webscout 5.1__py3-none-any.whl → 5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- webscout/AIauto.py +83 -277
- webscout/AIbase.py +106 -4
- webscout/AIutel.py +31 -0
- webscout/Agents/Onlinesearcher.py +91 -104
- webscout/Agents/__init__.py +2 -1
- webscout/Agents/ai.py +186 -0
- webscout/Agents/functioncall.py +57 -27
- webscout/Bing_search.py +73 -43
- webscout/Local/_version.py +1 -1
- webscout/Provider/AI21.py +177 -0
- webscout/Provider/Cloudflare.py +0 -4
- webscout/Provider/EDITEE.py +215 -0
- webscout/Provider/NetFly.py +256 -0
- webscout/Provider/TTI/PollinationsAI.py +138 -0
- webscout/Provider/TTI/__init__.py +2 -0
- webscout/Provider/TTI/deepinfra.py +148 -0
- webscout/Provider/TTS/__init__.py +2 -0
- webscout/Provider/TTS/streamElements.py +296 -0
- webscout/Provider/TTS/voicepod.py +114 -0
- webscout/Provider/TeachAnything.py +177 -0
- webscout/Provider/__init__.py +8 -0
- webscout/__init__.py +2 -0
- webscout/version.py +1 -1
- {webscout-5.1.dist-info → webscout-5.2.dist-info}/METADATA +32 -12
- {webscout-5.1.dist-info → webscout-5.2.dist-info}/RECORD +29 -19
- webscout/async_providers.py +0 -21
- {webscout-5.1.dist-info → webscout-5.2.dist-info}/LICENSE.md +0 -0
- {webscout-5.1.dist-info → webscout-5.2.dist-info}/WHEEL +0 -0
- {webscout-5.1.dist-info → webscout-5.2.dist-info}/entry_points.txt +0 -0
- {webscout-5.1.dist-info → webscout-5.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,256 @@
|
|
|
1
|
+
import time
|
|
2
|
+
import uuid
|
|
3
|
+
from selenium import webdriver
|
|
4
|
+
from selenium.webdriver.chrome.options import Options
|
|
5
|
+
from selenium.webdriver.common.by import By
|
|
6
|
+
from selenium.webdriver.support import expected_conditions as EC
|
|
7
|
+
from selenium.webdriver.support.ui import WebDriverWait
|
|
8
|
+
import click
|
|
9
|
+
import requests
|
|
10
|
+
from requests import get
|
|
11
|
+
from uuid import uuid4
|
|
12
|
+
from re import findall
|
|
13
|
+
from requests.exceptions import RequestException
|
|
14
|
+
from curl_cffi.requests import get, RequestsError
|
|
15
|
+
import g4f
|
|
16
|
+
from random import randint
|
|
17
|
+
from PIL import Image
|
|
18
|
+
import io
|
|
19
|
+
import re
|
|
20
|
+
import json
|
|
21
|
+
import yaml
|
|
22
|
+
from webscout.AIutel import Optimizers
|
|
23
|
+
from webscout.AIutel import Conversation
|
|
24
|
+
from webscout.AIutel import AwesomePrompts, sanitize_stream
|
|
25
|
+
from webscout.AIbase import Provider, AsyncProvider
|
|
26
|
+
from webscout import exceptions
|
|
27
|
+
from typing import Any, AsyncGenerator, Dict
|
|
28
|
+
import logging
|
|
29
|
+
import httpx
|
|
30
|
+
|
|
31
|
+
class NetFly(Provider):
|
|
32
|
+
"""
|
|
33
|
+
A class to interact with the NetFly API.
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
AVAILABLE_MODELS = ["gpt-3.5-turbo"]
|
|
37
|
+
|
|
38
|
+
def __init__(
|
|
39
|
+
self,
|
|
40
|
+
is_conversation: bool = True,
|
|
41
|
+
max_tokens: int = 600,
|
|
42
|
+
timeout: int = 30,
|
|
43
|
+
intro: str = None,
|
|
44
|
+
filepath: str = None,
|
|
45
|
+
update_file: bool = True,
|
|
46
|
+
proxies: dict = {},
|
|
47
|
+
history_offset: int = 10250,
|
|
48
|
+
act: str = None,
|
|
49
|
+
model: str = "gpt-3.5-turbo",
|
|
50
|
+
system_prompt: str = "You are a helpful and friendly AI assistant.",
|
|
51
|
+
):
|
|
52
|
+
"""
|
|
53
|
+
Initializes the NetFly API with given parameters.
|
|
54
|
+
|
|
55
|
+
Args:
|
|
56
|
+
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
|
|
57
|
+
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
|
|
58
|
+
timeout (int, optional): Http request timeout. Defaults to 30.
|
|
59
|
+
intro (str, optional): Conversation introductory prompt. Defaults to None.
|
|
60
|
+
filepath (str, optional): Path to file containing conversation history. Defaults to None.
|
|
61
|
+
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
|
|
62
|
+
proxies (dict, optional): Http request proxies. Defaults to {}.
|
|
63
|
+
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
|
|
64
|
+
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
|
|
65
|
+
model (str, optional): AI model to use for text generation. Defaults to "gpt-3.5-turbo".
|
|
66
|
+
system_prompt (str, optional): System prompt for NetFly. Defaults to the provided string.
|
|
67
|
+
"""
|
|
68
|
+
if model not in self.AVAILABLE_MODELS:
|
|
69
|
+
raise ValueError(f"Invalid model: {model}. Available model is: {self.AVAILABLE_MODELS[0]}")
|
|
70
|
+
|
|
71
|
+
self.session = requests.Session()
|
|
72
|
+
self.is_conversation = is_conversation
|
|
73
|
+
self.max_tokens_to_sample = max_tokens
|
|
74
|
+
self.api_endpoint = "https://free.netfly.top/api/openai/v1/chat/completions"
|
|
75
|
+
self.stream_chunk_size = 64
|
|
76
|
+
self.timeout = timeout
|
|
77
|
+
self.last_response = {}
|
|
78
|
+
self.model = model
|
|
79
|
+
self.system_prompt = system_prompt
|
|
80
|
+
self.headers = {
|
|
81
|
+
"accept": "application/json, text/event-stream",
|
|
82
|
+
"accept-encoding": "gzip, deflate, br, zstd",
|
|
83
|
+
"accept-language": "en-US,en;q=0.9,en-IN;q=0.8",
|
|
84
|
+
"content-type": "application/json",
|
|
85
|
+
"dnt": "1",
|
|
86
|
+
"origin": "https://free.netfly.top",
|
|
87
|
+
"referer": "https://free.netfly.top/",
|
|
88
|
+
"sec-ch-ua": '"Not)A;Brand";v="99", "Microsoft Edge";v="127", "Chromium";v="127"',
|
|
89
|
+
"sec-ch-ua-mobile": "?0",
|
|
90
|
+
"sec-ch-ua-platform": '"Windows"',
|
|
91
|
+
"sec-fetch-dest": "empty",
|
|
92
|
+
"sec-fetch-mode": "cors",
|
|
93
|
+
"sec-fetch-site": "same-origin",
|
|
94
|
+
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0"
|
|
95
|
+
}
|
|
96
|
+
|
|
97
|
+
self.__available_optimizers = (
|
|
98
|
+
method
|
|
99
|
+
for method in dir(Optimizers)
|
|
100
|
+
if callable(getattr(Optimizers, method)) and not method.startswith("__")
|
|
101
|
+
)
|
|
102
|
+
self.session.headers.update(self.headers)
|
|
103
|
+
Conversation.intro = (
|
|
104
|
+
AwesomePrompts().get_act(
|
|
105
|
+
act, raise_not_found=True, default=None, case_insensitive=True
|
|
106
|
+
)
|
|
107
|
+
if act
|
|
108
|
+
else intro or Conversation.intro
|
|
109
|
+
)
|
|
110
|
+
self.conversation = Conversation(
|
|
111
|
+
is_conversation, self.max_tokens_to_sample, filepath, update_file
|
|
112
|
+
)
|
|
113
|
+
self.conversation.history_offset = history_offset
|
|
114
|
+
self.session.proxies = proxies
|
|
115
|
+
|
|
116
|
+
def ask(
|
|
117
|
+
self,
|
|
118
|
+
prompt: str,
|
|
119
|
+
stream: bool = False,
|
|
120
|
+
raw: bool = False,
|
|
121
|
+
optimizer: str = None,
|
|
122
|
+
conversationally: bool = False,
|
|
123
|
+
) -> dict:
|
|
124
|
+
"""Chat with AI
|
|
125
|
+
|
|
126
|
+
Args:
|
|
127
|
+
prompt (str): Prompt to be send.
|
|
128
|
+
stream (bool, optional): Whether to stream the response. Defaults to False.
|
|
129
|
+
raw (bool, optional): Whether to return the raw response. Defaults to False.
|
|
130
|
+
optimizer (str, optional): The name of the optimizer to use. Defaults to None.
|
|
131
|
+
conversationally (bool, optional): Whether to chat conversationally. Defaults to False.
|
|
132
|
+
|
|
133
|
+
Returns:
|
|
134
|
+
The response from the API.
|
|
135
|
+
"""
|
|
136
|
+
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
|
|
137
|
+
if optimizer:
|
|
138
|
+
if optimizer in self.__available_optimizers:
|
|
139
|
+
conversation_prompt = getattr(Optimizers, optimizer)(
|
|
140
|
+
conversation_prompt if conversationally else prompt
|
|
141
|
+
)
|
|
142
|
+
else:
|
|
143
|
+
raise Exception(
|
|
144
|
+
f"Optimizer is not one of {self.__available_optimizers}"
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
payload = {
|
|
148
|
+
"messages": [
|
|
149
|
+
{"role": "system", "content": self.system_prompt},
|
|
150
|
+
{"role": "user", "content": conversation_prompt},
|
|
151
|
+
],
|
|
152
|
+
"stream": True,
|
|
153
|
+
"model": self.model,
|
|
154
|
+
"temperature": 0.5,
|
|
155
|
+
"presence_penalty": 0,
|
|
156
|
+
"frequency_penalty": 0,
|
|
157
|
+
"top_p": 1
|
|
158
|
+
}
|
|
159
|
+
|
|
160
|
+
def for_stream():
|
|
161
|
+
response = self.session.post(
|
|
162
|
+
self.api_endpoint, json=payload, headers=self.headers, stream=True, timeout=self.timeout
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
if not response.ok:
|
|
166
|
+
raise exceptions.FailedToGenerateResponseError(
|
|
167
|
+
f"Failed to generate response - ({response.status_code}, {response.reason})"
|
|
168
|
+
)
|
|
169
|
+
buffer = ""
|
|
170
|
+
for line in response.iter_lines(decode_unicode=True):
|
|
171
|
+
if line:
|
|
172
|
+
if line.startswith("data: "):
|
|
173
|
+
json_data = line[6:]
|
|
174
|
+
if json_data == "[DONE]":
|
|
175
|
+
break
|
|
176
|
+
try:
|
|
177
|
+
data = json.loads(json_data)
|
|
178
|
+
# Check if 'content' key exists in 'delta' dictionary
|
|
179
|
+
if 'content' in data["choices"][0]["delta"]:
|
|
180
|
+
content = data["choices"][0]["delta"].get("content", "")
|
|
181
|
+
buffer += content
|
|
182
|
+
# Check for completion marker (period in this case)
|
|
183
|
+
if buffer.endswith(".") or buffer.endswith("\n"):
|
|
184
|
+
yield buffer if raw else dict(text=buffer)
|
|
185
|
+
buffer = "" # Clear the buffer
|
|
186
|
+
except json.decoder.JSONDecodeError:
|
|
187
|
+
continue
|
|
188
|
+
|
|
189
|
+
# Yield any remaining text in the buffer
|
|
190
|
+
if buffer:
|
|
191
|
+
yield buffer if raw else dict(text=buffer)
|
|
192
|
+
|
|
193
|
+
self.last_response.update(dict(text=buffer))
|
|
194
|
+
self.conversation.update_chat_history(
|
|
195
|
+
prompt, self.get_message(self.last_response)
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
def for_non_stream():
|
|
199
|
+
for _ in for_stream():
|
|
200
|
+
pass
|
|
201
|
+
return self.last_response
|
|
202
|
+
|
|
203
|
+
return for_stream() if stream else for_non_stream()
|
|
204
|
+
|
|
205
|
+
def chat(
|
|
206
|
+
self,
|
|
207
|
+
prompt: str,
|
|
208
|
+
stream: bool = False,
|
|
209
|
+
optimizer: str = None,
|
|
210
|
+
conversationally: bool = False,
|
|
211
|
+
) -> str:
|
|
212
|
+
"""Generate response `str`
|
|
213
|
+
Args:
|
|
214
|
+
prompt (str): Prompt to be send.
|
|
215
|
+
stream (bool, optional): Flag for streaming response. Defaults to False.
|
|
216
|
+
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
|
|
217
|
+
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
|
|
218
|
+
Returns:
|
|
219
|
+
str: Response generated
|
|
220
|
+
"""
|
|
221
|
+
|
|
222
|
+
def for_stream():
|
|
223
|
+
for response in self.ask(
|
|
224
|
+
prompt, True, optimizer=optimizer, conversationally=conversationally
|
|
225
|
+
):
|
|
226
|
+
yield self.get_message(response)
|
|
227
|
+
|
|
228
|
+
def for_non_stream():
|
|
229
|
+
return self.get_message(
|
|
230
|
+
self.ask(
|
|
231
|
+
prompt,
|
|
232
|
+
False,
|
|
233
|
+
optimizer=optimizer,
|
|
234
|
+
conversationally=conversationally,
|
|
235
|
+
)
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
return for_stream() if stream else for_non_stream()
|
|
239
|
+
|
|
240
|
+
def get_message(self, response: dict) -> str:
|
|
241
|
+
"""Retrieves message only from response
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
response (dict): Response generated by `self.ask`
|
|
245
|
+
|
|
246
|
+
Returns:
|
|
247
|
+
str: Message extracted
|
|
248
|
+
"""
|
|
249
|
+
assert isinstance(response, dict), "Response should be of dict data-type only"
|
|
250
|
+
return response["text"]
|
|
251
|
+
if __name__ == '__main__':
|
|
252
|
+
from rich import print
|
|
253
|
+
ai = NetFly()
|
|
254
|
+
response = ai.chat("tell me about india")
|
|
255
|
+
for chunk in response:
|
|
256
|
+
print(chunk, end="", flush=True)
|
|
@@ -0,0 +1,138 @@
|
|
|
1
|
+
import requests
|
|
2
|
+
import os
|
|
3
|
+
import time
|
|
4
|
+
from typing import List
|
|
5
|
+
from string import punctuation
|
|
6
|
+
from random import choice
|
|
7
|
+
from requests.exceptions import RequestException
|
|
8
|
+
|
|
9
|
+
from webscout.AIbase import ImageProvider
|
|
10
|
+
|
|
11
|
+
class PollinationsAI(ImageProvider):
|
|
12
|
+
"""Image provider for pollinations.ai"""
|
|
13
|
+
|
|
14
|
+
def __init__(self, timeout: int = 60, proxies: dict = {}):
|
|
15
|
+
"""Initializes the PollinationsAI class.
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
timeout (int, optional): HTTP request timeout in seconds. Defaults to 60.
|
|
19
|
+
proxies (dict, optional): HTTP request proxies (socks). Defaults to {}.
|
|
20
|
+
"""
|
|
21
|
+
self.image_gen_endpoint = "https://image.pollinations.ai/prompt/{prompt}?width={width}&height={height}&model={model}"
|
|
22
|
+
self.headers = {
|
|
23
|
+
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
|
|
24
|
+
"Accept-Language": "en-US,en;q=0.5",
|
|
25
|
+
"Accept-Encoding": "gzip, deflate",
|
|
26
|
+
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:122.0) Gecko/20100101 Firefox/122.0",
|
|
27
|
+
}
|
|
28
|
+
self.session = requests.Session()
|
|
29
|
+
self.session.headers.update(self.headers)
|
|
30
|
+
self.session.proxies.update(proxies)
|
|
31
|
+
self.timeout = timeout
|
|
32
|
+
self.prompt: str = "AI-generated image - webscout"
|
|
33
|
+
self.image_extension: str = "jpeg"
|
|
34
|
+
|
|
35
|
+
def generate(
|
|
36
|
+
self, prompt: str, amount: int = 1, additives: bool = True,
|
|
37
|
+
width: int = 768, height: int = 768, model: str = "flux",
|
|
38
|
+
max_retries: int = 3, retry_delay: int = 5
|
|
39
|
+
) -> List[bytes]:
|
|
40
|
+
"""Generate image from prompt
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
prompt (str): Image description.
|
|
44
|
+
amount (int): Total images to be generated. Defaults to 1.
|
|
45
|
+
additives (bool, optional): Try to make each prompt unique. Defaults to True.
|
|
46
|
+
width (int, optional): Width of the generated image. Defaults to 768.
|
|
47
|
+
height (int, optional): Height of the generated image. Defaults to 768.
|
|
48
|
+
model (str, optional): The model to use for image generation. Defaults to "flux".
|
|
49
|
+
max_retries (int, optional): Maximum number of retry attempts. Defaults to 3.
|
|
50
|
+
retry_delay (int, optional): Delay between retries in seconds. Defaults to 5.
|
|
51
|
+
|
|
52
|
+
Returns:
|
|
53
|
+
List[bytes]: List of generated images as bytes.
|
|
54
|
+
"""
|
|
55
|
+
assert bool(prompt), "Prompt cannot be null"
|
|
56
|
+
assert isinstance(amount, int), f"Amount should be an integer only not {type(amount)}"
|
|
57
|
+
assert amount > 0, "Amount should be greater than 0"
|
|
58
|
+
|
|
59
|
+
ads = lambda: (
|
|
60
|
+
""
|
|
61
|
+
if not additives
|
|
62
|
+
else choice(punctuation)
|
|
63
|
+
+ choice(punctuation)
|
|
64
|
+
+ choice(punctuation)
|
|
65
|
+
+ choice(punctuation)
|
|
66
|
+
+ choice(punctuation)
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
self.prompt = prompt
|
|
70
|
+
response = []
|
|
71
|
+
for _ in range(amount):
|
|
72
|
+
url = self.image_gen_endpoint.format(
|
|
73
|
+
prompt=prompt + ads(), width=width, height=height, model=model
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
for attempt in range(max_retries):
|
|
77
|
+
try:
|
|
78
|
+
resp = self.session.get(url, timeout=self.timeout)
|
|
79
|
+
resp.raise_for_status()
|
|
80
|
+
response.append(resp.content)
|
|
81
|
+
break
|
|
82
|
+
except RequestException as e:
|
|
83
|
+
if attempt == max_retries - 1:
|
|
84
|
+
print(f"Failed to generate image after {max_retries} attempts: {e}")
|
|
85
|
+
raise
|
|
86
|
+
else:
|
|
87
|
+
print(f"Attempt {attempt + 1} failed. Retrying in {retry_delay} seconds...")
|
|
88
|
+
time.sleep(retry_delay)
|
|
89
|
+
|
|
90
|
+
return response
|
|
91
|
+
|
|
92
|
+
def save(
|
|
93
|
+
self,
|
|
94
|
+
response: List[bytes],
|
|
95
|
+
name: str = None,
|
|
96
|
+
dir: str = os.getcwd(),
|
|
97
|
+
filenames_prefix: str = "",
|
|
98
|
+
) -> List[str]:
|
|
99
|
+
"""Save generated images
|
|
100
|
+
|
|
101
|
+
Args:
|
|
102
|
+
response (List[bytes]): List of generated images as bytes.
|
|
103
|
+
name (str): Filename for the images. Defaults to the last prompt.
|
|
104
|
+
dir (str, optional): Directory for saving images. Defaults to os.getcwd().
|
|
105
|
+
filenames_prefix (str, optional): String to be prefixed at each filename to be returned.
|
|
106
|
+
|
|
107
|
+
Returns:
|
|
108
|
+
List[str]: List of saved filenames.
|
|
109
|
+
"""
|
|
110
|
+
assert isinstance(response, list), f"Response should be of {list} not {type(response)}"
|
|
111
|
+
name = self.prompt if name is None else name
|
|
112
|
+
|
|
113
|
+
filenames = []
|
|
114
|
+
count = 0
|
|
115
|
+
for image in response:
|
|
116
|
+
def complete_path():
|
|
117
|
+
count_value = "" if count == 0 else f"_{count}"
|
|
118
|
+
return os.path.join(dir, name + count_value + "." + self.image_extension)
|
|
119
|
+
|
|
120
|
+
while os.path.isfile(complete_path()):
|
|
121
|
+
count += 1
|
|
122
|
+
|
|
123
|
+
absolute_path_to_file = complete_path()
|
|
124
|
+
filenames.append(filenames_prefix + os.path.split(absolute_path_to_file)[1])
|
|
125
|
+
|
|
126
|
+
with open(absolute_path_to_file, "wb") as fh:
|
|
127
|
+
fh.write(image)
|
|
128
|
+
|
|
129
|
+
return filenames
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
if __name__ == "__main__":
|
|
133
|
+
bot = PollinationsAI()
|
|
134
|
+
try:
|
|
135
|
+
resp = bot.generate("AI-generated image - webscout", 1)
|
|
136
|
+
print(bot.save(resp))
|
|
137
|
+
except Exception as e:
|
|
138
|
+
print(f"An error occurred: {e}")
|
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
import requests
|
|
2
|
+
import os
|
|
3
|
+
from typing import List
|
|
4
|
+
from string import punctuation
|
|
5
|
+
from random import choice
|
|
6
|
+
from random import randint
|
|
7
|
+
import base64
|
|
8
|
+
|
|
9
|
+
from webscout.AIbase import ImageProvider
|
|
10
|
+
|
|
11
|
+
class DeepInfraImager(ImageProvider):
|
|
12
|
+
"""DeepInfra Image provider"""
|
|
13
|
+
|
|
14
|
+
def __init__(
|
|
15
|
+
self,
|
|
16
|
+
model: str = "black-forest-labs/FLUX-1-dev",
|
|
17
|
+
timeout: int = 60,
|
|
18
|
+
proxies: dict = {},
|
|
19
|
+
):
|
|
20
|
+
"""Initializes `DeepInfraImager`
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
model (str, optional): The name of the DeepInfra model to use.
|
|
24
|
+
Defaults to "black-forest-labs/FLUX-1-dev".
|
|
25
|
+
timeout (int, optional): Http request timeout. Defaults to 60 seconds.
|
|
26
|
+
proxies (dict, optional): Http request proxies (socks). Defaults to {}.
|
|
27
|
+
"""
|
|
28
|
+
self.image_gen_endpoint: str = f"https://api.deepinfra.com/v1/inference/{model}"
|
|
29
|
+
self.headers = {
|
|
30
|
+
"Accept": "application/json, text/plain, */*",
|
|
31
|
+
"Accept-Language": "en-US,en;q=0.9,en-IN;q=0.8",
|
|
32
|
+
"Accept-Encoding": "gzip, deflate, br, zstd",
|
|
33
|
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0",
|
|
34
|
+
"DNT": "1",
|
|
35
|
+
"Origin": "https://deepinfra.com",
|
|
36
|
+
"Referer": "https://deepinfra.com/",
|
|
37
|
+
"Sec-CH-UA": '"Chromium";v="128", "Not;A=Brand";v="24", "Microsoft Edge";v="128"',
|
|
38
|
+
"Sec-CH-UA-Mobile": "?0",
|
|
39
|
+
"Sec-CH-UA-Platform": '"Windows"',
|
|
40
|
+
"Sec-Fetch-Dest": "empty",
|
|
41
|
+
"Sec-Fetch-Mode": "cors",
|
|
42
|
+
"Sec-Fetch-Site": "same-site"
|
|
43
|
+
}
|
|
44
|
+
self.session = requests.Session()
|
|
45
|
+
self.session.headers.update(self.headers)
|
|
46
|
+
self.session.proxies.update(proxies)
|
|
47
|
+
self.timeout = timeout
|
|
48
|
+
self.prompt: str = "AI-generated image - webscout"
|
|
49
|
+
self.image_extension: str = "png"
|
|
50
|
+
|
|
51
|
+
def generate(
|
|
52
|
+
self, prompt: str, amount: int = 1, additives: bool = True,
|
|
53
|
+
num_inference_steps: int = 25, guidance_scale: float = 7.5,
|
|
54
|
+
width: int = 1024, height: int = 1024, seed: int = None
|
|
55
|
+
) -> list[bytes]:
|
|
56
|
+
"""Generate image from prompt
|
|
57
|
+
|
|
58
|
+
Args:
|
|
59
|
+
prompt (str): Image description.
|
|
60
|
+
amount (int): Total images to be generated. Defaults to 1.
|
|
61
|
+
additives (bool, optional): Try to make each prompt unique. Defaults to True.
|
|
62
|
+
num_inference_steps (int, optional): Number of inference steps. Defaults to 39.
|
|
63
|
+
guidance_scale (float, optional): Guidance scale for image generation. Defaults to 13.3.
|
|
64
|
+
width (int, optional): Width of the generated image. Defaults to 1024.
|
|
65
|
+
height (int, optional): Height of the generated image. Defaults to 1024.
|
|
66
|
+
seed (int, optional): Random seed for image generation. If None, a random seed is used.
|
|
67
|
+
Defaults to None.
|
|
68
|
+
|
|
69
|
+
Returns:
|
|
70
|
+
list[bytes]: List of generated images as bytes.
|
|
71
|
+
"""
|
|
72
|
+
assert bool(prompt), "Prompt cannot be null"
|
|
73
|
+
assert isinstance(amount, int), f"Amount should be an integer only not {type(amount)}"
|
|
74
|
+
assert amount > 0, "Amount should be greater than 0"
|
|
75
|
+
|
|
76
|
+
ads = lambda: (
|
|
77
|
+
""
|
|
78
|
+
if not additives
|
|
79
|
+
else choice(punctuation)
|
|
80
|
+
+ choice(punctuation)
|
|
81
|
+
+ choice(punctuation)
|
|
82
|
+
+ choice(punctuation)
|
|
83
|
+
+ choice(punctuation)
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
self.prompt = prompt
|
|
87
|
+
response = []
|
|
88
|
+
for _ in range(amount):
|
|
89
|
+
payload = {
|
|
90
|
+
"prompt": prompt + ads(),
|
|
91
|
+
"num_inference_steps": num_inference_steps,
|
|
92
|
+
"guidance_scale": guidance_scale,
|
|
93
|
+
"width": width,
|
|
94
|
+
"height": height,
|
|
95
|
+
"seed": seed if seed is not None else randint(1, 10000),
|
|
96
|
+
}
|
|
97
|
+
resp = self.session.post(url=self.image_gen_endpoint, json=payload, timeout=self.timeout)
|
|
98
|
+
resp.raise_for_status()
|
|
99
|
+
# Extract base64 encoded image data and decode it
|
|
100
|
+
image_data = resp.json()['images'][0].split(",")[1]
|
|
101
|
+
image_bytes = base64.b64decode(image_data)
|
|
102
|
+
response.append(image_bytes)
|
|
103
|
+
|
|
104
|
+
return response
|
|
105
|
+
|
|
106
|
+
def save(
|
|
107
|
+
self,
|
|
108
|
+
response: list[bytes],
|
|
109
|
+
name: str = None,
|
|
110
|
+
dir: str = os.getcwd(),
|
|
111
|
+
filenames_prefix: str = "",
|
|
112
|
+
) -> list[str]:
|
|
113
|
+
"""Save generated images
|
|
114
|
+
|
|
115
|
+
Args:
|
|
116
|
+
response (list[bytes]): List of generated images as bytes.
|
|
117
|
+
name (str): Filename for the images. Defaults to last prompt.
|
|
118
|
+
dir (str, optional): Directory for saving images. Defaults to os.getcwd().
|
|
119
|
+
filenames_prefix (str, optional): String to be prefixed at each filename to be returned.
|
|
120
|
+
"""
|
|
121
|
+
assert isinstance(response, list), f"Response should be of {list} not {type(response)}"
|
|
122
|
+
name = self.prompt if name is None else name
|
|
123
|
+
|
|
124
|
+
filenames: list = []
|
|
125
|
+
count = 0
|
|
126
|
+
for image in response:
|
|
127
|
+
def complete_path():
|
|
128
|
+
count_value = "" if count == 0 else f"_{count}"
|
|
129
|
+
return os.path.join(
|
|
130
|
+
dir, name + count_value + "." + self.image_extension
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
while os.path.isfile(complete_path()):
|
|
134
|
+
count += 1
|
|
135
|
+
|
|
136
|
+
absolute_path_to_file = complete_path()
|
|
137
|
+
filenames.append(filenames_prefix + os.path.split(absolute_path_to_file)[1])
|
|
138
|
+
|
|
139
|
+
with open(absolute_path_to_file, "wb") as fh:
|
|
140
|
+
fh.write(image)
|
|
141
|
+
|
|
142
|
+
return filenames
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
if __name__ == "__main__":
|
|
146
|
+
bot = DeepInfraImager()
|
|
147
|
+
resp = bot.generate("AI-generated image - webscout", 1)
|
|
148
|
+
print(bot.save(resp))
|