webscout 4.5__py3-none-any.whl → 4.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of webscout might be problematic. Click here for more details.

@@ -1,59 +1,42 @@
1
- import time
2
- import uuid
3
- from selenium import webdriver
4
- from selenium.webdriver.chrome.options import Options
5
- from selenium.webdriver.common.by import By
6
- from selenium.webdriver.support import expected_conditions as EC
7
- from selenium.webdriver.support.ui import WebDriverWait
8
- import click
9
1
  import requests
10
- from requests import get
11
- from uuid import uuid4
12
- from re import findall
13
- from requests.exceptions import RequestException
14
- from curl_cffi.requests import get, RequestsError
15
- import g4f
16
- from random import randint
17
- from PIL import Image
18
- import io
19
- import re
20
2
  import json
21
- import yaml
3
+ from typing import Any, AsyncGenerator, Dict
4
+
22
5
  from ..AIutel import Optimizers
23
6
  from ..AIutel import Conversation
24
7
  from ..AIutel import AwesomePrompts, sanitize_stream
25
8
  from ..AIbase import Provider, AsyncProvider
26
- from Helpingai_T2 import Perplexity
27
9
  from webscout import exceptions
28
- from typing import Any, AsyncGenerator, Dict, Optional
29
- import logging
30
- import httpx
31
- import os
32
- from dotenv import load_dotenv; load_dotenv()
33
10
 
34
- #-----------------------------------------------DeepSeek--------------------------------------------
35
11
  class DeepSeek(Provider):
12
+ """
13
+ A class to interact with the Deepseek API.
14
+ """
15
+
36
16
  def __init__(
37
17
  self,
38
- api_key: str,
18
+ api_key,
19
+ model: str = "deepseek_chat", # deepseek_chat, deepseek_code
20
+ temperature: float = 0,
39
21
  is_conversation: bool = True,
40
- max_tokens: int = 600,
41
22
  timeout: int = 30,
23
+ max_tokens: int = 4000,
42
24
  intro: str = None,
43
25
  filepath: str = None,
44
26
  update_file: bool = True,
45
27
  proxies: dict = {},
46
28
  history_offset: int = 10250,
47
29
  act: str = None,
48
- model: str = 'deepseek_chat',
49
- temperature: float = 1.0,
50
- ):
51
- """Initializes DeepSeek
30
+ ) -> None:
31
+ """
32
+ Initializes the Deepseek API with given parameters.
52
33
 
53
34
  Args:
54
- api_key (str): DeepSeek API key.
35
+ api_token (str): The API token for authentication.
36
+ api_endpoint (str): The API endpoint to use for requests.
37
+ model (str): The AI model to use for text generation.
38
+ temperature (float): The temperature parameter for the model.
55
39
  is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
56
- max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
57
40
  timeout (int, optional): Http request timeout. Defaults to 30.
58
41
  intro (str, optional): Conversation introductory prompt. Defaults to None.
59
42
  filepath (str, optional): Path to file containing conversation history. Defaults to None.
@@ -61,28 +44,41 @@ class DeepSeek(Provider):
61
44
  proxies (dict, optional): Http request proxies. Defaults to {}.
62
45
  history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
63
46
  act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
64
- model_type (str, optional): DeepSeek model type. Defaults to 'deepseek_chat'.
65
- temperature (float, optional): Creativity level of the response. Defaults to 1.0.
66
47
  """
67
48
  self.api_token = api_key
68
- self.auth_headers = {
69
- 'Authorization': f'Bearer {self.api_token}'
70
- }
71
- self.api_base_url = 'https://chat.deepseek.com/api/v0/chat'
72
- self.api_session = requests.Session()
73
- self.api_session.headers.update(self.auth_headers)
74
-
49
+ self.api_endpoint = "https://chat.deepseek.com/api/v0/chat/completions"
50
+ self.model = model
51
+ self.temperature = temperature
52
+ self.session = requests.Session()
75
53
  self.is_conversation = is_conversation
76
54
  self.max_tokens_to_sample = max_tokens
77
55
  self.timeout = timeout
78
56
  self.last_response = {}
79
- self.model_type = model
80
- self.temperature = temperature
57
+ self.headers = {
58
+ "authority": "chat.deepseek.com",
59
+ "accept": "*/*",
60
+ "accept-encoding": "gzip, deflate, br, zstd",
61
+ "accept-language": "en-US,en;q=0.9,en-IN;q=0.8",
62
+ "authorization": f"Bearer {self.api_token}",
63
+ "content-type": "application/json",
64
+ "dnt": "1",
65
+ "origin": "https://chat.deepseek.com",
66
+ "referer": "https://chat.deepseek.com",
67
+ "sec-ch-ua": '"Not)A;Brand";v="99", "Microsoft Edge";v="127", "Chromium";v="127"',
68
+ "sec-ch-ua-mobile": "?0",
69
+ "sec-ch-ua-platform": '"Windows"',
70
+ "sec-fetch-dest": "empty",
71
+ "sec-fetch-mode": "cors",
72
+ "sec-fetch-site": "same-origin",
73
+ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0",
74
+ "x-app-version": "20240126.0"
75
+ }
81
76
  self.__available_optimizers = (
82
77
  method
83
78
  for method in dir(Optimizers)
84
79
  if callable(getattr(Optimizers, method)) and not method.startswith("__")
85
80
  )
81
+ self.session.headers.update(self.headers)
86
82
  Conversation.intro = (
87
83
  AwesomePrompts().get_act(
88
84
  act, raise_not_found=True, default=None, case_insensitive=True
@@ -94,54 +90,7 @@ class DeepSeek(Provider):
94
90
  is_conversation, self.max_tokens_to_sample, filepath, update_file
95
91
  )
96
92
  self.conversation.history_offset = history_offset
97
- # self.session.proxies = proxies
98
-
99
- def clear_chat(self) -> None:
100
- """
101
- Clears the chat context by making a POST request to the clear_context endpoint.
102
- """
103
- clear_payload = {"model_class": "deepseek_chat", "append_welcome_message": False}
104
- clear_response = self.api_session.post(f'{self.api_base_url}/clear_context', json=clear_payload)
105
- clear_response.raise_for_status() # Raises an HTTPError if the HTTP request returned an unsuccessful status code
106
-
107
- def generate(self, user_message: str, response_temperature: float = 1.0, model_type: Optional[str] = "deepseek_chat", verbose: bool = False) -> str:
108
- """
109
- Generates a response from the DeepSeek API based on the provided message.
110
-
111
- Args:
112
- user_message (str): The message to send to the chat API.
113
- response_temperature (float, optional): The creativity level of the response. Defaults to 1.0.
114
- model_type (str, optional): The model class to be used for the chat session.
115
- verbose (bool, optional): Whether to print the response content. Defaults to False.
116
-
117
- Returns:
118
- str: The concatenated response content received from the API.
119
-
120
- Available models:
121
- - deepseek_chat
122
- - deepseek_code
123
- """
124
- request_payload = {
125
- "message": user_message,
126
- "stream": True,
127
- "model_preference": None,
128
- "model_class": model_type,
129
- "temperature": response_temperature
130
- }
131
- api_response = self.api_session.post(f'{self.api_base_url}/completions', json=request_payload, stream=True)
132
- api_response.raise_for_status()
133
-
134
- combined_response = ""
135
- for response_line in api_response.iter_lines(decode_unicode=True, chunk_size=1):
136
- if response_line:
137
- cleaned_line = re.sub("data:", "", response_line)
138
- response_json = json.loads(cleaned_line)
139
- response_content = response_json['choices'][0]['delta']['content']
140
- if response_content and not re.match(r'^\s{5,}$', response_content):
141
- if verbose: print(response_content, end="", flush=True)
142
- combined_response += response_content
143
-
144
- return combined_response
93
+ self.session.proxies = proxies
145
94
 
146
95
  def ask(
147
96
  self,
@@ -150,40 +99,19 @@ class DeepSeek(Provider):
150
99
  raw: bool = False,
151
100
  optimizer: str = None,
152
101
  conversationally: bool = False,
153
- ) -> dict:
154
- """Chat with AI
102
+ ) -> Dict[str, Any]:
103
+ """
104
+ Sends a prompt to the Deepseek AI API and returns the response.
155
105
 
156
106
  Args:
157
- prompt (str): Prompt to be send.
158
- stream (bool, optional): Flag for streaming response. Defaults to False.
159
- raw (bool, optional): Stream back raw response as received. Defaults to False.
160
- optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
161
- conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
107
+ prompt: The text prompt to generate text from.
108
+ stream (bool, optional): Whether to stream the response. Defaults to False.
109
+ raw (bool, optional): Whether to return the raw response. Defaults to False.
110
+ optimizer (str, optional): The name of the optimizer to use. Defaults to None.
111
+ conversationally (bool, optional): Whether to chat conversationally. Defaults to False.
112
+
162
113
  Returns:
163
- dict : {}
164
- ```json
165
- {
166
- "id": "chatcmpl-TaREJpBZsRVQFRFic1wIA7Q7XfnaD",
167
- "object": "chat.completion",
168
- "created": 1704623244,
169
- "model": "gpt-3.5-turbo",
170
- "usage": {
171
- "prompt_tokens": 0,
172
- "completion_tokens": 0,
173
- "total_tokens": 0
174
- },
175
- "choices": [
176
- {
177
- "message": {
178
- "role": "assistant",
179
- "content": "Hello! How can I assist you today?"
180
- },
181
- "finish_reason": "stop",
182
- "index": 0
183
- }
184
- ]
185
- }
186
- ```
114
+ The response from the API.
187
115
  """
188
116
  conversation_prompt = self.conversation.gen_complete_prompt(prompt)
189
117
  if optimizer:
@@ -195,23 +123,41 @@ class DeepSeek(Provider):
195
123
  raise Exception(
196
124
  f"Optimizer is not one of {self.__available_optimizers}"
197
125
  )
126
+
127
+ payload = {
128
+ "message": conversation_prompt,
129
+ "stream": True,
130
+ "model_preference": None,
131
+ "model_class": self.model,
132
+ "temperature": self.temperature
133
+ }
198
134
 
199
135
  def for_stream():
200
- response = self.generate(
201
- user_message=conversation_prompt,
202
- response_temperature=self.temperature,
203
- model_type=self.model_type,
204
- verbose=False,
136
+ response = self.session.post(
137
+ self.api_endpoint, json=payload, headers=self.headers, stream=True, timeout=self.timeout
205
138
  )
206
- # print(response)
207
- self.last_response.update(dict(text=response))
139
+
140
+ if not response.ok:
141
+ raise exceptions.FailedToGenerateResponseError(
142
+ f"Failed to generate response - ({response.status_code}, {response.reason})"
143
+ )
144
+ streaming_response = ""
145
+ collected_messages = []
146
+ for line in response.iter_lines():
147
+ if line:
148
+ json_line = json.loads(line.decode('utf-8').split('data: ')[1])
149
+ if 'choices' in json_line and len(json_line['choices']) > 0:
150
+ delta_content = json_line['choices'][0].get('delta', {}).get('content')
151
+ if delta_content:
152
+ collected_messages.append(delta_content)
153
+ streaming_response = ''.join(collected_messages)
154
+ yield delta_content if raw else dict(text=streaming_response)
155
+ self.last_response.update(dict(text=streaming_response))
208
156
  self.conversation.update_chat_history(
209
157
  prompt, self.get_message(self.last_response)
210
158
  )
211
- yield dict(text=response) if raw else dict(text=response)
212
159
 
213
160
  def for_non_stream():
214
- # let's make use of stream
215
161
  for _ in for_stream():
216
162
  pass
217
163
  return self.last_response
@@ -0,0 +1,173 @@
1
+ import requests
2
+ import json
3
+ from webscout.AIutel import Optimizers
4
+ from webscout.AIutel import Conversation
5
+ from webscout.AIutel import AwesomePrompts
6
+ from webscout.AIbase import Provider
7
+
8
+ class LLAMA3(Provider):
9
+ def __init__(
10
+ self,
11
+ is_conversation: bool = True,
12
+ max_tokens: int = 600,
13
+ timeout: int = 30,
14
+ intro: str = None,
15
+ filepath: str = None,
16
+ update_file: bool = True,
17
+ proxies: dict = {},
18
+ history_offset: int = 10250,
19
+ act: str = None,
20
+ model: str = "llama3-70b", # model= llama3-70b, llama3-8b, llama3-405b
21
+ system: str = "Answer as concisely as possible.",
22
+ ):
23
+ """Instantiates Snova
24
+
25
+ Args:
26
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
27
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
28
+ timeout (int, optional): Http request timeout. Defaults to 30.
29
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
30
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
31
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
32
+ proxies (dict, optional): Http request proxies. Defaults to {}.
33
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
34
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
35
+ model (str, optional): Snova model name. Defaults to "llama3-70b".
36
+ system (str, optional): System prompt for Snova. Defaults to "Answer as concisely as possible.".
37
+ """
38
+ self.session = requests.Session()
39
+ self.is_conversation = is_conversation
40
+ self.max_tokens_to_sample = max_tokens
41
+ self.timeout = timeout
42
+ self.model = model
43
+ self.system = system
44
+ self.last_response = {}
45
+ self.env_type = "tp16405b" if "405b" in model else "tp16"
46
+ self.headers = {'content-type': 'application/json'}
47
+
48
+ self.__available_optimizers = (
49
+ method
50
+ for method in dir(Optimizers)
51
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
52
+ )
53
+ self.session.headers.update(self.headers)
54
+ Conversation.intro = (
55
+ AwesomePrompts().get_act(
56
+ act, raise_not_found=True, default=None, case_insensitive=True
57
+ )
58
+ if act
59
+ else intro or Conversation.intro
60
+ )
61
+ self.conversation = Conversation(
62
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
63
+ )
64
+ self.conversation.history_offset = history_offset
65
+ self.session.proxies = proxies
66
+
67
+ def ask(
68
+ self,
69
+ prompt: str,
70
+ stream: bool = False,
71
+ raw: bool = False,
72
+ optimizer: str = None,
73
+ conversationally: bool = False,
74
+ ) -> dict:
75
+ """Chat with AI
76
+
77
+ Args:
78
+ prompt (str): Prompt to be send.
79
+ stream (bool, optional): Flag for streaming response. Defaults to False.
80
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
81
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
82
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
83
+ Returns:
84
+ dict : {}
85
+ ```json
86
+ {
87
+ "text" : "How may I assist you today?"
88
+ }
89
+ ```
90
+ """
91
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
92
+ if optimizer:
93
+ if optimizer in self.__available_optimizers:
94
+ conversation_prompt = getattr(Optimizers, optimizer)(
95
+ conversation_prompt if conversationally else prompt
96
+ )
97
+ else:
98
+ raise Exception(
99
+ f"Optimizer is not one of {self.__available_optimizers}"
100
+ )
101
+ data = {'body': {'messages': [{'role': 'system', 'content': self.system}, {'role': 'user', 'content': conversation_prompt}], 'stream': True, 'model': self.model}, 'env_type': self.env_type}
102
+
103
+ def for_stream(data=data): # Pass data as a default argument
104
+ response = self.session.post('https://fast.snova.ai/api/completion', headers=self.headers, json=data, stream=True, timeout=self.timeout)
105
+ output = ''
106
+ for line in response.iter_lines(decode_unicode=True):
107
+ if line.startswith('data:'):
108
+ try:
109
+ data = json.loads(line[len('data: '):])
110
+ output += data.get("choices", [{}])[0].get("delta", {}).get("content", '')
111
+ self.last_response.update(dict(text=output))
112
+ yield data if raw else dict(text=output)
113
+ except json.JSONDecodeError:
114
+ if line[len('data: '):] == '[DONE]':
115
+ break
116
+ self.conversation.update_chat_history(
117
+ prompt, self.get_message(self.last_response)
118
+ )
119
+
120
+ def for_non_stream():
121
+ for _ in for_stream():
122
+ pass
123
+ return self.last_response
124
+
125
+ return for_stream() if stream else for_non_stream()
126
+
127
+ def chat(
128
+ self,
129
+ prompt: str,
130
+ stream: bool = False,
131
+ optimizer: str = None,
132
+ conversationally: bool = False,
133
+ ) -> str:
134
+ """Generate response `str`
135
+ Args:
136
+ prompt (str): Prompt to be send.
137
+ stream (bool, optional): Flag for streaming response. Defaults to False.
138
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
139
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
140
+ Returns:
141
+ str: Response generated
142
+ """
143
+
144
+ def for_stream():
145
+ for response in self.ask(
146
+ prompt, True, optimizer=optimizer, conversationally=conversationally
147
+ ):
148
+ yield self.get_message(response)
149
+
150
+ def for_non_stream():
151
+ return self.get_message(
152
+ self.ask(
153
+ prompt,
154
+ False,
155
+ optimizer=optimizer,
156
+ conversationally=conversationally,
157
+ )
158
+ )
159
+
160
+ return for_stream() if stream else for_non_stream()
161
+
162
+ def get_message(self, response: dict) -> str:
163
+ """Retrieves message only from response
164
+
165
+ Args:
166
+ response (dict): Response generated by `self.ask`
167
+
168
+ Returns:
169
+ str: Message extracted
170
+ """
171
+ assert isinstance(response, dict), "Response should be of dict data-type only"
172
+ return response["text"]
173
+
@@ -0,0 +1,178 @@
1
+ import requests
2
+ from typing import Any, AsyncGenerator, Dict, Optional
3
+ import json
4
+
5
+ from webscout.AIutel import Optimizers
6
+ from webscout.AIutel import Conversation
7
+ from webscout.AIutel import AwesomePrompts, sanitize_stream
8
+ from webscout.AIbase import Provider, AsyncProvider
9
+ from webscout import exceptions
10
+
11
+
12
+ class PIZZAGPT(Provider):
13
+ """
14
+ A class to interact with the PizzaGPT API.
15
+ """
16
+
17
+ def __init__(
18
+ self,
19
+ is_conversation: bool = True,
20
+ max_tokens: int = 600,
21
+ timeout: int = 30,
22
+ intro: str = None,
23
+ filepath: str = None,
24
+ update_file: bool = True,
25
+ proxies: dict = {},
26
+ history_offset: int = 10250,
27
+ act: str = None,
28
+ ) -> None:
29
+ """
30
+ Initializes the PizzaGPT API with given parameters.
31
+
32
+ Args:
33
+ is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
34
+ max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
35
+ timeout (int, optional): Http request timeout. Defaults to 30.
36
+ intro (str, optional): Conversation introductory prompt. Defaults to None.
37
+ filepath (str, optional): Path to file containing conversation history. Defaults to None.
38
+ update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
39
+ proxies (dict, optional): Http request proxies. Defaults to {}.
40
+ history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
41
+ act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
42
+ """
43
+ self.session = requests.Session()
44
+ self.is_conversation = is_conversation
45
+ self.max_tokens_to_sample = max_tokens
46
+ self.api_endpoint = "https://www.pizzagpt.it/api/chatx-completion"
47
+ self.stream_chunk_size = 64
48
+ self.timeout = timeout
49
+ self.last_response = {}
50
+ self.headers = {
51
+ "accept": "application/json",
52
+ "accept-encoding": "gzip, deflate, br, zstd",
53
+ "accept-language": "en-US,en;q=0.9,en-IN;q=0.8",
54
+ "content-length": "17",
55
+ "content-type": "application/json",
56
+ "dnt": "1",
57
+ "origin": "https://www.pizzagpt.it",
58
+ "priority": "u=1, i",
59
+ "referer": "https://www.pizzagpt.it/en",
60
+ "sec-ch-ua": '"Not)A;Brand";v="99", "Microsoft Edge";v="127", "Chromium";v="127"',
61
+ "sec-ch-ua-mobile": "?0",
62
+ "sec-ch-ua-platform": '"Windows"',
63
+ "sec-fetch-dest": "empty",
64
+ "sec-fetch-mode": "cors",
65
+ "sec-fetch-site": "same-origin",
66
+ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0",
67
+ "x-secret": "Marinara"
68
+ }
69
+
70
+ self.__available_optimizers = (
71
+ method
72
+ for method in dir(Optimizers)
73
+ if callable(getattr(Optimizers, method)) and not method.startswith("__")
74
+ )
75
+ self.session.headers.update(self.headers)
76
+ Conversation.intro = (
77
+ AwesomePrompts().get_act(
78
+ act, raise_not_found=True, default=None, case_insensitive=True
79
+ )
80
+ if act
81
+ else intro or Conversation.intro
82
+ )
83
+ self.conversation = Conversation(
84
+ is_conversation, self.max_tokens_to_sample, filepath, update_file
85
+ )
86
+ self.conversation.history_offset = history_offset
87
+ self.session.proxies = proxies
88
+
89
+ def ask(
90
+ self,
91
+ prompt: str,
92
+ stream: bool = False,
93
+ raw: bool = False,
94
+ optimizer: str = None,
95
+ conversationally: bool = False,
96
+ ) -> dict:
97
+ """Chat with AI
98
+
99
+ Args:
100
+ prompt (str): Prompt to be send.
101
+ stream (bool, optional): Flag for streaming response. Defaults to False.
102
+ raw (bool, optional): Stream back raw response as received. Defaults to False.
103
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
104
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
105
+ Returns:
106
+ dict : {}
107
+ ```json
108
+ {
109
+ "text" : "How may I assist you today?"
110
+ }
111
+ ```
112
+ """
113
+ conversation_prompt = self.conversation.gen_complete_prompt(prompt)
114
+ if optimizer:
115
+ if optimizer in self.__available_optimizers:
116
+ conversation_prompt = getattr(Optimizers, optimizer)(
117
+ conversation_prompt if conversationally else prompt
118
+ )
119
+ else:
120
+ raise Exception(
121
+ f"Optimizer is not one of {self.__available_optimizers}"
122
+ )
123
+
124
+ self.session.headers.update(self.headers)
125
+ payload = {"question": conversation_prompt}
126
+
127
+ response = self.session.post(
128
+ self.api_endpoint, json=payload, timeout=self.timeout
129
+ )
130
+ if not response.ok:
131
+ raise exceptions.FailedToGenerateResponseError(
132
+ f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
133
+ )
134
+
135
+ resp = response.json()
136
+ self.last_response.update(dict(text=resp['answer']['content']))
137
+ self.conversation.update_chat_history(
138
+ prompt, self.get_message(self.last_response)
139
+ )
140
+ return self.last_response # Return the updated last_response
141
+
142
+ def chat(
143
+ self,
144
+ prompt: str,
145
+ stream: bool = False,
146
+ optimizer: str = None,
147
+ conversationally: bool = False,
148
+ ) -> str:
149
+ """Generate response `str`
150
+ Args:
151
+ prompt (str): Prompt to be send.
152
+ stream (bool, optional): Flag for streaming response. Defaults to False.
153
+ optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
154
+ conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
155
+ Returns:
156
+ str: Response generated
157
+ """
158
+
159
+ return self.get_message(
160
+ self.ask(
161
+ prompt,
162
+ optimizer=optimizer,
163
+ conversationally=conversationally,
164
+ )
165
+ )
166
+ def get_message(self, response: dict) -> str:
167
+ """Retrieves message only from response
168
+
169
+ Args:
170
+ response (dict): Response generated by `self.ask`
171
+
172
+ Returns:
173
+ str: Message extracted
174
+ """
175
+ assert isinstance(response, dict), "Response should be of dict data-type only"
176
+ return response["text"]
177
+ if __name__ == "__main__":
178
+ print(PIZZAGPT().chat("hello"))