch-Mode": "cors",
58
- "Sec-Fetch-Site": "same-origin",
59
- "User-Agent": (
60
- "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
61
- "AppleWebKit/537.36 (KHTML, like Gecko) "
62
- "Chrome/129.0.0.0 Safari/537.36 Edg/129.0.0.0"
63
- )
64
- }
65
- self.session = requests.Session()
66
- self.session.headers.update(self.headers)
67
- self.session.proxies.update(proxies)
68
- self.timeout = timeout
69
- self.last_response = {}
70
- self.system_message = system_message
71
-
72
- self.is_conversation = is_conversation
73
- self.max_tokens_to_sample = max_tokens
74
- self.__available_optimizers = (
75
- method
76
- for method in dir(Optimizers)
77
- if callable(getattr(Optimizers, method)) and not method.startswith("__")
78
- )
79
-
80
- #Set the intro/system message
81
- Conversation.intro = (
82
- AwesomePrompts().get_act(
83
- act, raise_not_found=True, default=None, case_insensitive=True
84
- )
85
- if act
86
- else intro or system_message or Conversation.intro #Priority: act > intro > system_message > Conversation.intro
87
-
88
- )
89
-
90
-
91
- self.conversation = Conversation(
92
- is_conversation, self.max_tokens_to_sample, filepath, update_file
93
- )
94
- self.conversation.history_offset = history_offset
95
-
96
- if model not in self.AVAILABLE_MODELS:
97
- raise ValueError(f"Invalid model: {model}. Choose from: {', '.join(self.AVAILABLE_MODELS)}")
98
- self.model_url = self.AVAILABLE_MODELS[model]
99
- self.headers["Referer"] = self.model_url # Set initial referer
100
-
101
-
102
-
103
- def ask(
104
- self,
105
- prompt: str,
106
- stream: bool = False,
107
- raw: bool = False,
108
- optimizer: str = None,
109
- conversationally: bool = False,
110
- ) -> Union[Dict, Generator]:
111
-
112
- conversation_prompt = self.conversation.gen_complete_prompt(prompt, intro=Conversation.intro)
113
-
114
- if optimizer:
115
- if optimizer in self.__available_optimizers:
116
- conversation_prompt = getattr(Optimizers, optimizer)(
117
- conversation_prompt if conversationally else prompt
118
- )
119
- else:
120
- raise Exception(f"Optimizer is not one of {self.__available_optimizers}")
121
-
122
- #Include the system message in the payload
123
- payload = {
124
- "messages": [
125
- {"role": "system", "content": self.system_message}, # System message here
126
- {"role": "user", "content": conversation_prompt},
127
- ],
128
- "stream": stream # Now passed dynamically
129
- }
130
-
131
- def for_stream():
132
- try:
133
- with requests.post(self.model_url, headers=self.headers, json=payload, stream=True, timeout=self.timeout) as response:
134
- response.raise_for_status()
135
- streaming_text = ""
136
- for line in response.iter_lines(decode_unicode=True):
137
- if line:
138
- if line.startswith("0:"):
139
- try:
140
- text = json.loads(line[2:]) # Extract streaming text
141
- streaming_text += text #Accumulate for history
142
- resp = dict(text=text)
143
- yield resp if raw else resp
144
- except json.JSONDecodeError:
145
- print("\n[Error] Failed to decode JSON content.")
146
-
147
- elif line.startswith("d:"):
148
- break #End of stream
149
- self.conversation.update_chat_history(prompt, streaming_text)
150
- self.last_response.update({"text": streaming_text})
151
- except requests.exceptions.RequestException as e:
152
- print("An error occurred:", e)
153
-
154
-
155
-
156
- def for_non_stream():
157
-
158
- for _ in for_stream():
159
- pass
160
- return self.last_response
161
-
162
-
163
- return for_stream() if stream else for_non_stream()
164
-
165
- def chat(
166
- self,
167
- prompt: str,
168
- stream: bool = False,
169
- optimizer: str = None,
170
- conversationally: bool = False,
171
- ) -> Union[str, Generator]:
172
-
173
- def for_stream():
174
- for response in self.ask(
175
- prompt, True, optimizer=optimizer, conversationally=conversationally
176
- ):
177
- yield self.get_message(response)
178
-
179
- def for_non_stream():
180
- return self.get_message(
181
- self.ask(
182
- prompt, False, optimizer=optimizer, conversationally=conversationally
183
- )
184
- )
185
- return for_stream() if stream else for_non_stream()
186
-
187
- def get_message(self, response: dict) -> str:
188
- assert isinstance(response, dict), "Response should be of dict data-type only"
189
- return response["text"]
190
-
191
-
192
-
193
- if __name__ == "__main__":
194
- from rich import print
195
- bot = NinjaChat(model="perplexity", system_message="You are a creative writer.")
196
-
197
- response = bot.chat("tell me about Abhay koul, HelpingAI ", stream=True)
198
-
199
- for chunk in response:
200
- print(chunk, end="", flush=True)
@@ -1,176 +0,0 @@
1
- import requests
2
- import json
3
- from typing import Any, Dict, Optional, Generator, List
4
-
5
- from webscout.AIutel import Optimizers
6
- from webscout.AIutel import Conversation
7
- from webscout.AIutel import AwesomePrompts
8
- from webscout.AIbase import Provider
9
- from webscout import exceptions
10
-
11
-
12
- class Mhystical(Provider):
13
- """
14
- A class to interact with the Mhystical API. Improved to meet webscout provider standards.
15
- """
16
-
17
- AVAILABLE_MODELS = ["gpt-4", "gpt-3.5-turbo"] # Add available models
18
-
19
- def __init__(
20
- self,
21
- is_conversation: bool = True,
22
- max_tokens: int = 2048,
23
- timeout: int = 30,
24
- intro: str = None,
25
- filepath: str = None,
26
- update_file: bool = True,
27
- proxies: dict = {},
28
- history_offset: int = 10250,
29
- act: str = None,
30
- model: str = "gpt-4", # Default model
31
- system_prompt: str = "You are a helpful AI assistant." # Default system prompt
32
- ):
33
- """Initializes the Mhystical API."""
34
- if model not in self.AVAILABLE_MODELS:
35
- raise ValueError(f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}")
36
-
37
- self.session = requests.Session()
38
- self.is_conversation = is_conversation
39
- self.max_tokens_to_sample = max_tokens
40
- self.api_endpoint = "https://api.mhystical.cc/v1/completions"
41
- self.timeout = timeout
42
- self.last_response = {}
43
- self.model = model
44
- self.system_prompt = system_prompt # Store system prompt
45
- self.headers = {
46
- "x-api-key": "mhystical", # Set API key in header (or better, in __init__ from parameter)
47
- "Content-Type": "application/json",
48
- "accept": "*/*",
49
- "user-agent": "Mozilla/5.0"
50
- }
51
- self.__available_optimizers = (
52
- method
53
- for method in dir(Optimizers)
54
- if callable(getattr(Optimizers, method)) and not method.startswith("__")
55
- )
56
- Conversation.intro = (
57
- AwesomePrompts().get_act(
58
- act, raise_not_found=True, default=None, case_insensitive=True
59
- )
60
- if act
61
- else intro or Conversation.intro
62
- )
63
- self.conversation = Conversation(
64
- is_conversation, self.max_tokens_to_sample, filepath, update_file
65
- )
66
- self.conversation.history_offset = history_offset
67
- self.session.proxies = proxies
68
-
69
-
70
- def ask(
71
- self,
72
- prompt: str,
73
- stream: bool = False,
74
- raw: bool = False,
75
- optimizer: str = None,
76
- conversationally: bool = False,
77
- ) -> Dict[str, Any] | Generator[Dict[str, Any], None, None]:
78
-
79
- conversation_prompt = self.conversation.gen_complete_prompt(prompt)
80
- if optimizer:
81
- if optimizer in self.__available_optimizers:
82
- conversation_prompt = getattr(Optimizers, optimizer)(
83
- conversation_prompt if conversationally else prompt
84
- )
85
- else:
86
- raise exceptions.FailedToGenerateResponseError(
87
- f"Optimizer is not one of {self.__available_optimizers}"
88
- )
89
-
90
- messages = [
91
- {"role": "system", "content": self.system_prompt}, # Include system prompt
92
- {"role": "user", "content": conversation_prompt},
93
- ]
94
-
95
- data = {
96
- "model": self.model, # Now using self.model
97
- "messages": messages # Pass messages to API
98
- }
99
-
100
- def for_stream():
101
- try:
102
- with requests.post(self.api_endpoint, headers=self.headers, json=data, stream=True, timeout=self.timeout) as response:
103
- response.raise_for_status() # Raise exceptions for HTTP errors
104
-
105
- # Emulate streaming for this API
106
- full_response = "" # Accumulate the full response
107
- for chunk in response.iter_content(decode_unicode=True, chunk_size=self.stream_chunk_size):
108
- if chunk:
109
- full_response += chunk
110
- yield chunk if raw else {"text": chunk}
111
-
112
- self.last_response.update({"text": full_response})
113
- self.conversation.update_chat_history(prompt, full_response)
114
- except requests.exceptions.RequestException as e:
115
- raise exceptions.ProviderConnectionError(f"Network error: {str(e)}")
116
-
117
- def for_non_stream():
118
- try:
119
- response = self.session.post(self.api_endpoint, headers=self.headers, json=data, timeout=self.timeout)
120
- response.raise_for_status()
121
-
122
- full_response = self._parse_response(response.text)
123
- self.last_response.update({"text": full_response})
124
-
125
- # Yield the entire response as a single chunk
126
- yield {"text": full_response}
127
-
128
- except requests.exceptions.RequestException as e:
129
- raise exceptions.ProviderConnectionError(f"Network error: {str(e)}")
130
-
131
- return for_stream() if stream else for_non_stream()
132
-
133
-
134
-
135
- def chat(
136
- self,
137
- prompt: str,
138
- stream: bool = False,
139
- optimizer: str = None,
140
- conversationally: bool = False,
141
- ) -> str | Generator[str, None, None]:
142
-
143
- def for_stream():
144
- for response in self.ask(
145
- prompt, stream=True, optimizer=optimizer, conversationally=conversationally
146
- ):
147
- yield self.get_message(response)
148
-
149
- def for_non_stream():
150
- response = next(self.ask(
151
- prompt, stream=False, optimizer=optimizer, conversationally=conversationally
152
- ))
153
- return self.get_message(response)
154
- return for_stream() if stream else for_non_stream()
155
-
156
-
157
-
158
- def get_message(self, response: dict) -> str:
159
- assert isinstance(response, dict), "Response should be of dict data-type only"
160
- return response["text"]
161
-
162
- @staticmethod
163
- def _parse_response(response_text: str) -> str:
164
- """Parse and validate API response."""
165
- try:
166
- data = json.loads(response_text)
167
- return data["choices"][0]["message"]["content"].strip()
168
- except (json.JSONDecodeError, KeyError, IndexError) as e:
169
- raise exceptions.InvalidResponseError(f"Failed to parse response: {str(e)}")
170
-
171
- if __name__ == "__main__":
172
- from rich import print
173
- ai = Mhystical()
174
- response = ai.chat(input(">>> "))
175
- for chunk in response:
176
- print(chunk, end="", flush=True)
webstoken/t.py DELETED
@@ -1,75 +0,0 @@
1
- from webstoken import (
2
- process_text, NamedEntityRecognizer, TextClassifier,
3
- TopicClassifier, LanguageDetector, SentimentAnalyzer,
4
- KeywordExtractor
5
- )
6
- from rich import print
7
- # Example text
8
- text = """
9
- Dr. John Smith from Microsoft Corporation visited New York City on January 15th, 2024.
10
- He presented an excellent paper about artificial intelligence and machine learning at
11
- the International Technology Conference. The research was incredibly well-received,
12
- and many attendees were excited about its potential applications in healthcare.
13
- """
14
-
15
- print("1. Basic Text Processing")
16
- print("-" * 50)
17
- result = process_text(text)
18
- for sentence_data in result['sentences']:
19
- print("Original:", sentence_data['original'])
20
- print("Tokens:", sentence_data['tokens'])
21
- print("POS Tags:", sentence_data['pos_tags'])
22
- print("Stems:", sentence_data['stems'])
23
- print()
24
-
25
- print("\n2. Named Entity Recognition")
26
- print("-" * 50)
27
- ner = NamedEntityRecognizer()
28
- entities = ner.extract_entities(text)
29
- for entity_type, entity_list in entities.items():
30
- if entity_list:
31
- print(f"{entity_type}:", entity_list)
32
-
33
- print("\n3. Topic Classification")
34
- print("-" * 50)
35
- topic_classifier = TopicClassifier()
36
- topics = topic_classifier.classify(text)
37
- print("Topics (with confidence):")
38
- for topic, confidence in topics[:3]: # Top 3 topics
39
- print(f"{topic}: {confidence:.2f}")
40
-
41
- print("\n4. Language Detection")
42
- print("-" * 50)
43
- lang_detector = LanguageDetector()
44
- languages = lang_detector.detect(text)
45
- print("Detected Languages (with confidence):")
46
- for lang, confidence in languages:
47
- print(f"{lang}: {confidence:.2f}")
48
-
49
- print("\n5. Sentiment Analysis")
50
- print("-" * 50)
51
- sentiment_analyzer = SentimentAnalyzer()
52
- sentiment = sentiment_analyzer.analyze_sentiment(text)
53
- print("Sentiment Scores:")
54
- print(f"Polarity: {sentiment['polarity']:.2f}")
55
- print(f"Subjectivity: {sentiment['subjectivity']:.2f}")
56
- print(f"Confidence: {sentiment['confidence']:.2f}")
57
-
58
- print("\nEmotions:")
59
- emotions = sentiment_analyzer.analyze_emotions(text)
60
- for emotion, score in emotions:
61
- if score > 0.1: # Only show significant emotions
62
- print(f"{emotion}: {score:.2f}")
63
-
64
- print("\n6. Keyword Extraction")
65
- print("-" * 50)
66
- keyword_extractor = KeywordExtractor()
67
- print("Keywords:")
68
- keywords = keyword_extractor.extract_keywords(text, num_keywords=5)
69
- for keyword, score in keywords:
70
- print(f"{keyword}: {score:.2f}")
71
-
72
- print("\nKey Phrases:")
73
- keyphrases = keyword_extractor.extract_keyphrases(text, num_phrases=3)
74
- for phrase, score in keyphrases:
75
- print(f"{phrase}: {score:.2f}")
File without changes