webscout 6.5__py3-none-any.whl → 6.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (66) hide show
  1. webscout/Extra/autocoder/autocoder_utiles.py +119 -101
  2. webscout/Provider/AISEARCH/__init__.py +2 -0
  3. webscout/Provider/AISEARCH/ooai.py +155 -0
  4. webscout/Provider/Amigo.py +70 -85
  5. webscout/Provider/{prefind.py → Jadve.py} +72 -70
  6. webscout/Provider/Netwrck.py +235 -0
  7. webscout/Provider/Openai.py +4 -3
  8. webscout/Provider/PI.py +2 -2
  9. webscout/Provider/PizzaGPT.py +3 -3
  10. webscout/Provider/TeachAnything.py +15 -2
  11. webscout/Provider/Youchat.py +42 -8
  12. webscout/Provider/__init__.py +134 -147
  13. webscout/Provider/multichat.py +230 -0
  14. webscout/Provider/promptrefine.py +2 -2
  15. webscout/Provider/talkai.py +10 -13
  16. webscout/Provider/turboseek.py +5 -4
  17. webscout/Provider/tutorai.py +8 -112
  18. webscout/Provider/typegpt.py +4 -5
  19. webscout/Provider/x0gpt.py +81 -9
  20. webscout/Provider/yep.py +123 -361
  21. webscout/__init__.py +10 -1
  22. webscout/conversation.py +24 -9
  23. webscout/exceptions.py +188 -20
  24. webscout/litprinter/__init__.py +4 -117
  25. webscout/litprinter/colors.py +54 -0
  26. webscout/optimizers.py +335 -185
  27. webscout/scout/__init__.py +2 -5
  28. webscout/scout/core/__init__.py +7 -0
  29. webscout/scout/core/crawler.py +140 -0
  30. webscout/scout/core/scout.py +571 -0
  31. webscout/scout/core/search_result.py +96 -0
  32. webscout/scout/core/text_analyzer.py +63 -0
  33. webscout/scout/core/text_utils.py +277 -0
  34. webscout/scout/core/web_analyzer.py +52 -0
  35. webscout/scout/element.py +6 -5
  36. webscout/update_checker.py +117 -58
  37. webscout/version.py +1 -1
  38. webscout/zeroart/base.py +15 -16
  39. webscout/zeroart/effects.py +1 -1
  40. webscout/zeroart/fonts.py +1 -1
  41. {webscout-6.5.dist-info → webscout-6.6.dist-info}/METADATA +8 -165
  42. {webscout-6.5.dist-info → webscout-6.6.dist-info}/RECORD +59 -41
  43. webscout-6.6.dist-info/top_level.txt +2 -0
  44. webstoken/__init__.py +30 -0
  45. webstoken/classifier.py +189 -0
  46. webstoken/keywords.py +216 -0
  47. webstoken/language.py +128 -0
  48. webstoken/ner.py +164 -0
  49. webstoken/normalizer.py +35 -0
  50. webstoken/processor.py +77 -0
  51. webstoken/sentiment.py +206 -0
  52. webstoken/stemmer.py +73 -0
  53. webstoken/t.py +75 -0
  54. webstoken/tagger.py +60 -0
  55. webstoken/tokenizer.py +158 -0
  56. webscout/Provider/Perplexity.py +0 -591
  57. webscout/Provider/RoboCoders.py +0 -206
  58. webscout/Provider/genspark.py +0 -225
  59. webscout/Provider/perplexitylabs.py +0 -265
  60. webscout/Provider/twitterclone.py +0 -251
  61. webscout/Provider/upstage.py +0 -230
  62. webscout-6.5.dist-info/top_level.txt +0 -1
  63. /webscout/Provider/{felo_search.py → AISEARCH/felo_search.py} +0 -0
  64. {webscout-6.5.dist-info → webscout-6.6.dist-info}/LICENSE.md +0 -0
  65. {webscout-6.5.dist-info → webscout-6.6.dist-info}/WHEEL +0 -0
  66. {webscout-6.5.dist-info → webscout-6.6.dist-info}/entry_points.txt +0 -0
webstoken/stemmer.py ADDED
@@ -0,0 +1,73 @@
1
+ """
2
+ Word stemming utilities.
3
+ """
4
+
5
+ from typing import Set
6
+
7
+
8
+ class Stemmer:
9
+ """Simple rule-based stemmer implementing Porter-like rules."""
10
+
11
+ def __init__(self):
12
+ self.vowels: Set[str] = {'a', 'e', 'i', 'o', 'u', 'y'}
13
+ self.doubles: Set[str] = {'bb', 'dd', 'ff', 'gg', 'mm', 'nn', 'pp', 'rr', 'tt'}
14
+
15
+ def is_vowel(self, char: str, prev_char: str = None) -> bool:
16
+ """Check if a character is a vowel, considering 'y' special cases."""
17
+ return char in self.vowels or (char == 'y' and prev_char and prev_char not in self.vowels)
18
+
19
+ def count_syllables(self, word: str) -> int:
20
+ """Count syllables in a word based on vowel sequences."""
21
+ count = 0
22
+ prev_char = None
23
+ for i, char in enumerate(word.lower()):
24
+ if self.is_vowel(char, prev_char) and (i == 0 or not self.is_vowel(prev_char, word[i-2] if i > 1 else None)):
25
+ count += 1
26
+ prev_char = char
27
+ return count or 1
28
+
29
+ def stem(self, word: str) -> str:
30
+ """Apply stemming rules to reduce word to its root form."""
31
+ if len(word) <= 3:
32
+ return word
33
+
34
+ word = word.lower()
35
+
36
+ # Step 1: Handle plurals and past participles
37
+ if word.endswith('sses'):
38
+ word = word[:-2]
39
+ elif word.endswith('ies'):
40
+ word = word[:-2]
41
+ elif word.endswith('ss'):
42
+ pass
43
+ elif word.endswith('s') and len(word) > 4:
44
+ word = word[:-1]
45
+
46
+ # Step 2: Handle -ed and -ing
47
+ if word.endswith('ed') and self.count_syllables(word[:-2]) > 1:
48
+ word = word[:-2]
49
+ elif word.endswith('ing') and self.count_syllables(word[:-3]) > 1:
50
+ word = word[:-3]
51
+
52
+ # Step 3: Handle miscellaneous endings
53
+ if len(word) > 5:
54
+ if word.endswith('ement'):
55
+ word = word[:-5]
56
+ elif word.endswith('ment'):
57
+ word = word[:-4]
58
+ elif word.endswith('ent'):
59
+ word = word[:-3]
60
+
61
+ # Step 4: Handle -ity endings
62
+ if word.endswith('ity') and len(word) > 6:
63
+ word = word[:-3]
64
+ if word.endswith('abil'):
65
+ word = word[:-4] + 'able'
66
+ elif word.endswith('ic'):
67
+ word = word[:-2]
68
+
69
+ # Final step: Remove double consonants at the end
70
+ if len(word) > 2 and word[-2:] in self.doubles:
71
+ word = word[:-1]
72
+
73
+ return word
webstoken/t.py ADDED
@@ -0,0 +1,75 @@
1
+ from webstoken import (
2
+ process_text, NamedEntityRecognizer, TextClassifier,
3
+ TopicClassifier, LanguageDetector, SentimentAnalyzer,
4
+ KeywordExtractor
5
+ )
6
+ from rich import print
7
+ # Example text
8
+ text = """
9
+ Dr. John Smith from Microsoft Corporation visited New York City on January 15th, 2024.
10
+ He presented an excellent paper about artificial intelligence and machine learning at
11
+ the International Technology Conference. The research was incredibly well-received,
12
+ and many attendees were excited about its potential applications in healthcare.
13
+ """
14
+
15
+ print("1. Basic Text Processing")
16
+ print("-" * 50)
17
+ result = process_text(text)
18
+ for sentence_data in result['sentences']:
19
+ print("Original:", sentence_data['original'])
20
+ print("Tokens:", sentence_data['tokens'])
21
+ print("POS Tags:", sentence_data['pos_tags'])
22
+ print("Stems:", sentence_data['stems'])
23
+ print()
24
+
25
+ print("\n2. Named Entity Recognition")
26
+ print("-" * 50)
27
+ ner = NamedEntityRecognizer()
28
+ entities = ner.extract_entities(text)
29
+ for entity_type, entity_list in entities.items():
30
+ if entity_list:
31
+ print(f"{entity_type}:", entity_list)
32
+
33
+ print("\n3. Topic Classification")
34
+ print("-" * 50)
35
+ topic_classifier = TopicClassifier()
36
+ topics = topic_classifier.classify(text)
37
+ print("Topics (with confidence):")
38
+ for topic, confidence in topics[:3]: # Top 3 topics
39
+ print(f"{topic}: {confidence:.2f}")
40
+
41
+ print("\n4. Language Detection")
42
+ print("-" * 50)
43
+ lang_detector = LanguageDetector()
44
+ languages = lang_detector.detect(text)
45
+ print("Detected Languages (with confidence):")
46
+ for lang, confidence in languages:
47
+ print(f"{lang}: {confidence:.2f}")
48
+
49
+ print("\n5. Sentiment Analysis")
50
+ print("-" * 50)
51
+ sentiment_analyzer = SentimentAnalyzer()
52
+ sentiment = sentiment_analyzer.analyze_sentiment(text)
53
+ print("Sentiment Scores:")
54
+ print(f"Polarity: {sentiment['polarity']:.2f}")
55
+ print(f"Subjectivity: {sentiment['subjectivity']:.2f}")
56
+ print(f"Confidence: {sentiment['confidence']:.2f}")
57
+
58
+ print("\nEmotions:")
59
+ emotions = sentiment_analyzer.analyze_emotions(text)
60
+ for emotion, score in emotions:
61
+ if score > 0.1: # Only show significant emotions
62
+ print(f"{emotion}: {score:.2f}")
63
+
64
+ print("\n6. Keyword Extraction")
65
+ print("-" * 50)
66
+ keyword_extractor = KeywordExtractor()
67
+ print("Keywords:")
68
+ keywords = keyword_extractor.extract_keywords(text, num_keywords=5)
69
+ for keyword, score in keywords:
70
+ print(f"{keyword}: {score:.2f}")
71
+
72
+ print("\nKey Phrases:")
73
+ keyphrases = keyword_extractor.extract_keyphrases(text, num_phrases=3)
74
+ for phrase, score in keyphrases:
75
+ print(f"{phrase}: {score:.2f}")
webstoken/tagger.py ADDED
@@ -0,0 +1,60 @@
1
+ """
2
+ Part-of-Speech tagging utilities.
3
+ """
4
+
5
+ from typing import List, Set, Tuple
6
+
7
+
8
+ class POSTagger:
9
+ """Simple rule-based Part-of-Speech tagger."""
10
+
11
+ def __init__(self):
12
+ # Basic rules for POS tagging
13
+ self.noun_suffixes: Set[str] = {'ness', 'ment', 'ship', 'dom', 'hood', 'er', 'or', 'ist'}
14
+ self.verb_suffixes: Set[str] = {'ize', 'ate', 'ify', 'ing', 'ed'}
15
+ self.adj_suffixes: Set[str] = {'able', 'ible', 'al', 'ful', 'ous', 'ive', 'less'}
16
+ self.adv_suffixes: Set[str] = {'ly'}
17
+
18
+ # Common words by POS
19
+ self.determiners: Set[str] = {'the', 'a', 'an', 'this', 'that', 'these', 'those'}
20
+ self.prepositions: Set[str] = {'in', 'on', 'at', 'by', 'with', 'from', 'to', 'for'}
21
+ self.pronouns: Set[str] = {'i', 'you', 'he', 'she', 'it', 'we', 'they', 'me', 'him', 'her'}
22
+
23
+ def tag(self, tokens: List[str]) -> List[Tuple[str, str]]:
24
+ """Assign POS tags to tokens based on rules."""
25
+ tagged = []
26
+ prev_tag = None
27
+
28
+ for i, token in enumerate(tokens):
29
+ word = token.lower()
30
+
31
+ # Check special cases first
32
+ if word in self.determiners:
33
+ tag = 'DET'
34
+ elif word in self.prepositions:
35
+ tag = 'PREP'
36
+ elif word in self.pronouns:
37
+ tag = 'PRON'
38
+ # Check suffixes
39
+ elif any(word.endswith(suffix) for suffix in self.noun_suffixes):
40
+ tag = 'NOUN'
41
+ elif any(word.endswith(suffix) for suffix in self.verb_suffixes):
42
+ tag = 'VERB'
43
+ elif any(word.endswith(suffix) for suffix in self.adj_suffixes):
44
+ tag = 'ADJ'
45
+ elif any(word.endswith(suffix) for suffix in self.adv_suffixes):
46
+ tag = 'ADV'
47
+ # Default cases
48
+ elif word[0].isupper() and i > 0:
49
+ tag = 'PROPN' # Proper noun
50
+ elif word.isdigit():
51
+ tag = 'NUM'
52
+ elif not word.isalnum():
53
+ tag = 'PUNCT'
54
+ else:
55
+ tag = 'NOUN' # Default to noun
56
+
57
+ tagged.append((token, tag))
58
+ prev_tag = tag
59
+
60
+ return tagged
webstoken/tokenizer.py ADDED
@@ -0,0 +1,158 @@
1
+ """
2
+ Tokenization utilities for sentence and word-level tokenization.
3
+ """
4
+
5
+ from typing import List, Dict, Set, Pattern
6
+ import re
7
+
8
+
9
+ class SentenceTokenizer:
10
+ """Advanced sentence tokenizer with support for complex cases and proper formatting."""
11
+
12
+ def __init__(self) -> None:
13
+ # Common abbreviations by category
14
+ self.TITLES: Set[str] = {
15
+ 'mr', 'mrs', 'ms', 'dr', 'prof', 'rev', 'sr', 'jr', 'esq',
16
+ 'hon', 'pres', 'gov', 'atty', 'supt', 'det', 'rev', 'col','maj', 'gen', 'capt', 'cmdr',
17
+ 'lt', 'sgt', 'cpl', 'pvt'
18
+ }
19
+
20
+ self.ACADEMIC: Set[str] = {
21
+ 'ph.d', 'phd', 'm.d', 'md', 'b.a', 'ba', 'm.a', 'ma', 'd.d.s', 'dds',
22
+ 'm.b.a', 'mba', 'b.sc', 'bsc', 'm.sc', 'msc', 'llb', 'll.b', 'bl'
23
+ }
24
+
25
+ self.ORGANIZATIONS: Set[str] = {
26
+ 'inc', 'ltd', 'co', 'corp', 'llc', 'llp', 'assn', 'bros', 'plc', 'cos',
27
+ 'intl', 'dept', 'est', 'dist', 'mfg', 'div'
28
+ }
29
+
30
+ self.MONTHS: Set[str] = {
31
+ 'jan', 'feb', 'mar', 'apr', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'
32
+ }
33
+
34
+ self.UNITS: Set[str] = {
35
+ 'oz', 'pt', 'qt', 'gal', 'ml', 'cc', 'km', 'cm', 'mm', 'ft', 'in',
36
+ 'kg', 'lb', 'lbs', 'hz', 'khz', 'mhz', 'ghz', 'kb', 'mb', 'gb', 'tb'
37
+ }
38
+
39
+ self.TECHNOLOGY: Set[str] = {
40
+ 'v', 'ver', 'app', 'sys', 'dir', 'exe', 'lib', 'api', 'sdk', 'url',
41
+ 'cpu', 'gpu', 'ram', 'rom', 'hdd', 'ssd', 'lan', 'wan', 'sql', 'html'
42
+ }
43
+
44
+ self.MISC: Set[str] = {
45
+ 'vs', 'etc', 'ie', 'eg', 'no', 'al', 'ca', 'cf', 'pp', 'est', 'st',
46
+ 'approx', 'appt', 'apt', 'dept', 'depts', 'min', 'max', 'avg'
47
+ }
48
+
49
+ # Combine all abbreviations
50
+ self.all_abbreviations: Set[str] = (
51
+ self.TITLES | self.ACADEMIC | self.ORGANIZATIONS |
52
+ self.MONTHS | self.UNITS | self.TECHNOLOGY | self.MISC
53
+ )
54
+
55
+ # Special patterns
56
+ self.ELLIPSIS: str = r'\.{2,}|…'
57
+ self.URL_PATTERN: str = (
58
+ r'(?:https?:\/\/|www\.)[\w\-\.]+\.[a-zA-Z]{2,}(?:\/[^\s]*)?'
59
+ )
60
+ self.EMAIL_PATTERN: str = r'[\w\.-]+@[\w\.-]+\.\w+'
61
+ self.NUMBER_PATTERN: str = (
62
+ r'\d+(?:\.\d+)?(?:%|°|km|cm|mm|m|kg|g|lb|ft|in|mph|kmh|hz|mhz|ghz)?'
63
+ )
64
+
65
+ # Quote and bracket pairs
66
+ self.QUOTE_PAIRS: Dict[str, str] = {
67
+ '"': '"', "'": "'", '"': '"', "「": "」", "『": "』",
68
+ "«": "»", "‹": "›", "'": "'", "‚": "'"
69
+ }
70
+
71
+ self.BRACKETS: Dict[str, str] = {
72
+ '(': ')', '[': ']', '{': '}', '⟨': '⟩', '「': '」',
73
+ '『': '』', '【': '】', '〖': '〗', '「': '」'
74
+ }
75
+
76
+ # Compile regex patterns
77
+ self._compile_patterns()
78
+
79
+ def _compile_patterns(self) -> None:
80
+ """Compile regex patterns for better performance."""
81
+ # Pattern for finding potential sentence boundaries
82
+ self.SENTENCE_END: Pattern = re.compile(
83
+ r'''
84
+ # Group for sentence endings
85
+ (?:
86
+ # Standard endings with optional quotes/brackets
87
+ (?<=[.!?])[\"\'\)\]\}»›」』\s]*
88
+
89
+ # Ellipsis
90
+ |(?:\.{2,}|…)
91
+
92
+ # Asian-style endings
93
+ |(?<=[。!?」』】\s])
94
+ )
95
+
96
+ # Must be followed by whitespace and capital letter or number
97
+ (?=\s+(?:[A-Z0-9]|["'({[\[「『《‹〈][A-Z]))
98
+ ''',
99
+ re.VERBOSE
100
+ )
101
+
102
+ # Pattern for abbreviations
103
+ abbrev_pattern = '|'.join(re.escape(abbr) for abbr in self.all_abbreviations)
104
+ self.ABBREV_PATTERN: Pattern = re.compile(
105
+ fr'\b(?:{abbrev_pattern})\.?',
106
+ re.IGNORECASE
107
+ )
108
+
109
+ def tokenize(self, text: str) -> List[str]:
110
+ """Split text into sentences while handling complex cases."""
111
+ if not text or not text.strip():
112
+ return []
113
+
114
+ # Initial split on potential sentence boundaries
115
+ sentences = self.SENTENCE_END.split(text)
116
+
117
+ # Clean and validate sentences
118
+ final_sentences = []
119
+ for sentence in sentences:
120
+ sentence = sentence.strip()
121
+ if sentence:
122
+ final_sentences.append(sentence)
123
+
124
+ return final_sentences
125
+
126
+
127
+ class WordTokenizer:
128
+ """Simple but effective word tokenizer with support for contractions and special cases."""
129
+
130
+ def __init__(self):
131
+ self.contractions = {
132
+ "n't": "not", "'ll": "will", "'re": "are", "'s": "is",
133
+ "'m": "am", "'ve": "have", "'d": "would"
134
+ }
135
+
136
+ self.word_pattern = re.compile(r"""
137
+ (?:[A-Za-z]+(?:[''][A-Za-z]+)*)| # Words with optional internal apostrophes
138
+ (?:\d+(?:,\d{3})*(?:\.\d+)?)| # Numbers with commas and decimals
139
+ (?:[@#]?\w+)| # Hashtags and mentions
140
+ (?:[^\w\s]) # Punctuation and symbols
141
+ """, re.VERBOSE)
142
+
143
+ def tokenize(self, text: str) -> List[str]:
144
+ """Split text into words while handling contractions and special cases."""
145
+ tokens = []
146
+ for match in self.word_pattern.finditer(text):
147
+ word = match.group()
148
+ # Handle contractions
149
+ for contraction, expansion in self.contractions.items():
150
+ if word.endswith(contraction):
151
+ base = word[:-len(contraction)]
152
+ if base:
153
+ tokens.append(base)
154
+ tokens.append(expansion)
155
+ break
156
+ else:
157
+ tokens.append(word)
158
+ return tokens