webscout 5.1__py3-none-any.whl → 5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

Files changed (40) hide show
  1. webscout/AIauto.py +83 -277
  2. webscout/AIbase.py +106 -4
  3. webscout/AIutel.py +41 -10
  4. webscout/Agents/Onlinesearcher.py +91 -104
  5. webscout/Agents/__init__.py +2 -1
  6. webscout/Agents/ai.py +186 -0
  7. webscout/Agents/functioncall.py +57 -27
  8. webscout/Bing_search.py +73 -43
  9. webscout/DWEBS.py +99 -77
  10. webscout/Local/_version.py +1 -1
  11. webscout/Provider/AI21.py +177 -0
  12. webscout/Provider/Chatify.py +174 -0
  13. webscout/Provider/Cloudflare.py +0 -4
  14. webscout/Provider/EDITEE.py +215 -0
  15. webscout/Provider/{Berlin4h.py → NetFly.py} +81 -82
  16. webscout/Provider/RUBIKSAI.py +11 -5
  17. webscout/Provider/TTI/PollinationsAI.py +138 -0
  18. webscout/Provider/TTI/__init__.py +2 -0
  19. webscout/Provider/TTI/deepinfra.py +148 -0
  20. webscout/Provider/TTS/__init__.py +2 -0
  21. webscout/Provider/TTS/streamElements.py +292 -0
  22. webscout/Provider/TTS/voicepod.py +118 -0
  23. webscout/Provider/{liaobots.py → TeachAnything.py} +31 -122
  24. webscout/Provider/__init__.py +14 -4
  25. webscout/Provider/ai4chat.py +14 -8
  26. webscout/Provider/cerebras.py +199 -0
  27. webscout/Provider/felo_search.py +28 -68
  28. webscout/Provider/x0gpt.py +181 -0
  29. webscout/__init__.py +4 -2
  30. webscout/exceptions.py +2 -1
  31. webscout/transcriber.py +195 -140
  32. webscout/version.py +1 -1
  33. {webscout-5.1.dist-info → webscout-5.3.dist-info}/METADATA +41 -82
  34. {webscout-5.1.dist-info → webscout-5.3.dist-info}/RECORD +38 -28
  35. webscout/async_providers.py +0 -21
  36. webscout/voice.py +0 -34
  37. {webscout-5.1.dist-info → webscout-5.3.dist-info}/LICENSE.md +0 -0
  38. {webscout-5.1.dist-info → webscout-5.3.dist-info}/WHEEL +0 -0
  39. {webscout-5.1.dist-info → webscout-5.3.dist-info}/entry_points.txt +0 -0
  40. {webscout-5.1.dist-info → webscout-5.3.dist-info}/top_level.txt +0 -0
@@ -1,100 +1,81 @@
1
1
  import json
2
+ import colorlog
2
3
  from webscout import WEBS
4
+ from webscout.Agents.ai import LLAMA3
3
5
  import httpx
4
6
  from bs4 import BeautifulSoup
5
7
  from typing import List, Dict
6
-
7
- class DeepInfra:
8
- def __init__(
9
- self,
10
- model: str = "meta-llama/Meta-Llama-3.1-70B-Instruct",
11
- max_tokens: int = 8000,
12
- timeout: int = 120,
13
- system_prompt: str = "You are a helpful AI assistant.",
14
- proxies: dict = {}
15
- ):
16
- self.model = model
17
- self.max_tokens = max_tokens
18
- self.timeout = timeout
19
- self.system_prompt = system_prompt
20
- self.chat_endpoint = "https://api.deepinfra.com/v1/openai/chat/completions"
21
-
22
- self.headers = {
23
- 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',
24
- 'Accept-Language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
25
- 'Cache-Control': 'no-cache',
26
- 'Connection': 'keep-alive',
27
- 'Content-Type': 'application/json',
28
- 'Origin': 'https://deepinfra.com',
29
- 'Pragma': 'no-cache',
30
- 'Referer': 'https://deepinfra.com/',
31
- 'Sec-Fetch-Dest': 'empty',
32
- 'Sec-Fetch-Mode': 'cors',
33
- 'Sec-Fetch-Site': 'same-site',
34
- 'X-Deepinfra-Source': 'web-embed',
35
- 'accept': 'text/event-stream',
36
- 'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A_Brand";v="24"',
37
- 'sec-ch-ua-mobile': '?0',
38
- 'sec-ch-ua-platform': '"macOS"'
39
- }
40
-
41
- self.client = httpx.Client(proxies=proxies, headers=self.headers)
42
-
43
- def ask(self, prompt: str, system_prompt: str = None) -> str:
44
- payload = {
45
- 'model': self.model,
46
- 'messages': [
47
- {"role": "system", "content": system_prompt or self.system_prompt},
48
- {"role": "user", "content": prompt},
49
- ],
50
- 'temperature': 0.7,
51
- 'max_tokens': self.max_tokens,
52
- 'stop': []
53
- }
54
-
55
- response = self.client.post(self.chat_endpoint, json=payload, timeout=self.timeout)
56
- if response.status_code != 200:
57
- raise Exception(f"Failed to generate response - ({response.status_code}, {response.reason_phrase}) - {response.text}")
58
-
59
- resp = response.json()
60
- return resp["choices"][0]["message"]["content"]
8
+ import logging
61
9
 
62
10
  class WebSearchAgent:
63
-
64
- def __init__(self, model="Qwen/Qwen2-72B-Instruct"):
11
+ def __init__(self):
65
12
  self.webs = WEBS()
66
- self.deepinfra = DeepInfra(model=model)
13
+ self.ai = LLAMA3(system="You are an advanced AI assistant specialized in generating optimal search queries and providing comprehensive answers based on web search results.")
67
14
 
68
- def generate_search_query(self, information):
15
+ def generate_search_queries(self, information, num_queries=3):
69
16
  prompt = f"""
17
+ Task: Generate {num_queries} optimal search queries based on the given information.
18
+
70
19
  Instructions:
71
- You are a smart online searcher for a large language model.
72
- Given information, you must create a search query to search the internet for relevant information.
73
- Your search query must be in the form of a json response.
74
- Exact json response format must be as follows:
75
-
20
+ 1. Analyze the provided information carefully.
21
+ 2. Identify key concepts, entities, and relationships.
22
+ 3. Formulate {num_queries} concise and specific search queries that will yield relevant results.
23
+ 4. Each query should focus on a different aspect or angle of the information.
24
+ 5. The queries should be in natural language, not in the form of keywords.
25
+ 6. Avoid unnecessary words or phrases that might limit the search results.
26
+
27
+ Your response must be in the following JSON format:
76
28
  {{
77
- "search_query": "your search query"
29
+ "search_queries": [
30
+ "Your first search query here",
31
+ "Your second search query here",
32
+ "Your third search query here"
33
+ ]
78
34
  }}
79
- - You must only provide ONE search query
80
- - You must provide the BEST search query for the given information
81
- - The search query must be normal text.
82
35
 
83
- Information: {information}
36
+ Ensure that:
37
+ - You provide exactly {num_queries} search queries.
38
+ - Each query is unique and focuses on a different aspect of the information.
39
+ - The queries are in plain text, suitable for a web search engine.
40
+
41
+ Information to base the search queries on:
42
+ {information}
43
+
44
+ Now, generate the optimal search queries:
84
45
  """
85
46
 
86
- response = self.deepinfra.ask(prompt)
87
- return json.loads(response)["search_query"]
47
+ response = ""
48
+ for chunk in self.ai.chat(prompt):
49
+ response += chunk
50
+
51
+ try:
52
+ json_response = json.loads(response)
53
+ return json_response["search_queries"]
54
+ except json.JSONDecodeError:
55
+ print(f"Warning: Failed to parse JSON. Raw response: {response}")
56
+ # Fallback: try to extract queries manually
57
+ queries = []
58
+ for line in response.split('\n'):
59
+ if line.strip().startswith('"') and line.strip().endswith('"'):
60
+ queries.append(line.strip(' "'))
61
+ if queries:
62
+ return queries[:num_queries]
63
+ else:
64
+ print(f"Warning: Using original information as search query.")
65
+ return [information]
88
66
 
89
67
  def search(self, information, region='wt-wt', safesearch='off', timelimit='y', max_results=5):
90
- search_query = self.generate_search_query(information)
68
+ search_queries = self.generate_search_queries(information)
69
+ all_results = []
91
70
 
92
- results = []
93
- with self.webs as webs:
94
- for result in webs.text(search_query, region=region, safesearch=safesearch, timelimit=timelimit, max_results=max_results):
95
- results.append(result)
71
+ for query in search_queries:
72
+ results = []
73
+ with self.webs as webs:
74
+ for result in webs.text(query, region=region, safesearch=safesearch, timelimit=timelimit, max_results=max_results):
75
+ results.append(result)
76
+ all_results.extend(results)
96
77
 
97
- return results
78
+ return all_results
98
79
 
99
80
  def extract_urls(self, results):
100
81
  urls = []
@@ -102,7 +83,7 @@ class WebSearchAgent:
102
83
  url = result.get('href')
103
84
  if url:
104
85
  urls.append(url)
105
- return list(set(urls)) # Remove duplicates
86
+ return list(set(urls))
106
87
 
107
88
  def fetch_webpage(self, url: str) -> str:
108
89
  try:
@@ -110,16 +91,11 @@ class WebSearchAgent:
110
91
  if response.status_code == 200:
111
92
  html = response.text
112
93
  soup = BeautifulSoup(html, 'html.parser')
113
-
114
- # Extract text from <p> tags
115
94
  paragraphs = soup.find_all('p')
116
95
  text = ' '.join([p.get_text() for p in paragraphs])
117
-
118
- # Limit the text to around 4000 words
119
96
  words = text.split()
120
- if len(words) > 4000:
121
- text = ' '.join(words[:4000]) + '...'
122
-
97
+ if len(words) > 150:
98
+ text = ' '.join(words[:150]) + '...'
123
99
  return text
124
100
  else:
125
101
  return f"Failed to fetch {url}: HTTP {response.status}"
@@ -134,34 +110,44 @@ class WebSearchAgent:
134
110
  return contents
135
111
 
136
112
  class OnlineSearcher:
137
- def __init__(self, model="meta-llama/Meta-Llama-3.1-405B-Instruct"):
138
- self.agent = WebSearchAgent(model)
139
- self.deepinfra = DeepInfra(model="model")
113
+ def __init__(self):
114
+ self.agent = WebSearchAgent()
115
+ self.ai = LLAMA3(system="You are an advanced AI assistant specialized in providing comprehensive and accurate answers based on web search results and your general knowledge.")
140
116
 
141
- def answer_question(self, question: str) -> str:
142
- # Perform web search
117
+ def answer_question(self, question: str):
143
118
  search_results = self.agent.search(question)
144
-
145
- # Extract URLs
146
119
  urls = self.agent.extract_urls(search_results)
147
-
148
- # Fetch webpage contents
149
120
  webpage_contents = self.agent.fetch_all_webpages(urls)
150
121
 
151
- # Prepare context for AI
152
- context = "Based on the following search results and webpage contents:\n\n"
122
+ context = "Web search results and extracted content:\n\n"
153
123
  for i, result in enumerate(search_results, 1):
154
124
  context += f"{i}. Title: {result['title']}\n URL: {result['href']}\n Snippet: {result['body']}\n\n"
155
125
 
156
126
  context += "Extracted webpage contents:\n"
157
127
  for i, webpage in enumerate(webpage_contents):
158
- context += f"{i}. URL: {webpage['url']}\n Content: {webpage['content'][:4000]}...\n\n"
128
+ context += f"{i}. URL: {webpage['url']}\n Content: {webpage['content'][:150]}...\n\n"
129
+
130
+ prompt = f"""
131
+ Task: Provide a comprehensive and accurate answer to the given question based on the provided web search results and your general knowledge.
159
132
 
160
- # Generate answer using AI
161
- prompt = f"{context}\n\nQuestion: {question}\n\nPlease provide a comprehensive answer to the question based on the search results and webpage contents above. Include relevant webpage URLs in your answer when appropriate. If the search results and webpage contents don't contain relevant information, please state that and provide the best answer you can based on your general knowledge. [YOUR RESPONSE WITH SOURCE LINKS ([➊](URL))"
133
+ Question: {question}
134
+
135
+ Context:
136
+ {context}
137
+
138
+ Instructions:
139
+ 1. Carefully analyze the provided web search results and extracted content.
140
+ 2. Synthesize the information to form a coherent and comprehensive answer.
141
+ 3. If the search results contain relevant information, incorporate it into your answer.
142
+ 4. Don't provide irrelevant information, and don't say "according to web page".
143
+ 5. If the search results don't contain sufficient information, clearly state this and provide the best answer based on your general knowledge.
144
+ 6. Ensure your answer is well-structured, factual, and directly addresses the question.
145
+ 7. If appropriate, provide additional context or related information that might be helpful.
146
+
147
+ Your response should be informative, accurate, and properly sourced when possible. Begin your answer now:
148
+ """
162
149
 
163
- answer = self.deepinfra.ask(prompt)
164
- return answer
150
+ return self.ai.chat(prompt)
165
151
 
166
152
  # Usage example
167
153
  if __name__ == "__main__":
@@ -170,6 +156,7 @@ if __name__ == "__main__":
170
156
  question = input(">>> ")
171
157
  if question.lower() == 'quit':
172
158
  break
173
- answer = assistant.answer_question(question)
174
- print(answer)
175
- print("\n" + "-"*50 + "\n")
159
+ print("\n" + "="*50)
160
+ for chunk in assistant.answer_question(question):
161
+ print(chunk, end="", flush=True)
162
+ print("\n" + "="*50)
@@ -1,2 +1,3 @@
1
1
  from .Onlinesearcher import *
2
- from .functioncall import *
2
+ from .functioncall import *
3
+ from .ai import *
webscout/Agents/ai.py ADDED
@@ -0,0 +1,186 @@
1
+ import requests
2
+ import json
3
+ from webscout.AIutel import Optimizers
4
+ from webscout.AIutel import Conversation
5
+ from webscout.AIutel import AwesomePrompts
6
+ from webscout.AIbase import Provider
7
+
8
+ class LLAMA3(Provider):
9
+
10
+ AVAILABLE_MODELS = ["llama3-70b", "llama3-8b", "llama3-405b"]
11
+
12
+ def __init__(
13
+ self,
14
+ is_conversation: bool = True,
15
+ max_tokens: int = 600,
16
+ timeout: int = 30,
17
+ intro: str = None,
18
+ filepath: str = None,
19
+ update_file: bool = True,
20
+ proxies: dict = {},
21
+ history_offset: int = 10250,
22
+ act: str = None,
23
+ model: str = "llama3-8b",
24
+ system: str = "GPT syle",
25
+ ):
26
+ """Instantiates Snova
27
+
28
+ Args:
29
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
30
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
31
+ timeout (int, optional): Http request timeout. Defaults to 30.
32
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
33
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
34
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
35
+ proxies (dict, optional): Http request proxies. Defaults to {}.
36
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
37
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
38
+ model (str, optional): Snova model name. Defaults to "llama3-70b".
39
+ system (str, optional): System prompt for Snova. Defaults to "Answer as concisely as possible.".
40
+ """
41
+ if model not in self.AVAILABLE_MODELS:
42
+ raise ValueError(f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}")
43
+
44
+ self.session = requests.Session()
45
+ self.is_conversation = is_conversation
46
+ self.max_tokens_to_sample = max_tokens
47
+ self.timeout = timeout
48
+ self.model = model
49
+ self.system = system
50
+ self.last_response = {}
51
+ self.env_type = "tp16405b" if "405b" in model else "tp16"
52
+ self.headers = {'content-type': 'application/json'}
53
+
54
+ self.__available_optimizers = (
55
+ method
56
+ for method in dir(Optimizers)
57
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
58
+ )
59
+ self.session.headers.update(self.headers)
60
+ Conversation.intro = (
61
+ AwesomePrompts().get_act(
62
+ act, raise_not_found=True, default=None, case_insensitive=True
63
+ )
64
+ if act
65
+ else intro or Conversation.intro
66
+ )
67
+ self.conversation = Conversation(
68
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
69
+ )
70
+ self.conversation.history_offset = history_offset
71
+ self.session.proxies = proxies
72
+
73
+ def ask(
74
+ self,
75
+ prompt: str,
76
+ stream: bool = False,
77
+ raw: bool = False,
78
+ optimizer: str = None,
79
+ conversationally: bool = False,
80
+ ) -> dict:
81
+ """Chat with AI
82
+
83
+ Args:
84
+ prompt (str): Prompt to be send.
85
+ stream (bool, optional): Flag for streaming response. Defaults to False.
86
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
87
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
88
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
89
+ Returns:
90
+ dict : {}
91
+ ```json
92
+ {
93
+ "text" : "How may I assist you today?"
94
+ }
95
+ ```
96
+ """
97
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
98
+ if optimizer:
99
+ if optimizer in self.__available_optimizers:
100
+ conversation_prompt = getattr(Optimizers, optimizer)(
101
+ conversation_prompt if conversationally else prompt
102
+ )
103
+ else:
104
+ raise Exception(
105
+ f"Optimizer is not one of {self.__available_optimizers}"
106
+ )
107
+ data = {'body': {'messages': [{'role': 'system', 'content': self.system}, {'role': 'user', 'content': conversation_prompt}], 'stream': True, 'model': self.model}, 'env_type': self.env_type}
108
+
109
+ def for_stream(data=data): # Pass data as a default argument
110
+ response = self.session.post('https://fast.snova.ai/api/completion', headers=self.headers, json=data, stream=True, timeout=self.timeout)
111
+ output = ''
112
+ for line in response.iter_lines(decode_unicode=True):
113
+ if line.startswith('data:'):
114
+ try:
115
+ data = json.loads(line[len('data: '):])
116
+ output += data.get("choices", [{}])[0].get("delta", {}).get("content", '')
117
+ self.last_response.update(dict(text=output))
118
+ yield data if raw else dict(text=output)
119
+ except json.JSONDecodeError:
120
+ if line[len('data: '):] == '[DONE]':
121
+ break
122
+ self.conversation.update_chat_history(
123
+ prompt, self.get_message(self.last_response)
124
+ )
125
+
126
+ def for_non_stream():
127
+ for _ in for_stream():
128
+ pass
129
+ return self.last_response
130
+
131
+ return for_stream() if stream else for_non_stream()
132
+
133
+ def chat(
134
+ self,
135
+ prompt: str,
136
+ stream: bool = False,
137
+ optimizer: str = None,
138
+ conversationally: bool = False,
139
+ ) -> str:
140
+ """Generate response `str`
141
+ Args:
142
+ prompt (str): Prompt to be send.
143
+ stream (bool, optional): Flag for streaming response. Defaults to False.
144
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
145
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
146
+ Returns:
147
+ str: Response generated
148
+ """
149
+
150
+ def for_stream():
151
+ for response in self.ask(
152
+ prompt, True, optimizer=optimizer, conversationally=conversationally
153
+ ):
154
+ yield self.get_message(response)
155
+
156
+ def for_non_stream():
157
+ return self.get_message(
158
+ self.ask(
159
+ prompt,
160
+ False,
161
+ optimizer=optimizer,
162
+ conversationally=conversationally,
163
+ )
164
+ )
165
+
166
+ return for_stream() if stream else for_non_stream()
167
+
168
+ def get_message(self, response: dict) -> str:
169
+ """Retrieves message only from response
170
+
171
+ Args:
172
+ response (dict): Response generated by `self.ask`
173
+
174
+ Returns:
175
+ str: Message extracted
176
+ """
177
+ assert isinstance(response, dict), "Response should be of dict data-type only"
178
+ return response["text"]
179
+ if __name__ == "__main__":
180
+ from rich import print
181
+
182
+ ai = LLAMA3()
183
+ # Stream the response
184
+ response = ai.chat(input(">>> "))
185
+ for chunk in response:
186
+ print(chunk, end="", flush=True)
@@ -1,6 +1,62 @@
1
1
  import json
2
2
  import logging
3
- from webscout import LLAMA3, WEBS
3
+ import time
4
+ from typing import Any, Dict, Optional
5
+
6
+ import requests
7
+ from webscout import WEBS # Import only WEBS from webscout
8
+
9
+ class LLAMA3:
10
+
11
+ AVAILABLE_MODELS = ["llama3-70b", "llama3-8b", "llama3-405b"]
12
+
13
+ def __init__(
14
+ self,
15
+ is_conversation: bool = True,
16
+ max_tokens: int = 600,
17
+ timeout: int = 30,
18
+ model: str = "llama3-8b",
19
+ system: str = "GPT syle",
20
+ proxies: dict = {}, # Add proxies parameter
21
+ ):
22
+ """Instantiates Snova
23
+
24
+ Args:
25
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
26
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
27
+ timeout (int, optional): Http request timeout. Defaults to 30.
28
+ model (str, optional): Snova model name. Defaults to "llama3-70b".
29
+ system (str, optional): System prompt for Snova. Defaults to "Answer as concisely as possible.".
30
+ proxies (dict, optional): Proxy settings for requests. Defaults to an empty dictionary.
31
+ """
32
+ if model not in self.AVAILABLE_MODELS:
33
+ raise ValueError(f"Invalid model: {model}. Choose from: {self.AVAILABLE_MODELS}")
34
+
35
+ self.session = requests.Session()
36
+ self.is_conversation = is_conversation
37
+ self.max_tokens_to_sample = max_tokens
38
+ self.timeout = timeout
39
+ self.model = model
40
+ self.system = system
41
+ self.last_response = {}
42
+ self.env_type = "tp16405b" if "405b" in model else "tp16"
43
+ self.headers = {'content-type': 'application/json'}
44
+ self.session.headers.update(self.headers)
45
+ self.session.proxies = proxies
46
+
47
+ def chat(self, prompt: str) -> str:
48
+ data = {'body': {'messages': [{'role': 'system', 'content': self.system}, {'role': 'user', 'content': prompt}], 'stream': True, 'model': self.model}, 'env_type': self.env_type}
49
+ response = self.session.post('https://fast.snova.ai/api/completion', headers=self.headers, json=data, stream=True, timeout=self.timeout)
50
+ output = ''
51
+ for line in response.iter_lines(decode_unicode=True):
52
+ if line.startswith('data:'):
53
+ try:
54
+ data = json.loads(line[len('data: '):])
55
+ output += data.get("choices", [{}])[0].get("delta", {}).get("content", '')
56
+ except json.JSONDecodeError:
57
+ if line[len('data: '):] == '[DONE]':
58
+ break
59
+ return output
4
60
 
5
61
  class FunctionCallingAgent:
6
62
  def __init__(self, model: str = "llama3-8b",
@@ -66,32 +122,6 @@ class FunctionCallingAgent:
66
122
 
67
123
  logging.info(f"Executing function: {function_name} with arguments: {arguments}")
68
124
 
69
- # if function_name == "web_search":
70
- # return self._handle_web_search(arguments)
71
- # elif function_name == "general_ai":
72
- # return self._handle_general_ai(arguments)
73
- # else:
74
- # return f"Function '{function_name}' is not implemented."
75
-
76
- # def _handle_web_search(self, arguments: dict) -> str:
77
- # query = arguments.get("query")
78
- # if not query:
79
- # return "Please provide a search query."
80
-
81
- # search_results = self.webs.text(query, max_results=3)
82
- # formatted_results = "\n\n".join(
83
- # f"{i+1}. {result['title']}\n{result['body']}\nURL: {result['href']}"
84
- # for i, result in enumerate(search_results)
85
- # )
86
- # return f"Here's what I found:\n\n{formatted_results}"
87
-
88
- # def _handle_general_ai(self, arguments: dict) -> str:
89
- # question = arguments.get("question")
90
- # if not question:
91
- # return "Please provide a question for the AI to answer."
92
-
93
- # response = self.LLAMA3.chat(question)
94
- # return response
95
125
 
96
126
  # Example usage
97
127
  if __name__ == "__main__":