webscout 5.7__py3-none-any.whl → 5.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -0,0 +1,222 @@
1
+ import requests
2
+ import json
3
+
4
+ from webscout.AIutel import Optimizers
5
+ from webscout.AIutel import Conversation
6
+ from webscout.AIutel import AwesomePrompts
7
+ from webscout.AIbase import Provider
8
+ from webscout import exceptions
9
+
10
+ class LlamaTutor(Provider):
11
+ """
12
+ A class to interact with the LlamaTutor API (Together.ai).
13
+ """
14
+
15
+ def __init__(
16
+ self,
17
+ is_conversation: bool = True,
18
+ max_tokens: int = 600,
19
+ timeout: int = 30,
20
+ intro: str = None,
21
+ filepath: str = None,
22
+ update_file: bool = True,
23
+ proxies: dict = {},
24
+ history_offset: int = 10250,
25
+ act: str = None,
26
+ system_prompt: str = "You are a helpful AI assistant.",
27
+ ):
28
+ """
29
+ Initializes the LlamaTutor API with given parameters.
30
+
31
+ Args:
32
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
33
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
34
+ timeout (int, optional): Http request timeout. Defaults to 30.
35
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
36
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
37
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
38
+ proxies (dict, optional): Http request proxies. Defaults to {}.
39
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
40
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
41
+ system_prompt (str, optional): System prompt for LlamaTutor.
42
+ Defaults to "You are a helpful AI assistant.".
43
+ """
44
+ self.session = requests.Session()
45
+ self.is_conversation = is_conversation
46
+ self.max_tokens_to_sample = max_tokens
47
+ self.api_endpoint = "https://llamatutor.together.ai/api/getChat"
48
+ self.stream_chunk_size = 64
49
+ self.timeout = timeout
50
+ self.last_response = {}
51
+ self.system_prompt = system_prompt
52
+ self.headers = {
53
+ "Content-Type": "application/json",
54
+ "Accept": "*/*",
55
+ "Accept-Encoding": "gzip, deflate, br, zstd",
56
+ "Accept-Language": "en-US,en;q=0.9,en-IN;q=0.8",
57
+ "DNT": "1",
58
+ "Origin": "https://llamatutor.together.ai",
59
+ "Referer": "https://llamatutor.together.ai/",
60
+ "Sec-Ch-Ua": '"Chromium";v="128", "Not;A=Brand";v="24", "Microsoft Edge";v="128"',
61
+ "Sec-Ch-Ua-Mobile": "?0",
62
+ "Sec-Ch-Ua-Platform": '"Windows"',
63
+ "Sec-Fetch-Dest": "empty",
64
+ "Sec-Fetch-Mode": "cors",
65
+ "Sec-Fetch-Site": "same-origin",
66
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0"
67
+ }
68
+
69
+ self.__available_optimizers = (
70
+ method
71
+ for method in dir(Optimizers)
72
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
73
+ )
74
+ self.session.headers.update(self.headers)
75
+ Conversation.intro = (
76
+ AwesomePrompts().get_act(
77
+ act, raise_not_found=True, default=None, case_insensitive=True
78
+ )
79
+ if act
80
+ else intro or Conversation.intro
81
+ )
82
+ self.conversation = Conversation(
83
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
84
+ )
85
+ self.conversation.history_offset = history_offset
86
+ self.session.proxies = proxies
87
+
88
+ def ask(
89
+ self,
90
+ prompt: str,
91
+ stream: bool = False,
92
+ raw: bool = False,
93
+ optimizer: str = None,
94
+ conversationally: bool = False,
95
+ ) -> dict:
96
+ """Chat with LlamaTutor
97
+
98
+ Args:
99
+ prompt (str): Prompt to be send.
100
+ stream (bool, optional): Flag for streaming response. Defaults to False.
101
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
102
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
103
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
104
+ Returns:
105
+ dict : {}
106
+ ```json
107
+ {
108
+ "text" : "How may I assist you today?"
109
+ }
110
+ ```
111
+ """
112
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
113
+ if optimizer:
114
+ if optimizer in self.__available_optimizers:
115
+ conversation_prompt = getattr(Optimizers, optimizer)(
116
+ conversation_prompt if conversationally else prompt
117
+ )
118
+ else:
119
+ raise Exception(
120
+ f"Optimizer is not one of {self.__available_optimizers}"
121
+ )
122
+
123
+ payload = {
124
+ "messages": [
125
+ {
126
+ "role": "system",
127
+ "content": self.system_prompt
128
+ },
129
+ {
130
+ "role": "user",
131
+ "content": conversation_prompt
132
+ }
133
+ ]
134
+ }
135
+
136
+ def for_stream():
137
+ try:
138
+ response = requests.post(self.api_endpoint, headers=self.headers, data=json.dumps(payload), stream=True, timeout=self.timeout)
139
+ response.raise_for_status()
140
+
141
+ # Stream and process the response line by line
142
+ full_response = ''
143
+ for line in response.iter_lines(decode_unicode=True):
144
+ if line:
145
+ decoded_line = line.decode('utf-8')
146
+ if decoded_line.startswith("data: "):
147
+ json_data = json.loads(decoded_line[6:])
148
+ if "text" in json_data:
149
+ full_response += json_data["text"]
150
+ yield json_data["text"] if raw else dict(text=full_response)
151
+
152
+ self.last_response.update(dict(text=full_response))
153
+ self.conversation.update_chat_history(
154
+ prompt, self.get_message(self.last_response)
155
+ )
156
+
157
+ except requests.exceptions.HTTPError as http_err:
158
+ raise exceptions.FailedToGenerateResponseError(f"HTTP error occurred: {http_err}")
159
+ except requests.exceptions.RequestException as err:
160
+ raise exceptions.FailedToGenerateResponseError(f"An error occurred: {err}")
161
+
162
+ def for_non_stream():
163
+ for _ in for_stream():
164
+ pass
165
+ return self.last_response
166
+
167
+ return for_stream() if stream else for_non_stream()
168
+
169
+ def chat(
170
+ self,
171
+ prompt: str,
172
+ stream: bool = False,
173
+ optimizer: str = None,
174
+ conversationally: bool = False,
175
+ ) -> str:
176
+ """Generate response `str`
177
+ Args:
178
+ prompt (str): Prompt to be send.
179
+ stream (bool, optional): Flag for streaming response. Defaults to False.
180
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
181
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
182
+ Returns:
183
+ str: Response generated
184
+ """
185
+
186
+ def for_stream():
187
+ for response in self.ask(
188
+ prompt, True, optimizer=optimizer, conversationally=conversationally
189
+ ):
190
+ yield self.get_message(response)
191
+
192
+ def for_non_stream():
193
+ return self.get_message(
194
+ self.ask(
195
+ prompt,
196
+ False,
197
+ optimizer=optimizer,
198
+ conversationally=conversationally,
199
+ )
200
+ )
201
+
202
+ return for_stream() if stream else for_non_stream()
203
+
204
+ def get_message(self, response: dict) -> str:
205
+ """Retrieves message only from response
206
+
207
+ Args:
208
+ response (dict): Response generated by `self.ask`
209
+
210
+ Returns:
211
+ str: Message extracted
212
+ """
213
+ assert isinstance(response, dict), "Response should be of dict data-type only"
214
+ return response["text"]
215
+
216
+ if __name__ == "__main__":
217
+ from rich import print
218
+
219
+ ai = LlamaTutor()
220
+ response = ai.chat(input(">>> "))
221
+ for chunk in response:
222
+ print(chunk, end="", flush=True)
@@ -0,0 +1,232 @@
1
+ import requests
2
+ import json
3
+ import uuid
4
+ import os
5
+ from typing import Any, Dict, Optional, Generator
6
+
7
+ from webscout.AIutel import Optimizers
8
+ from webscout.AIutel import Conversation
9
+ from webscout.AIutel import AwesomePrompts, sanitize_stream
10
+ from webscout.AIbase import Provider, AsyncProvider
11
+ from webscout import exceptions
12
+
13
+ class PrefindAI(Provider):
14
+ """
15
+ A class to interact with the Prefind AI API.
16
+ """
17
+
18
+ AVAILABLE_MODELS = ["llama", "claude"]
19
+
20
+ def __init__(
21
+ self,
22
+ is_conversation: bool = True,
23
+ max_tokens: int = 600,
24
+ timeout: int = 30,
25
+ intro: str = None,
26
+ filepath: str = None,
27
+ update_file: bool = True,
28
+ proxies: dict = {},
29
+ history_offset: int = 10250,
30
+ act: str = None,
31
+ model: str = "claude",
32
+ ):
33
+ """
34
+ Initializes the Prefind AI API with given parameters.
35
+
36
+ Args:
37
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
38
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
39
+ timeout (int, optional): Http request timeout. Defaults to 30.
40
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
41
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
42
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
43
+ proxies (dict, optional): Http request proxies. Defaults to {}.
44
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
45
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
46
+ model (str, optional): The AI model to use for text generation. Defaults to "claude".
47
+ Options: "llama", "claude".
48
+ """
49
+ self.session = requests.Session()
50
+ self.is_conversation = is_conversation
51
+ self.max_tokens_to_sample = max_tokens
52
+ self.api_endpoint = "https://api.prefind.ai/api/search/v1"
53
+ self.stream_chunk_size = 64
54
+ self.timeout = timeout
55
+ self.last_response = {}
56
+ self.model = model
57
+ self.device_token = self.get_device_token()
58
+
59
+ self.__available_optimizers = (
60
+ method
61
+ for method in dir(Optimizers)
62
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
63
+ )
64
+ self.session.headers.update(
65
+ {
66
+ "Content-Type": "application/json",
67
+ "Accept": "text/event-stream",
68
+ }
69
+ )
70
+ Conversation.intro = (
71
+ AwesomePrompts().get_act(
72
+ act, raise_not_found=True, default=None, case_insensitive=True
73
+ )
74
+ if act
75
+ else intro or Conversation.intro
76
+ )
77
+ self.conversation = Conversation(
78
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
79
+ )
80
+ self.conversation.history_offset = history_offset
81
+ self.session.proxies = proxies
82
+
83
+ def get_device_token(self) -> str:
84
+ """
85
+ Retrieves a device token from the Prefind AI API.
86
+ """
87
+ device_token_url = "https://api.prefind.ai/api/auth/device-token/create"
88
+ headers = {"Content-Type": "application/json; charset=utf-8"}
89
+ data = {}
90
+ response = requests.post(
91
+ device_token_url, headers=headers, data=json.dumps(data)
92
+ )
93
+
94
+ if response.status_code == 200:
95
+ device_token_data = response.json()
96
+ return device_token_data["sessionToken"]
97
+ else:
98
+ raise exceptions.FailedToGenerateResponseError(
99
+ f"Failed to get device token - ({response.status_code}, {response.reason}) - {response.text}"
100
+ )
101
+
102
+ def ask(
103
+ self,
104
+ prompt: str,
105
+ stream: bool = False,
106
+ raw: bool = False,
107
+ optimizer: str = None,
108
+ conversationally: bool = False,
109
+ ) -> Dict[str, Any]:
110
+ """Chat with AI
111
+
112
+ Args:
113
+ prompt (str): Prompt to be send.
114
+ stream (bool, optional): Flag for streaming response. Defaults to False.
115
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
116
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
117
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
118
+ Returns:
119
+ dict : {}
120
+ ```json
121
+ {
122
+ "text" : "How may I assist you today?"
123
+ }
124
+ ```
125
+ """
126
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
127
+ if optimizer:
128
+ if optimizer in self.__available_optimizers:
129
+ conversation_prompt = getattr(Optimizers, optimizer)(
130
+ conversation_prompt if conversationally else prompt
131
+ )
132
+ else:
133
+ raise Exception(
134
+ f"Optimizer is not one of {self.__available_optimizers}"
135
+ )
136
+
137
+ search_data = {"query": conversation_prompt, "deviceToken": self.device_token}
138
+
139
+ def for_stream():
140
+ response = self.session.post(
141
+ self.api_endpoint, json=search_data, stream=True, timeout=self.timeout
142
+ )
143
+ if not response.ok:
144
+ raise exceptions.FailedToGenerateResponseError(
145
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
146
+ )
147
+
148
+ streaming_text = ""
149
+ for line in response.iter_lines(decode_unicode=True): #This is already decoding
150
+ if line:
151
+ # line = line.decode('utf-8').strip() # This line is unnecessary and causing the error
152
+ if line.startswith("event: "):
153
+ event = line[7:]
154
+ elif line.startswith("data: "):
155
+ data_str = line[6:]
156
+ if event == "received":
157
+ data = json.loads(data_str)
158
+ if data['type'] == 'chunk':
159
+ model = data['model']
160
+ if (self.model == "llama" and model == 'OPENROUTER_LLAMA_3') or \
161
+ (self.model == "claude" and model == 'OPENROUTER_CLAUDE'):
162
+ content = data['chunk']['content']
163
+ if content:
164
+ streaming_text += content + ("\n" if stream else "")
165
+ resp = dict(text=streaming_text)
166
+ self.last_response.update(resp)
167
+ yield resp if raw else resp
168
+ self.conversation.update_chat_history(
169
+ prompt, self.get_message(self.last_response)
170
+ )
171
+
172
+ def for_non_stream():
173
+ # let's make use of stream
174
+ for _ in for_stream():
175
+ pass
176
+ return self.last_response
177
+
178
+ return for_stream() if stream else for_non_stream()
179
+
180
+ def chat(
181
+ self,
182
+ prompt: str,
183
+ stream: bool = False,
184
+ optimizer: str = None,
185
+ conversationally: bool = False,
186
+ ) -> str:
187
+ """Generate response `str`
188
+ Args:
189
+ prompt (str): Prompt to be send.
190
+ stream (bool, optional): Flag for streaming response. Defaults to False.
191
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
192
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
193
+ Returns:
194
+ str: Response generated
195
+ """
196
+
197
+ def for_stream():
198
+ for response in self.ask(
199
+ prompt, True, optimizer=optimizer, conversationally=conversationally
200
+ ):
201
+ yield self.get_message(response)
202
+
203
+ def for_non_stream():
204
+ return self.get_message(
205
+ self.ask(
206
+ prompt,
207
+ False,
208
+ optimizer=optimizer,
209
+ conversationally=conversationally,
210
+ )
211
+ )
212
+
213
+ return for_stream() if stream else for_non_stream()
214
+
215
+ def get_message(self, response: dict) -> str:
216
+ """Retrieves message only from response
217
+
218
+ Args:
219
+ response (dict): Response generated by `self.ask`
220
+
221
+ Returns:
222
+ str: Message extracted
223
+ """
224
+ assert isinstance(response, dict), "Response should be of dict data-type only"
225
+ return response["text"]
226
+
227
+ if __name__ == '__main__':
228
+ from rich import print
229
+ ai = PrefindAI(model="claude")
230
+ response = ai.chat(input(">>> "))
231
+ for chunk in response:
232
+ print(chunk, end="", flush=True)
@@ -0,0 +1,191 @@
1
+ import requests
2
+ import uuid
3
+ import json
4
+
5
+ from webscout.AIutel import Optimizers
6
+ from webscout.AIutel import Conversation
7
+ from webscout.AIutel import AwesomePrompts
8
+ from webscout.AIbase import Provider
9
+ from fake_useragent import UserAgent
10
+
11
+ class PromptRefine(Provider):
12
+ """
13
+ A class to interact with the PromptRefine API.
14
+ """
15
+
16
+ def __init__(
17
+ self,
18
+ is_conversation: bool = True,
19
+ max_tokens: int = 600,
20
+ timeout: int = 30,
21
+ intro: str = None,
22
+ filepath: str = None,
23
+ update_file: bool = True,
24
+ proxies: dict = {},
25
+ history_offset: int = 10250,
26
+ act: str = None,
27
+ system_prompt: str = "You are a helpful AI assistant.",
28
+ model: str = "openai/gpt-4o", # Default model
29
+ ):
30
+ """
31
+ Initializes the PromptRefine API with given parameters.
32
+
33
+ Args:
34
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
35
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
36
+ timeout (int, optional): Http request timeout. Defaults to 30.
37
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
38
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
39
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
40
+ proxies (dict, optional): Http request proxies. Defaults to {}.
41
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
42
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
43
+ system_prompt (str, optional): System prompt for PromptRefine. Defaults to "You are a helpful AI assistant.".
44
+ model (str, optional): Model to use for generation. Defaults to "openai/gpt-4o".
45
+ """
46
+ self.session = requests.Session()
47
+ self.is_conversation = is_conversation
48
+ self.max_tokens_to_sample = max_tokens
49
+ self.api_endpoint = 'https://www.promptrefine.com/api/completion'
50
+ self.stream_chunk_size = 64
51
+ self.timeout = timeout
52
+ self.last_response = {}
53
+ self.system_prompt = system_prompt
54
+ self.model = model
55
+ self.headers = {
56
+ 'origin': 'https://www.promptrefine.com',
57
+ 'referer': 'https://www.promptrefine.com/prompt/new',
58
+ 'user-agent': UserAgent().random
59
+ }
60
+
61
+ self.__available_optimizers = (
62
+ method
63
+ for method in dir(Optimizers)
64
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
65
+ )
66
+ self.session.headers.update(self.headers)
67
+ Conversation.intro = (
68
+ AwesomePrompts().get_act(
69
+ act, raise_not_found=True, default=None, case_insensitive=True
70
+ )
71
+ if act
72
+ else intro or Conversation.intro
73
+ )
74
+ self.conversation = Conversation(
75
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
76
+ )
77
+ self.conversation.history_offset = history_offset
78
+ self.session.proxies = proxies
79
+
80
+ def ask(
81
+ self,
82
+ prompt: str,
83
+ stream: bool = False,
84
+ raw: bool = False,
85
+ optimizer: str = None,
86
+ conversationally: bool = False,
87
+ ) -> dict:
88
+ """Chat with PromptRefine
89
+
90
+ Args:
91
+ prompt (str): Prompt to be send.
92
+ stream (bool, optional): Flag for streaming response. Defaults to False.
93
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
94
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
95
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
96
+ Returns:
97
+ dict : {}
98
+ ```json
99
+ {
100
+ "text" : "How may I assist you today?"
101
+ }
102
+ ```
103
+ """
104
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
105
+ if optimizer:
106
+ if optimizer in self.__available_optimizers:
107
+ conversation_prompt = getattr(Optimizers, optimizer)(
108
+ conversation_prompt if conversationally else prompt
109
+ )
110
+ else:
111
+ raise Exception(
112
+ f"Optimizer is not one of {self.__available_optimizers}"
113
+ )
114
+
115
+ payload = {
116
+ "messages": [
117
+ {"role": "system", "content": self.system_prompt},
118
+ {"role": "user", "content": conversation_prompt}
119
+ ],
120
+ "variables": {},
121
+ "parameters": {},
122
+ "model": self.model,
123
+ "userId": str(uuid.uuid4()),
124
+ }
125
+
126
+ def for_stream():
127
+ response = self.session.post(self.api_endpoint, headers=self.headers, json=payload, stream=True, timeout=self.timeout)
128
+ if not response.ok:
129
+ raise Exception(
130
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
131
+ )
132
+
133
+ full_response = ""
134
+ for line in response.iter_lines(decode_unicode=True):
135
+ if line:
136
+ full_response += line # No need to decode here
137
+ yield full_response if raw else dict(text=full_response)
138
+ self.last_response.update(dict(text=full_response))
139
+ self.conversation.update_chat_history(
140
+ prompt, self.get_message(self.last_response)
141
+ )
142
+
143
+ def for_non_stream():
144
+ for _ in for_stream():
145
+ pass
146
+ return self.last_response
147
+
148
+ return for_stream() if stream else for_non_stream()
149
+
150
+ def chat(
151
+ self,
152
+ prompt: str,
153
+ stream: bool = False,
154
+ optimizer: str = None,
155
+ conversationally: bool = False,
156
+ ) -> str:
157
+ """Generate response `str`
158
+ Args:
159
+ prompt (str): Prompt to be send.
160
+ stream (bool, optional): Flag for streaming response. Defaults to False.
161
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
162
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
163
+ Returns:
164
+ str: Response generated
165
+ """
166
+ return self.get_message(
167
+ self.ask(
168
+ prompt,
169
+ optimizer=optimizer,
170
+ conversationally=conversationally,
171
+ )
172
+ )
173
+
174
+ def get_message(self, response: dict) -> str:
175
+ """Retrieves message only from response
176
+
177
+ Args:
178
+ response (dict): Response generated by `self.ask`
179
+
180
+ Returns:
181
+ str: Message extracted
182
+ """
183
+ assert isinstance(response, dict), "Response should be of dict data-type only"
184
+ return response["text"]
185
+
186
+ if __name__ == '__main__':
187
+ from rich import print
188
+ ai = PromptRefine()
189
+ response = ai.chat(input(">>> "))
190
+ for chunk in response:
191
+ print(chunk, end="", flush=True)