webscout 6.4__py3-none-any.whl → 6.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/AIutel.py +7 -54
- webscout/DWEBS.py +48 -26
- webscout/{YTdownloader.py → Extra/YTToolkit/YTdownloader.py} +990 -1103
- webscout/Extra/YTToolkit/__init__.py +3 -0
- webscout/{transcriber.py → Extra/YTToolkit/transcriber.py} +1 -1
- webscout/Extra/YTToolkit/ytapi/__init__.py +6 -0
- webscout/Extra/YTToolkit/ytapi/channel.py +307 -0
- webscout/Extra/YTToolkit/ytapi/errors.py +13 -0
- webscout/Extra/YTToolkit/ytapi/extras.py +45 -0
- webscout/Extra/YTToolkit/ytapi/https.py +88 -0
- webscout/Extra/YTToolkit/ytapi/patterns.py +61 -0
- webscout/Extra/YTToolkit/ytapi/playlist.py +59 -0
- webscout/Extra/YTToolkit/ytapi/pool.py +8 -0
- webscout/Extra/YTToolkit/ytapi/query.py +37 -0
- webscout/Extra/YTToolkit/ytapi/stream.py +60 -0
- webscout/Extra/YTToolkit/ytapi/utils.py +62 -0
- webscout/Extra/YTToolkit/ytapi/video.py +102 -0
- webscout/Extra/__init__.py +2 -1
- webscout/Extra/autocoder/autocoder_utiles.py +119 -101
- webscout/Extra/autocoder/rawdog.py +679 -680
- webscout/Extra/gguf.py +441 -441
- webscout/Extra/markdownlite/__init__.py +862 -0
- webscout/Extra/weather_ascii.py +2 -2
- webscout/Provider/AISEARCH/__init__.py +2 -0
- webscout/Provider/AISEARCH/ooai.py +155 -0
- webscout/Provider/Amigo.py +70 -85
- webscout/Provider/{prefind.py → Jadve.py} +72 -70
- webscout/Provider/Netwrck.py +235 -0
- webscout/Provider/Openai.py +4 -3
- webscout/Provider/PI.py +292 -221
- webscout/Provider/PizzaGPT.py +3 -3
- webscout/Provider/Reka.py +0 -1
- webscout/Provider/TTS/__init__.py +5 -1
- webscout/Provider/TTS/deepgram.py +183 -0
- webscout/Provider/TTS/elevenlabs.py +137 -0
- webscout/Provider/TTS/gesserit.py +151 -0
- webscout/Provider/TTS/murfai.py +139 -0
- webscout/Provider/TTS/parler.py +134 -107
- webscout/Provider/TTS/streamElements.py +360 -275
- webscout/Provider/TTS/utils.py +280 -0
- webscout/Provider/TTS/voicepod.py +116 -116
- webscout/Provider/TeachAnything.py +15 -2
- webscout/Provider/Youchat.py +42 -8
- webscout/Provider/__init__.py +8 -21
- webscout/Provider/meta.py +794 -779
- webscout/Provider/multichat.py +230 -0
- webscout/Provider/promptrefine.py +2 -2
- webscout/Provider/talkai.py +10 -13
- webscout/Provider/turboseek.py +5 -4
- webscout/Provider/tutorai.py +8 -112
- webscout/Provider/typegpt.py +5 -7
- webscout/Provider/x0gpt.py +81 -9
- webscout/Provider/yep.py +123 -361
- webscout/__init__.py +33 -28
- webscout/conversation.py +24 -9
- webscout/exceptions.py +188 -20
- webscout/litprinter/__init__.py +719 -831
- webscout/litprinter/colors.py +54 -0
- webscout/optimizers.py +420 -270
- webscout/prompt_manager.py +279 -279
- webscout/scout/__init__.py +8 -0
- webscout/scout/core/__init__.py +7 -0
- webscout/scout/core/crawler.py +140 -0
- webscout/scout/core/scout.py +571 -0
- webscout/scout/core/search_result.py +96 -0
- webscout/scout/core/text_analyzer.py +63 -0
- webscout/scout/core/text_utils.py +277 -0
- webscout/scout/core/web_analyzer.py +52 -0
- webscout/scout/core.py +884 -0
- webscout/scout/element.py +460 -0
- webscout/scout/parsers/__init__.py +69 -0
- webscout/scout/parsers/html5lib_parser.py +172 -0
- webscout/scout/parsers/html_parser.py +236 -0
- webscout/scout/parsers/lxml_parser.py +178 -0
- webscout/scout/utils.py +38 -0
- webscout/update_checker.py +184 -125
- webscout/version.py +1 -1
- webscout/zeroart/__init__.py +55 -0
- webscout/zeroart/base.py +60 -0
- webscout/zeroart/effects.py +99 -0
- webscout/zeroart/fonts.py +816 -0
- webscout/zerodir/__init__.py +225 -0
- {webscout-6.4.dist-info → webscout-6.6.dist-info}/METADATA +18 -231
- webscout-6.6.dist-info/RECORD +197 -0
- webscout-6.6.dist-info/top_level.txt +2 -0
- webstoken/__init__.py +30 -0
- webstoken/classifier.py +189 -0
- webstoken/keywords.py +216 -0
- webstoken/language.py +128 -0
- webstoken/ner.py +164 -0
- webstoken/normalizer.py +35 -0
- webstoken/processor.py +77 -0
- webstoken/sentiment.py +206 -0
- webstoken/stemmer.py +73 -0
- webstoken/t.py +75 -0
- webstoken/tagger.py +60 -0
- webstoken/tokenizer.py +158 -0
- webscout/Agents/Onlinesearcher.py +0 -182
- webscout/Agents/__init__.py +0 -2
- webscout/Agents/functioncall.py +0 -248
- webscout/Bing_search.py +0 -251
- webscout/Provider/Perplexity.py +0 -599
- webscout/Provider/RoboCoders.py +0 -206
- webscout/Provider/genspark.py +0 -225
- webscout/Provider/perplexitylabs.py +0 -265
- webscout/Provider/twitterclone.py +0 -251
- webscout/Provider/upstage.py +0 -230
- webscout/gpt4free.py +0 -666
- webscout/requestsHTMLfix.py +0 -775
- webscout/webai.py +0 -2590
- webscout-6.4.dist-info/RECORD +0 -154
- webscout-6.4.dist-info/top_level.txt +0 -1
- /webscout/Provider/{felo_search.py → AISEARCH/felo_search.py} +0 -0
- {webscout-6.4.dist-info → webscout-6.6.dist-info}/LICENSE.md +0 -0
- {webscout-6.4.dist-info → webscout-6.6.dist-info}/WHEEL +0 -0
- {webscout-6.4.dist-info → webscout-6.6.dist-info}/entry_points.txt +0 -0
webstoken/stemmer.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Word stemming utilities.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import Set
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class Stemmer:
|
|
9
|
+
"""Simple rule-based stemmer implementing Porter-like rules."""
|
|
10
|
+
|
|
11
|
+
def __init__(self):
|
|
12
|
+
self.vowels: Set[str] = {'a', 'e', 'i', 'o', 'u', 'y'}
|
|
13
|
+
self.doubles: Set[str] = {'bb', 'dd', 'ff', 'gg', 'mm', 'nn', 'pp', 'rr', 'tt'}
|
|
14
|
+
|
|
15
|
+
def is_vowel(self, char: str, prev_char: str = None) -> bool:
|
|
16
|
+
"""Check if a character is a vowel, considering 'y' special cases."""
|
|
17
|
+
return char in self.vowels or (char == 'y' and prev_char and prev_char not in self.vowels)
|
|
18
|
+
|
|
19
|
+
def count_syllables(self, word: str) -> int:
|
|
20
|
+
"""Count syllables in a word based on vowel sequences."""
|
|
21
|
+
count = 0
|
|
22
|
+
prev_char = None
|
|
23
|
+
for i, char in enumerate(word.lower()):
|
|
24
|
+
if self.is_vowel(char, prev_char) and (i == 0 or not self.is_vowel(prev_char, word[i-2] if i > 1 else None)):
|
|
25
|
+
count += 1
|
|
26
|
+
prev_char = char
|
|
27
|
+
return count or 1
|
|
28
|
+
|
|
29
|
+
def stem(self, word: str) -> str:
|
|
30
|
+
"""Apply stemming rules to reduce word to its root form."""
|
|
31
|
+
if len(word) <= 3:
|
|
32
|
+
return word
|
|
33
|
+
|
|
34
|
+
word = word.lower()
|
|
35
|
+
|
|
36
|
+
# Step 1: Handle plurals and past participles
|
|
37
|
+
if word.endswith('sses'):
|
|
38
|
+
word = word[:-2]
|
|
39
|
+
elif word.endswith('ies'):
|
|
40
|
+
word = word[:-2]
|
|
41
|
+
elif word.endswith('ss'):
|
|
42
|
+
pass
|
|
43
|
+
elif word.endswith('s') and len(word) > 4:
|
|
44
|
+
word = word[:-1]
|
|
45
|
+
|
|
46
|
+
# Step 2: Handle -ed and -ing
|
|
47
|
+
if word.endswith('ed') and self.count_syllables(word[:-2]) > 1:
|
|
48
|
+
word = word[:-2]
|
|
49
|
+
elif word.endswith('ing') and self.count_syllables(word[:-3]) > 1:
|
|
50
|
+
word = word[:-3]
|
|
51
|
+
|
|
52
|
+
# Step 3: Handle miscellaneous endings
|
|
53
|
+
if len(word) > 5:
|
|
54
|
+
if word.endswith('ement'):
|
|
55
|
+
word = word[:-5]
|
|
56
|
+
elif word.endswith('ment'):
|
|
57
|
+
word = word[:-4]
|
|
58
|
+
elif word.endswith('ent'):
|
|
59
|
+
word = word[:-3]
|
|
60
|
+
|
|
61
|
+
# Step 4: Handle -ity endings
|
|
62
|
+
if word.endswith('ity') and len(word) > 6:
|
|
63
|
+
word = word[:-3]
|
|
64
|
+
if word.endswith('abil'):
|
|
65
|
+
word = word[:-4] + 'able'
|
|
66
|
+
elif word.endswith('ic'):
|
|
67
|
+
word = word[:-2]
|
|
68
|
+
|
|
69
|
+
# Final step: Remove double consonants at the end
|
|
70
|
+
if len(word) > 2 and word[-2:] in self.doubles:
|
|
71
|
+
word = word[:-1]
|
|
72
|
+
|
|
73
|
+
return word
|
webstoken/t.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
from webstoken import (
|
|
2
|
+
process_text, NamedEntityRecognizer, TextClassifier,
|
|
3
|
+
TopicClassifier, LanguageDetector, SentimentAnalyzer,
|
|
4
|
+
KeywordExtractor
|
|
5
|
+
)
|
|
6
|
+
from rich import print
|
|
7
|
+
# Example text
|
|
8
|
+
text = """
|
|
9
|
+
Dr. John Smith from Microsoft Corporation visited New York City on January 15th, 2024.
|
|
10
|
+
He presented an excellent paper about artificial intelligence and machine learning at
|
|
11
|
+
the International Technology Conference. The research was incredibly well-received,
|
|
12
|
+
and many attendees were excited about its potential applications in healthcare.
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
print("1. Basic Text Processing")
|
|
16
|
+
print("-" * 50)
|
|
17
|
+
result = process_text(text)
|
|
18
|
+
for sentence_data in result['sentences']:
|
|
19
|
+
print("Original:", sentence_data['original'])
|
|
20
|
+
print("Tokens:", sentence_data['tokens'])
|
|
21
|
+
print("POS Tags:", sentence_data['pos_tags'])
|
|
22
|
+
print("Stems:", sentence_data['stems'])
|
|
23
|
+
print()
|
|
24
|
+
|
|
25
|
+
print("\n2. Named Entity Recognition")
|
|
26
|
+
print("-" * 50)
|
|
27
|
+
ner = NamedEntityRecognizer()
|
|
28
|
+
entities = ner.extract_entities(text)
|
|
29
|
+
for entity_type, entity_list in entities.items():
|
|
30
|
+
if entity_list:
|
|
31
|
+
print(f"{entity_type}:", entity_list)
|
|
32
|
+
|
|
33
|
+
print("\n3. Topic Classification")
|
|
34
|
+
print("-" * 50)
|
|
35
|
+
topic_classifier = TopicClassifier()
|
|
36
|
+
topics = topic_classifier.classify(text)
|
|
37
|
+
print("Topics (with confidence):")
|
|
38
|
+
for topic, confidence in topics[:3]: # Top 3 topics
|
|
39
|
+
print(f"{topic}: {confidence:.2f}")
|
|
40
|
+
|
|
41
|
+
print("\n4. Language Detection")
|
|
42
|
+
print("-" * 50)
|
|
43
|
+
lang_detector = LanguageDetector()
|
|
44
|
+
languages = lang_detector.detect(text)
|
|
45
|
+
print("Detected Languages (with confidence):")
|
|
46
|
+
for lang, confidence in languages:
|
|
47
|
+
print(f"{lang}: {confidence:.2f}")
|
|
48
|
+
|
|
49
|
+
print("\n5. Sentiment Analysis")
|
|
50
|
+
print("-" * 50)
|
|
51
|
+
sentiment_analyzer = SentimentAnalyzer()
|
|
52
|
+
sentiment = sentiment_analyzer.analyze_sentiment(text)
|
|
53
|
+
print("Sentiment Scores:")
|
|
54
|
+
print(f"Polarity: {sentiment['polarity']:.2f}")
|
|
55
|
+
print(f"Subjectivity: {sentiment['subjectivity']:.2f}")
|
|
56
|
+
print(f"Confidence: {sentiment['confidence']:.2f}")
|
|
57
|
+
|
|
58
|
+
print("\nEmotions:")
|
|
59
|
+
emotions = sentiment_analyzer.analyze_emotions(text)
|
|
60
|
+
for emotion, score in emotions:
|
|
61
|
+
if score > 0.1: # Only show significant emotions
|
|
62
|
+
print(f"{emotion}: {score:.2f}")
|
|
63
|
+
|
|
64
|
+
print("\n6. Keyword Extraction")
|
|
65
|
+
print("-" * 50)
|
|
66
|
+
keyword_extractor = KeywordExtractor()
|
|
67
|
+
print("Keywords:")
|
|
68
|
+
keywords = keyword_extractor.extract_keywords(text, num_keywords=5)
|
|
69
|
+
for keyword, score in keywords:
|
|
70
|
+
print(f"{keyword}: {score:.2f}")
|
|
71
|
+
|
|
72
|
+
print("\nKey Phrases:")
|
|
73
|
+
keyphrases = keyword_extractor.extract_keyphrases(text, num_phrases=3)
|
|
74
|
+
for phrase, score in keyphrases:
|
|
75
|
+
print(f"{phrase}: {score:.2f}")
|
webstoken/tagger.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Part-of-Speech tagging utilities.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Set, Tuple
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class POSTagger:
|
|
9
|
+
"""Simple rule-based Part-of-Speech tagger."""
|
|
10
|
+
|
|
11
|
+
def __init__(self):
|
|
12
|
+
# Basic rules for POS tagging
|
|
13
|
+
self.noun_suffixes: Set[str] = {'ness', 'ment', 'ship', 'dom', 'hood', 'er', 'or', 'ist'}
|
|
14
|
+
self.verb_suffixes: Set[str] = {'ize', 'ate', 'ify', 'ing', 'ed'}
|
|
15
|
+
self.adj_suffixes: Set[str] = {'able', 'ible', 'al', 'ful', 'ous', 'ive', 'less'}
|
|
16
|
+
self.adv_suffixes: Set[str] = {'ly'}
|
|
17
|
+
|
|
18
|
+
# Common words by POS
|
|
19
|
+
self.determiners: Set[str] = {'the', 'a', 'an', 'this', 'that', 'these', 'those'}
|
|
20
|
+
self.prepositions: Set[str] = {'in', 'on', 'at', 'by', 'with', 'from', 'to', 'for'}
|
|
21
|
+
self.pronouns: Set[str] = {'i', 'you', 'he', 'she', 'it', 'we', 'they', 'me', 'him', 'her'}
|
|
22
|
+
|
|
23
|
+
def tag(self, tokens: List[str]) -> List[Tuple[str, str]]:
|
|
24
|
+
"""Assign POS tags to tokens based on rules."""
|
|
25
|
+
tagged = []
|
|
26
|
+
prev_tag = None
|
|
27
|
+
|
|
28
|
+
for i, token in enumerate(tokens):
|
|
29
|
+
word = token.lower()
|
|
30
|
+
|
|
31
|
+
# Check special cases first
|
|
32
|
+
if word in self.determiners:
|
|
33
|
+
tag = 'DET'
|
|
34
|
+
elif word in self.prepositions:
|
|
35
|
+
tag = 'PREP'
|
|
36
|
+
elif word in self.pronouns:
|
|
37
|
+
tag = 'PRON'
|
|
38
|
+
# Check suffixes
|
|
39
|
+
elif any(word.endswith(suffix) for suffix in self.noun_suffixes):
|
|
40
|
+
tag = 'NOUN'
|
|
41
|
+
elif any(word.endswith(suffix) for suffix in self.verb_suffixes):
|
|
42
|
+
tag = 'VERB'
|
|
43
|
+
elif any(word.endswith(suffix) for suffix in self.adj_suffixes):
|
|
44
|
+
tag = 'ADJ'
|
|
45
|
+
elif any(word.endswith(suffix) for suffix in self.adv_suffixes):
|
|
46
|
+
tag = 'ADV'
|
|
47
|
+
# Default cases
|
|
48
|
+
elif word[0].isupper() and i > 0:
|
|
49
|
+
tag = 'PROPN' # Proper noun
|
|
50
|
+
elif word.isdigit():
|
|
51
|
+
tag = 'NUM'
|
|
52
|
+
elif not word.isalnum():
|
|
53
|
+
tag = 'PUNCT'
|
|
54
|
+
else:
|
|
55
|
+
tag = 'NOUN' # Default to noun
|
|
56
|
+
|
|
57
|
+
tagged.append((token, tag))
|
|
58
|
+
prev_tag = tag
|
|
59
|
+
|
|
60
|
+
return tagged
|
webstoken/tokenizer.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Tokenization utilities for sentence and word-level tokenization.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Dict, Set, Pattern
|
|
6
|
+
import re
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class SentenceTokenizer:
|
|
10
|
+
"""Advanced sentence tokenizer with support for complex cases and proper formatting."""
|
|
11
|
+
|
|
12
|
+
def __init__(self) -> None:
|
|
13
|
+
# Common abbreviations by category
|
|
14
|
+
self.TITLES: Set[str] = {
|
|
15
|
+
'mr', 'mrs', 'ms', 'dr', 'prof', 'rev', 'sr', 'jr', 'esq',
|
|
16
|
+
'hon', 'pres', 'gov', 'atty', 'supt', 'det', 'rev', 'col','maj', 'gen', 'capt', 'cmdr',
|
|
17
|
+
'lt', 'sgt', 'cpl', 'pvt'
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
self.ACADEMIC: Set[str] = {
|
|
21
|
+
'ph.d', 'phd', 'm.d', 'md', 'b.a', 'ba', 'm.a', 'ma', 'd.d.s', 'dds',
|
|
22
|
+
'm.b.a', 'mba', 'b.sc', 'bsc', 'm.sc', 'msc', 'llb', 'll.b', 'bl'
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
self.ORGANIZATIONS: Set[str] = {
|
|
26
|
+
'inc', 'ltd', 'co', 'corp', 'llc', 'llp', 'assn', 'bros', 'plc', 'cos',
|
|
27
|
+
'intl', 'dept', 'est', 'dist', 'mfg', 'div'
|
|
28
|
+
}
|
|
29
|
+
|
|
30
|
+
self.MONTHS: Set[str] = {
|
|
31
|
+
'jan', 'feb', 'mar', 'apr', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'
|
|
32
|
+
}
|
|
33
|
+
|
|
34
|
+
self.UNITS: Set[str] = {
|
|
35
|
+
'oz', 'pt', 'qt', 'gal', 'ml', 'cc', 'km', 'cm', 'mm', 'ft', 'in',
|
|
36
|
+
'kg', 'lb', 'lbs', 'hz', 'khz', 'mhz', 'ghz', 'kb', 'mb', 'gb', 'tb'
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
self.TECHNOLOGY: Set[str] = {
|
|
40
|
+
'v', 'ver', 'app', 'sys', 'dir', 'exe', 'lib', 'api', 'sdk', 'url',
|
|
41
|
+
'cpu', 'gpu', 'ram', 'rom', 'hdd', 'ssd', 'lan', 'wan', 'sql', 'html'
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
self.MISC: Set[str] = {
|
|
45
|
+
'vs', 'etc', 'ie', 'eg', 'no', 'al', 'ca', 'cf', 'pp', 'est', 'st',
|
|
46
|
+
'approx', 'appt', 'apt', 'dept', 'depts', 'min', 'max', 'avg'
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
# Combine all abbreviations
|
|
50
|
+
self.all_abbreviations: Set[str] = (
|
|
51
|
+
self.TITLES | self.ACADEMIC | self.ORGANIZATIONS |
|
|
52
|
+
self.MONTHS | self.UNITS | self.TECHNOLOGY | self.MISC
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
# Special patterns
|
|
56
|
+
self.ELLIPSIS: str = r'\.{2,}|…'
|
|
57
|
+
self.URL_PATTERN: str = (
|
|
58
|
+
r'(?:https?:\/\/|www\.)[\w\-\.]+\.[a-zA-Z]{2,}(?:\/[^\s]*)?'
|
|
59
|
+
)
|
|
60
|
+
self.EMAIL_PATTERN: str = r'[\w\.-]+@[\w\.-]+\.\w+'
|
|
61
|
+
self.NUMBER_PATTERN: str = (
|
|
62
|
+
r'\d+(?:\.\d+)?(?:%|°|km|cm|mm|m|kg|g|lb|ft|in|mph|kmh|hz|mhz|ghz)?'
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
# Quote and bracket pairs
|
|
66
|
+
self.QUOTE_PAIRS: Dict[str, str] = {
|
|
67
|
+
'"': '"', "'": "'", '"': '"', "「": "」", "『": "』",
|
|
68
|
+
"«": "»", "‹": "›", "'": "'", "‚": "'"
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
self.BRACKETS: Dict[str, str] = {
|
|
72
|
+
'(': ')', '[': ']', '{': '}', '⟨': '⟩', '「': '」',
|
|
73
|
+
'『': '』', '【': '】', '〖': '〗', '「': '」'
|
|
74
|
+
}
|
|
75
|
+
|
|
76
|
+
# Compile regex patterns
|
|
77
|
+
self._compile_patterns()
|
|
78
|
+
|
|
79
|
+
def _compile_patterns(self) -> None:
|
|
80
|
+
"""Compile regex patterns for better performance."""
|
|
81
|
+
# Pattern for finding potential sentence boundaries
|
|
82
|
+
self.SENTENCE_END: Pattern = re.compile(
|
|
83
|
+
r'''
|
|
84
|
+
# Group for sentence endings
|
|
85
|
+
(?:
|
|
86
|
+
# Standard endings with optional quotes/brackets
|
|
87
|
+
(?<=[.!?])[\"\'\)\]\}»›」』\s]*
|
|
88
|
+
|
|
89
|
+
# Ellipsis
|
|
90
|
+
|(?:\.{2,}|…)
|
|
91
|
+
|
|
92
|
+
# Asian-style endings
|
|
93
|
+
|(?<=[。!?」』】\s])
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
# Must be followed by whitespace and capital letter or number
|
|
97
|
+
(?=\s+(?:[A-Z0-9]|["'({[\[「『《‹〈][A-Z]))
|
|
98
|
+
''',
|
|
99
|
+
re.VERBOSE
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
# Pattern for abbreviations
|
|
103
|
+
abbrev_pattern = '|'.join(re.escape(abbr) for abbr in self.all_abbreviations)
|
|
104
|
+
self.ABBREV_PATTERN: Pattern = re.compile(
|
|
105
|
+
fr'\b(?:{abbrev_pattern})\.?',
|
|
106
|
+
re.IGNORECASE
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
def tokenize(self, text: str) -> List[str]:
|
|
110
|
+
"""Split text into sentences while handling complex cases."""
|
|
111
|
+
if not text or not text.strip():
|
|
112
|
+
return []
|
|
113
|
+
|
|
114
|
+
# Initial split on potential sentence boundaries
|
|
115
|
+
sentences = self.SENTENCE_END.split(text)
|
|
116
|
+
|
|
117
|
+
# Clean and validate sentences
|
|
118
|
+
final_sentences = []
|
|
119
|
+
for sentence in sentences:
|
|
120
|
+
sentence = sentence.strip()
|
|
121
|
+
if sentence:
|
|
122
|
+
final_sentences.append(sentence)
|
|
123
|
+
|
|
124
|
+
return final_sentences
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
class WordTokenizer:
|
|
128
|
+
"""Simple but effective word tokenizer with support for contractions and special cases."""
|
|
129
|
+
|
|
130
|
+
def __init__(self):
|
|
131
|
+
self.contractions = {
|
|
132
|
+
"n't": "not", "'ll": "will", "'re": "are", "'s": "is",
|
|
133
|
+
"'m": "am", "'ve": "have", "'d": "would"
|
|
134
|
+
}
|
|
135
|
+
|
|
136
|
+
self.word_pattern = re.compile(r"""
|
|
137
|
+
(?:[A-Za-z]+(?:[''][A-Za-z]+)*)| # Words with optional internal apostrophes
|
|
138
|
+
(?:\d+(?:,\d{3})*(?:\.\d+)?)| # Numbers with commas and decimals
|
|
139
|
+
(?:[@#]?\w+)| # Hashtags and mentions
|
|
140
|
+
(?:[^\w\s]) # Punctuation and symbols
|
|
141
|
+
""", re.VERBOSE)
|
|
142
|
+
|
|
143
|
+
def tokenize(self, text: str) -> List[str]:
|
|
144
|
+
"""Split text into words while handling contractions and special cases."""
|
|
145
|
+
tokens = []
|
|
146
|
+
for match in self.word_pattern.finditer(text):
|
|
147
|
+
word = match.group()
|
|
148
|
+
# Handle contractions
|
|
149
|
+
for contraction, expansion in self.contractions.items():
|
|
150
|
+
if word.endswith(contraction):
|
|
151
|
+
base = word[:-len(contraction)]
|
|
152
|
+
if base:
|
|
153
|
+
tokens.append(base)
|
|
154
|
+
tokens.append(expansion)
|
|
155
|
+
break
|
|
156
|
+
else:
|
|
157
|
+
tokens.append(word)
|
|
158
|
+
return tokens
|
|
@@ -1,182 +0,0 @@
|
|
|
1
|
-
import json
|
|
2
|
-
import httpx
|
|
3
|
-
from bs4 import BeautifulSoup
|
|
4
|
-
from typing import List, Dict
|
|
5
|
-
from webscout import GoogleS, GEMINIAPI
|
|
6
|
-
import re
|
|
7
|
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
class WebSearchAgent:
|
|
11
|
-
def __init__(self):
|
|
12
|
-
self.webs = GoogleS()
|
|
13
|
-
self.ai = GEMINIAPI(is_conversation=False, api_key='AIzaSyAYlT5-V0MXZwaLYpXCF1Z-Yvy_tx1jylA')
|
|
14
|
-
|
|
15
|
-
def generate_search_queries(self, information: str, num_queries: int = 10) -> List[str]:
|
|
16
|
-
prompt = f""" Task: Generate exactly {num_queries} optimal search queries based on the given information.
|
|
17
|
-
Instructions:
|
|
18
|
-
1. Analyze the provided information thoroughly.
|
|
19
|
-
2. Identify key concepts, entities, and relationships.
|
|
20
|
-
3. Formulate {num_queries} concise and specific search queries that will yield relevant and diverse results.
|
|
21
|
-
4. Each query should focus on a different aspect or angle of the information.
|
|
22
|
-
5. The queries should be in natural language, not in the form of keywords.
|
|
23
|
-
6. Avoid unnecessary words or phrases that might limit the search results.
|
|
24
|
-
7. **Important**: Return the response **ONLY** in JSON format without any additional text or code blocks.
|
|
25
|
-
Your response must be in the following JSON format: {{
|
|
26
|
-
"search_queries": [
|
|
27
|
-
"Your first search query here",
|
|
28
|
-
"Your second search query here",
|
|
29
|
-
"...",
|
|
30
|
-
"Your last search query here"
|
|
31
|
-
]
|
|
32
|
-
}}
|
|
33
|
-
Ensure that:
|
|
34
|
-
- You provide exactly {num_queries} search queries.
|
|
35
|
-
- Each query is unique and focuses on a different aspect of the information.
|
|
36
|
-
- The queries are in plain text, suitable for a web search engine.
|
|
37
|
-
|
|
38
|
-
Information to base the search queries on:
|
|
39
|
-
{information}
|
|
40
|
-
|
|
41
|
-
Now, generate the optimal search queries: """
|
|
42
|
-
|
|
43
|
-
response = ""
|
|
44
|
-
for chunk in self.ai.chat(prompt):
|
|
45
|
-
response += chunk
|
|
46
|
-
|
|
47
|
-
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
|
48
|
-
if json_match:
|
|
49
|
-
json_str = json_match.group(0)
|
|
50
|
-
try:
|
|
51
|
-
json_response = json.loads(json_str)
|
|
52
|
-
print(json_response['search_queries'])
|
|
53
|
-
return json_response["search_queries"]
|
|
54
|
-
except json.JSONDecodeError:
|
|
55
|
-
pass
|
|
56
|
-
|
|
57
|
-
queries = re.findall(r'"([^"]+)"', response)
|
|
58
|
-
if len(queries) >= num_queries:
|
|
59
|
-
return queries[:num_queries]
|
|
60
|
-
elif queries:
|
|
61
|
-
return queries
|
|
62
|
-
else:
|
|
63
|
-
return [information]
|
|
64
|
-
|
|
65
|
-
def search(self, information: str, region: str = 'wt-wt', safe: str = 'off',
|
|
66
|
-
max_results: int = 10) -> List[Dict]:
|
|
67
|
-
search_queries = self.generate_search_queries(information, num_queries=10)
|
|
68
|
-
all_results = []
|
|
69
|
-
|
|
70
|
-
for query in search_queries:
|
|
71
|
-
results = []
|
|
72
|
-
with self.webs as webs:
|
|
73
|
-
for result in webs.search(query, region=region, safe=safe,
|
|
74
|
-
max_results=max_results):
|
|
75
|
-
results.append(result)
|
|
76
|
-
all_results.extend(results)
|
|
77
|
-
|
|
78
|
-
return all_results
|
|
79
|
-
|
|
80
|
-
def extract_urls(self, results: List[Dict]) -> List[str]:
|
|
81
|
-
urls = [result.get('href') for result in results if result.get('href')]
|
|
82
|
-
unique_urls = list(set(urls))
|
|
83
|
-
return unique_urls
|
|
84
|
-
|
|
85
|
-
def fetch_webpage(self, url: str) -> Dict[str, str]:
|
|
86
|
-
try:
|
|
87
|
-
with httpx.Client(timeout=120) as client:
|
|
88
|
-
response = client.get(url)
|
|
89
|
-
if response.status_code == 200:
|
|
90
|
-
html = response.text
|
|
91
|
-
soup = BeautifulSoup(html, 'html.parser')
|
|
92
|
-
paragraphs = soup.find_all('p')
|
|
93
|
-
text = ' '.join([p.get_text() for p in paragraphs])
|
|
94
|
-
words = text.split()
|
|
95
|
-
if len(words) > 600:
|
|
96
|
-
text = ' '.join(words[:600]) + '...'
|
|
97
|
-
return {"url": url, "content": text}
|
|
98
|
-
else:
|
|
99
|
-
return {"url": url, "content": f"Failed to fetch {url}: HTTP {response.status_code}"}
|
|
100
|
-
except Exception as e:
|
|
101
|
-
return {"url": url, "content": f"Error fetching {url}: {str(e)}"}
|
|
102
|
-
|
|
103
|
-
def fetch_all_webpages(self, urls: List[str], max_workers: int = 10) -> List[Dict[str, str]]:
|
|
104
|
-
contents = []
|
|
105
|
-
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
106
|
-
future_to_url = {executor.submit(self.fetch_webpage, url): url for url in urls}
|
|
107
|
-
for future in as_completed(future_to_url):
|
|
108
|
-
result = future.result()
|
|
109
|
-
contents.append(result)
|
|
110
|
-
return contents
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
class OnlineSearcher:
|
|
114
|
-
def __init__(self):
|
|
115
|
-
self.agent = WebSearchAgent()
|
|
116
|
-
self.ai = GEMINIAPI(is_conversation=False, api_key='GOOGLE GEMINI API')
|
|
117
|
-
|
|
118
|
-
def answer_question(self, question: str) -> None:
|
|
119
|
-
search_results = self.agent.search(question, max_results=10)
|
|
120
|
-
urls = self.agent.extract_urls(search_results)
|
|
121
|
-
webpage_contents = self.agent.fetch_all_webpages(urls)
|
|
122
|
-
|
|
123
|
-
context = "Web search results and extracted content:\n\n"
|
|
124
|
-
for i, result in enumerate(search_results, 1):
|
|
125
|
-
title = result.get('title', 'No Title')
|
|
126
|
-
href = result.get('href', 'No URL')
|
|
127
|
-
snippet = result.get('body', 'No Snippet')
|
|
128
|
-
context += f"{i}. **Title:** {title}\n **URL:** {href}\n **Snippet:** {snippet}\n\n"
|
|
129
|
-
|
|
130
|
-
context += "Extracted webpage contents:\n"
|
|
131
|
-
for i, webpage in enumerate(webpage_contents, 1):
|
|
132
|
-
content = webpage['content']
|
|
133
|
-
content_preview = content[:600] + '...' if len(content) > 600 else content
|
|
134
|
-
context += f"{i}. **URL:** {webpage['url']}\n **Content:** {content_preview}\n\n"
|
|
135
|
-
|
|
136
|
-
prompt = f""" Task: Provide a comprehensive, insightful, and well-structured answer to the given question based on the provided web search results and your general knowledge.
|
|
137
|
-
Question: {question}
|
|
138
|
-
Context: {context}
|
|
139
|
-
Instructions:
|
|
140
|
-
1. Carefully analyze the provided web search results and extracted content.
|
|
141
|
-
2. Synthesize the information to form a coherent and comprehensive answer.
|
|
142
|
-
3. If the search results contain relevant information, incorporate it into your answer seamlessly.
|
|
143
|
-
4. Avoid providing irrelevant information, and do not reference "according to web page".
|
|
144
|
-
5. If the search results don't contain sufficient information, clearly state this and provide the best answer based on your general knowledge.
|
|
145
|
-
6. Ensure your answer is well-structured, factual, and directly addresses the question.
|
|
146
|
-
7. Use clear headings, bullet points, or other formatting tools to enhance readability where appropriate.
|
|
147
|
-
8. Strive for a tone and style similar to that of professional, authoritative sources like Perplexity, ensuring clarity and depth in your response.
|
|
148
|
-
Your response should be informative, accurate, and properly sourced when possible. Begin your answer now: """
|
|
149
|
-
|
|
150
|
-
for chunk in self.ai.chat(prompt, stream=True):
|
|
151
|
-
print(chunk, end='', flush=True)
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
# Usage example
|
|
156
|
-
if __name__ == "__main__":
|
|
157
|
-
assistant = OnlineSearcher()
|
|
158
|
-
while True:
|
|
159
|
-
try:
|
|
160
|
-
question = input(">>> ")
|
|
161
|
-
if question.lower() == 'quit':
|
|
162
|
-
break
|
|
163
|
-
print("=" * 50)
|
|
164
|
-
assistant.answer_question(question)
|
|
165
|
-
print("=" * 50)
|
|
166
|
-
except KeyboardInterrupt:
|
|
167
|
-
print("\nExiting.")
|
|
168
|
-
break
|
|
169
|
-
except Exception as e:
|
|
170
|
-
print(f"An error occurred: {e}")
|
|
171
|
-
|
|
172
|
-
"""
|
|
173
|
-
def format_prompt(messages: Messages, add_special_tokens=False) -> str:
|
|
174
|
-
|
|
175
|
-
if not add_special_tokens and len(messages) <= 1:
|
|
176
|
-
return messages[0]["content"]
|
|
177
|
-
formatted = "\n".join([
|
|
178
|
-
f'{message["role"].capitalize()}: {message["content"]}'
|
|
179
|
-
for message in messages
|
|
180
|
-
])
|
|
181
|
-
return f"{formatted}\nAssistant:
|
|
182
|
-
"""
|
webscout/Agents/__init__.py
DELETED